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Supplementary Text 

Outline of Computational Method 

We modeled the transient behavior of the sheet up until the point of snap-through.  During this 
period, the sheet deformed slowly in response to changes in temperature distribution and 
therefore inertial effects are negligible.  Further, heat transfer is slow compared to mechanical 
time scales, and therefore it was assumed that the body is in mechanical equilibrium at each 
instant of time. The temperature profile was obtained by solving the heat equation assuming a set 
temperature on the bottom side and an insulated boundary on the top.  The temperature 
distribution through the thickness gives rise to a spontaneous strain and curvature in the sheet.  
We obtain these values by imposing equilibrium (balance of force and moment) across the cross-
section. Given the spontaneous strain and curvature, a Föppl-von Kármán plate model was used 
to calculate the equilibrium shape, and then the stability of the equilibrium shape was studied to 
determine the instant of snap-through. 

Evolution of Strain 

A plane state of stress in the sheet was assumed, and therefore the Hooke’s law may be written 
as 

𝝈𝜶𝜷𝒔 (𝒛) =
𝑬(𝒛)
𝟏 − 𝝂𝟐 *𝝂	𝝐𝜸𝜸

𝒔 (𝒛)𝜹𝜶𝜷 + (𝟏 − 𝝂)𝝐𝜶𝜷𝒔 (𝒛)/ = 𝑬(𝒛)𝒇𝜶𝜷𝜸𝜹𝝐𝜶𝜷𝒔 (𝒛).

where z is the variable through the thickness, the Young’s modulus 𝐸(𝑧) varies through the 
thickness while the Poisson’s relation 𝜈 is uniform.  This allows Hooke’s law to be written in the 
compact form of the second equality. The usual ansatz was made that the through-thickness strain 
takes the form 

𝜖'() (𝑧) = 	𝜅'((𝑧 − 𝑧*) + 𝜖'( −	𝜖'̂((𝑧) 

where 𝜅'( is the apparent curvature, 𝑧* is the location of the neutral axis, 𝜖'( is the in-plane strain, 
and 𝜖'̂((𝑧) is the spontaneous strain due to the local temperature profile. The traction can be 
written as 

𝑁'( =	9 𝜎'() (𝑧)𝑑𝑧
+
,

-+,

=	9 𝐸(𝑧)𝑓'(./ *𝜅./(𝑧 − 𝑧*) +	𝜖./ − 𝜖.̂/(𝑧)/ 𝑑𝑧
+
,

-+,

 

= 𝑓'(./(𝜅./=ℳ0(𝐸) − 𝑧*ℳ*(𝐸)? +	𝜖./ℳ*(𝐸) −ℳ*=𝐸	𝜖.̂/?. 

Setting 𝑧* =
ℳ!(3)
ℳ"(3)

, we get

𝑁'( = 	𝐶	𝑓'(./=𝜖./ − 𝜖./5 ? 



where the effective in-plane modulus is given by 𝐶 = 	ℳ*(𝐸) and the spontaneous effective in-
plane strain is given by 𝜖'(5 =	ℳ*(𝐸	𝜖'̂(). 

The moment is given by 

𝑀'( =	9 𝑧	𝜎'() (𝑧)𝑑𝑧
+/,

-+/,
=	9 𝑧	𝐸(𝑧)𝑓'(./(𝜅./(𝑧 − 𝑧*) + 𝜖./ − 𝜖.̂/(𝑧))𝑑𝑧

+/,

-+/,
 

= 𝑓'(./(𝜅./ 	=ℳ,(𝐸) − 𝑧*ℳ0(𝐸)? +	𝜖./ℳ0(𝐸) −	ℳ0(𝐸	𝜖.̂/)) 

			= 𝑓'(./ B𝜅./ Bℳ,(𝐸) −
ℳ0(𝐸),

ℳ*(𝐸) C +	𝜖./ℳ
0(𝐸) −	ℳ0(𝐸	𝜖.̂/)C.

Making the assumption that 𝜖./ ≈ 𝜖./5 , we have 

																= 𝑓'(./ B𝜅./ Bℳ,(𝐸) −
ℳ0(𝐸),

ℳ*(𝐸) C +
ℳ*=𝐸	𝜖.̂/?ℳ0(𝐸)

ℳ0(𝐸) −	ℳ0(𝐸	𝜖.̂/)C.

Defining 𝐵 = 	ℳ,(𝐸) −ℳ!(3)#

ℳ"(3)
and 𝜅./5 = 0

7
*ℳ0=𝐸	𝜖.̂/? −

ℳ!(3)ℳ"83	:;$%<
ℳ"(3)

/, we have 

𝑀'( = 𝐵	𝑓'(./=𝜅./ − 𝜅./5 ?. 

These results allowed for calculation of the evolution of natural in-plane and bending strain relative 
to modulus as described in Table 2. Given the relations between strains, stresses, and curvatures, 
a Föppl-von Kármán energy was constructed of the form 

ℰ = 	9 =𝐶	𝑊(𝝐 −	𝝐5) + 𝐵	𝑊(𝜿 −	𝜿5)?𝑑𝐴
=

 

where 𝜖 = 0
,
(∇𝒖(𝑥) + ∇𝒖(𝑥)>) + 0

,
∇𝑤(𝑥) ⊗ ∇𝑤(𝑥), 𝜿 = ∇,𝑤(𝑥), and 𝐶, 𝐵, 𝝐5,	𝜿5 are defined 

as in previous work. In this formulation,	𝒖(𝑥) ∈ ℝ, is the in-plane deformation of the neutral plane 
and 𝑤(𝑥) ∈ ℝ is the out of plane deformation.  𝑊 is the normalized strain energy function 
consistent with the plane stress approximation. Here, 𝑊 is defined as 

𝑊(𝜖) =
1

2(1 −	𝜈,) =𝜈𝜖'' 	𝜖(( +
(1 − 𝜈)𝜖'(𝜖'(?.

Uniform Case 
As a demonstration of the consistency of the model, the case was considered where there are zero 
thermal stresses (𝜖'̂((𝑧) = 0) and the Young’s Modulus is constant 𝐸(𝑧) = 𝐸. We then have that 

𝐶 = ℎ𝐸, 𝐵 = +&

0,
𝐸, 𝜖5 = 0, and 𝜅5 = 0. The previous equation condenses to the standard Föppl-

von Kármán plate energy of 

ℰ?@A =	9 Bℎ	𝐸	𝑊 U
1
2
(∇𝒖(𝑥) + ∇𝒖(𝑥)>) +

1
2∇𝑤(𝑥) ⊗ ∇𝑤(𝑥)V +

ℎB𝐸
12 𝑊(∇,𝑤(𝑥))C𝑑𝐴.

=
 



Non-Dimensionalization 
We then non-dimensionalized the problem. Letting 𝐿 be a characteristic macroscopic length scale 
(i.e. the side length of the sample), we then have 

ℎX =
ℎ
𝐿,					 𝑥̅ =

𝑥
𝐿,					𝒖

[ =
𝒖
𝐿 ,					𝑤[ =

𝑤
𝐿 ,					Ω

[ =
Ω
𝐿,. 

Using the chain rule on the gradients, the result is 
∇𝒖 = ∇(𝐿	𝒖[) = ∇[𝒖,[  
∇𝑤 = ∇(𝐿	𝑤[) = 	∇[𝑤,XXX 

∇,𝑤 = ∇(∇[𝑤[) =
1
𝐿 ∇
[,𝑤[  

where ∇[ is the gradient with respect to the non-dimensionalized coordinates 𝑥̅. Plugging this in, ℰ 
can be written as 

ℰ = 	9 (𝐶	𝑊(𝝐 −	𝝐5) + 𝐵	𝑊(𝜿 −	𝜿5))𝑑𝐴
=

 

																	= 	9 B𝐶	𝑊(𝝐X −	𝝐5) + 𝐵	𝑊 U
1
𝐿 𝜿
[ − 𝜿5	VC 𝐿,	𝑑𝐴̅

=C
 

where 𝝐X = 0
,
(∇[𝒖[ +	∇[𝒖[>) + 0

,
∇[𝑤[ ⊗ ∇[𝑤[  and 𝜿[ = ∇[,𝑤[ .  Because 𝑊 is a quadratic form, 𝑊(𝛼𝑭) =

	𝛼,𝑊(𝑭) for all 𝛼 ∈ ℝ.  Defining 𝜿[5 = 𝐿	𝜿5, the result is 

ℰ = 9 B𝐶	𝑊(𝝐X − 𝝐5) +
𝐵
𝐿,𝑊

(𝜿[ −	𝜿[5)C 𝐿,𝑑𝐴̅
=C

 

								= 𝐿,𝐶	9 B𝑊(𝝐X − 𝝐5) +
𝐵
𝐶𝐿,𝑊

(𝜿[ −	𝜿[5)C 𝑑𝐴.[
=C

 

This allowed for rescaling of the problem to a unit scale for numerical stability. Additionally, we 
obtained a non-dimensionalized form of the energy as 

ℰ̅ = ℰ
E#F

= ∫ =𝑊(𝝐X −	𝝐5) 	+	𝐵X𝑊(𝜿[ − 𝜿[5)?𝑑𝐴̅=C  (1) 

where 𝐵X = 7
FE#

is the normalized bending modulus. Minimizing this elastic energy yields 
equilibrium solutions.  But first, temperature distribution through the thickness needed to be 
obtained. 

Heat Equation and Boundary Conditions 
The temperature distribution through the thickness was obtained and its evolution over time was 
defined by solving following heat equation and boundary conditions. 

𝜕𝑇
𝜕𝑡
(𝑧, 𝑡) = 𝐷

𝜕,𝑇
𝜕𝑧,

(𝑧, 𝑡)	

𝑇 U−
ℎ
2 , 𝑡V = 𝑇G 	

𝜕𝑇
𝜕𝑧 U

ℎ
2 , 𝑡V = 0	

𝑇(𝑧, 0) = 𝑇* 



The above system was solved using the pdepe routine in Matlab to obtain 𝑇(𝑧, 𝑡). This result was 
used in combination with the strain as a function of temperature for different combinations of 
laminated films. For example, with two laminated films (both of height h/2), the result is  

𝜖'((Δ𝑇, 𝑧	) = e
𝜖'(0 (Δ𝑇),					𝑧 ∈ (0, ℎ/2)
		𝜖'(, (Δ𝑇),					𝑧 ∈ (−ℎ/2,0)

	 

where 𝜖'(0 (Δ𝑇) and 𝜖'(, (Δ𝑇) are the (experimentally measured) strain functions for each of the 
individual laminates. For any given time, we can find the spontaneous strain through the thickness 
as  

𝜖'̂((𝑧) = 	 𝜖'((𝑇(𝑧, 𝑡) − 𝑇*, 𝑧) 
where the explicit dependence on 𝑡 is suppressed. Note that this term also encapsulates the radial 
nature of the patterning on the LCE sheet. 

Equilibrium shape 
Having obtained the temperature distribution and the resulting spontaneous stretch and curvature, 
we sought to study the equilibria associated with the energy (1) to obtain the shape of the sheet.  
This was non-trivial due to the presence of the second derivative (∇∇𝑤); so, an augmented 
Lagrangian method was used. The strain energy (1) is written compactly as 

𝑈@A[𝒖, 𝑤] = 	9𝑢@A(𝒖, ∇𝒖,𝑤, ∇𝑤, ∇∇𝑤)𝑑𝑎
=

. 

A new function, 𝝃 , was then introduced which we constrain as 𝝃 = ∇𝑤. This constraint was 
enforced with an augmented Lagrangian written as 

ℒ@A[𝒖, 𝑤, 𝝃, 𝝀] = 	9 𝑢@A(𝒖, ∇𝒖,𝑤, ∇𝑤, ∇𝝃)𝑑𝑎	
=

−	9 𝝀 ⋅ (𝝃 − ∇𝑤)𝑑𝑎 +
𝜇
2	9 |𝝃 − ∇𝑤|

,𝑑𝑎
==

 

where the contribution of the Lagrange multiplier 𝝀 must also be solved for. The weak form of this 
Lagrangian is found by taking variations and solving for 𝛿ℒ[𝒖,𝑤, 𝝃, 𝝀] = 0. This is similar to the 
approach of “mixed elements” in the Mindlin-Reissner plate theory, as described in (36) with an 
added quadratic relaxation term in the energy. Following the standard finite element formulation, 
we expanded both the function and its corresponding variation with Galerkin projections as 
𝒖H(𝑥) = 	∑𝒖I𝑁IJ(𝒙),					𝑤H(𝒙) = ∑𝑤I𝑁IK(𝒙),						𝝀H(𝑥) = ∑𝝀I𝑁IL(𝒙),					𝝃H(𝒙) = ∑𝝃I𝑁I

M(𝒙)
where 𝑁I

(⋅) are the shape functions with compact support. 2nd order shape functions were used in
𝒖 and first order for all the rest. The finite element scheme was implemented in Deal.II, a finite 
element library for C++. (37) The zero was found using Newton-Raphson iterations where the 
Hessian is found using the second variation of the augmented Lagrangian. 

Calculating Critical Curvatures    
We started at the flat shape when the temperature distribution is uniform.  At each subsequent 
time step, the temperature distribution was computed and used to obtain the spontaneous strain 
and curvature distributions.  These were then used compute the new equilibrium shape using the 
previous shape as an initial guess, which led to a smooth evolution until system lost stability.  
The loss of stability is seen when the Newton-Raphson iteration fails to converge or when the 
solution jumps significantly. The shape of the snapped configuration was then calculated. This 



method provided the verification and demonstration of snap-through as seen in Figure 2E. In 
order to calculate the relationship between a particular fixed value of in-plane strain and the 
spontaneous curvature necessary to cause inversion, the configuration for that fixed value of in-
plane strain was calculated in the absence of any spontaneous curvature. The inverting curvature 
then slowly increased, again leading to smooth deformations, until the Newton-Raphson iteration 
fails to converge or the solution jumps significantly. At this point, shape of the snapped 
configuration was calculated and the critical curvature necessary for inversion was calculated as 
well as the difference in stored strain energies before and after the snap-through. By repeating 
this process for various values of in-plane strain, the relationship between in-plane strain and the 
critical curvature necessary for inversion was able to be calculated. This method was used for 
calculating the results in Figures 3B,C and 4A,B.  

Jump Height 
To estimate of the height that the sheet will jump off the table, it was assumed that all of the energy 
released in the snap-through was converted to gravitational potential energy. Calculated in the non-
dimensional scheme, the snap-through releases some Δℰ̅. This was converted to a dimensional 
energy as Δℰ = 𝐿,𝐶	Δℰ̅, with non-dimensionalization done as described above.  We then equated 
the released energy to the gravitational potential energy as  

Δℰ = 𝑚	𝑔	𝑧̂ 
where 𝑧̂ is the estimated jump height. Rearranging, the result is 

𝑧̂ =
𝐿,𝐶
𝐿,ℎ𝜌𝑔 Δℰ

̅ =
𝐶
𝜌𝑔ℎ Δℰ

̅	 

where we take 𝑚 = 𝜌𝐿,ℎ and use the values denoted in Table S1 for analysis. 

Table S1. Values assigned to variables in computational analysis of jump height. 

Variable Value 

𝐶 1.053 ∗ 10B	𝑚	𝑃𝑎 

ℎ 90	𝜇𝑚 

𝜌 1.2	𝑔/𝑐𝑚B 

𝑔 9.8	𝑚/𝑠, 

Δℰ̅ 2.0 ∗ 10-O 

Substituting values from the simulations, the result was 𝑧̂ ≈ 20	𝑐𝑚. Interestingly, it seems that 
regardless of the dimension of the system, the jump height is the same. This qualitatively matched 
the behavior of the experimental system.  Note that in reality, there are dissipative processes that 
reduce the jump height. Some of these include dissipation within the material, non-ideal heat 
transfer, liftoff, and kinetic energy from non-rigid body effects; therefore, this solution should be 
considered an upper bound on the jump height. 



Figure S1. Starting from a flat state. Images of the LCE element in the flat state before heating 



Movie S1. 
Leaping of laminated liquid crystalline elastomer. Material is placed with the high-modulus side 
in contact with the hot plate at 160 °C.  

Movie S2. 
Laminated liquid crystalline elastomer placed with the low-modulus side in contact with the hot 
plate at 160 °C, showing no snap-through behavior.  

Movie S3. 
Laminated liquid crystalline elastomer with defect center at fractional offset of 0.1. Material is 
placed with the high-modulus side in contact with the hot plate at 160 °C.  

Movie S4. 
Laminated liquid crystalline elastomer with defect center at fractional offset of 0.2. Material is 
placed with the high-modulus side in contact with the hot plate at 160 °C.  

Movie S5. 
Laminated liquid crystalline elastomer with defect center at fractional offset of 0.3. Material is 
placed with the high-modulus side in contact with the hot plate at 160 °C.  

Movie S6. 
Laminated liquid crystalline elastomer with two high modulus layers and one low modulus layer. 
Material is placed with the high-modulus side in contact with the hot plate at 160 °C.  

Movie S7. 
Laminated liquid crystalline elastomer with one high modulus layer and one low modulus layer. 
Material is placed with the high-modulus side in contact with the hot plate at 160 °C.  

Movie S8. 
Laminated liquid crystalline elastomer with one high modulus layer and three low modulus 
layers. Material is placed with the high-modulus side in contact with the hot plate at 160 °C. 

Movie S9. 
Directional leaping of laminated liquid crystalline elastomer with leg lengths of 0.5 mm and 1 
mm. Material is placed with the high-modulus side in contact with the hot plate at 160 °C.

Movie S10. 
Actuation of laminated liquid crystalline elastomer with leg lengths of 1.5 mm and 1.5 mm. 
Material is placed with the high-modulus side in contact with the hot plate at 160 °C.  

Movie S11. 
Actuation of laminated liquid crystalline elastomer with leg lengths of 0 mm and 1.5 mm. 
Material is placed with the high-modulus side in contact with the hot plate at 160 °C.  



Movie S12. 
Actuation of laminated liquid crystalline elastomer with leg lengths of 0.5 mm and 1.5 mm. 
Material is placed with the high-modulus side in contact with the hot plate at 160 °C.  

Movie S13.  
Demonstration of repeated actuation over 9 cycles. Material is placed with the high-modulus side 
in contact with the hot plate at 160 °C and cooled between cycles to room temperature. 

Movie S14.  
Leaping of LCE laminate fabricated with a circular perimeter. Material is placed with the high-
modulus side in contact with the hot plate at 160 °C. 
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