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Figure S1: Epigenetic and transcriptomic state of gonadal hPGCs and adjacent gonadal
somatic cells.

A. FACS analysis depicting the proportion of tissue-nonspecific alkaline phosphatase (AP)
positive (+) and CD117 positive hPGCs in male and female genital ridges at week 7, 8 and 9
of embryonic development.

B. Western Blot comparing H3K27me3 and H2aK119ub levels in week 7 and week 9 FACS-
purified fhPGCs. Quantification of H3 and quantification relative to H3 for H3K27me3 and
H2aK119ub are shown.

C-D. Comparison of gene (C) and TE (D) expression between mhPGCs and mGSCs. Genes /
TEs were grouped according to their expression level into i.) expressed (dark green), ii.) lowly
expressed (orange), and iii.) not expressed genes (dark red) (see Methods). No broad expression
change (grey), reduced expression (red) or elevated expression (green) in hPGCs are indicated
(left panel). Wilcoxon effect size is shown. Violine plot depicting expression changes of 66,495
human transcripts (C) and 3,040,811 annotated TEs (D) in mhPGCs relative to gonadal somatic
cells (right panel). r = Wilcoxon effect size

E. Western Blot of PGCs and gonadal somatic cells, FACS-purified from male and female
E12.5 GOF mouse embryos, week 8 female and 9 male human genital ridges. Levels of
H3K27me3, H2aK119ub and H3 were analysed. Quantification of H3 and quantification
relative to H3 for H3K27me3 and H2aK119ub are shown.

F/G. Pearson correlation of peak distribution of individual ChlP-seq experiments targeting the
indicated histone modifications

H. Spike-in normalized read counts falling into 5-kb bins covering the Y chromosomes for the
indicated ChIP-seq experiments on male hPGCs and gonadal somatic cells. ATAC-seq reads
were analysed in 1-kb bins. Wilcoxon effect size is shown.

I. Immunofluorescence staining of POU5SF1 (green) and H3K4mel (red) on wk7-9 female
human genital ridges. DAPI staining is shown to indicate the location of the nuclei.
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Figure S2: Epigenetic promoter regulation in male and female hPGCs.

A. Gene ontology enrichment analysis of genes associated with promoters showing female-
specific occupancy of H3K9me3, or male-specific occupancy of H3K27me3, H3K9me3 or
H2aK119ub in hPGCs.

B. Genome browser view of the OR5AN1 locus showing the indicated epigenetic modifications
in fhPGCs and mhPGCs.

C. Expression of ORGs, sex-specifically occupied by H3K9me3, in female (red) and male
(blue) hPGCs, respectively. Wilcoxon effect size is shown (left panel). OR5AN1 expression in
mhPGCs and fhPGCs (right panel). Re-analysis of single cell RNA-seq data (30). Sleuth's
likelihood ratio test is shown. n, P > 0.05



D. Genome browser view of the PIWIL2 locus. Shown epigenetic modifications in fhPGCs and
mhPGCs as indicated in Fig. S2B.

E. PIWIL2 expression in mhPGCs and fhPGCs. Reanalysis of single cell RNA-seq data®.
Sleuth's likelihood ratio test is shown. ***, P < 0.005

F. Genome browser view of the DPPA5 locus showing the indicated epigenetic modifications
in fhPGCs and mhPGCs.

G. Expression of genes associated with male-specific H3K27me3 promoters, co-occupied by
the indicated epigenetic marks in wk9 fhPGCs. Wilcoxon effect size is shown (left panel).
Differential H3K4me3 level between fhPGCs and mhPGCs at male-specific H3K27me3
promoters, co-occupied by the indicated epigenetic marks. Wilcoxon effect size of differential
H3K4me3 levels in fhPGCs and mhPGCs (right panel).

H. Number of promoters occupied by the indicated combinations of repressive marks in
mhPGCs and fhPGCs. Colour code indicates promoters occupied by the same combination of
repressive marks in germ cells of both sexes (green) or specifically male (blue) or female
hPGCs (red). Chi-square “goodness-of-fit” derived effect size.

Effect size levels as in Figure 1.
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Figure S3: Epigenetic promoter regulation in female hPGCs.

A. SOM analysis depicting clustering of transcript levels, H3K27me3, H2aK119ub, H3K9me3,
5mC, H3K4me3, H3K27ac, H3K4mel promoter occupancy and ATAC-seq signal, in fhPGCs
and changes of these features relative to fGSCs. GpC promoter content and promoter number
in each SOM node (right, lower panel). For differential levels between fhPGCs and fGSCs
paired Wilcoxon effect size (r) was determined and only nodes with r > 0.2 are shown.

B. Summary of the SOM analysis of repressive epigenetic mark in fhPGCs (left). Gene
ontology enrichment analysis of promoters occupied in fhPGCs by H3K9me3 (blue),
H3K9me3 and 5mC (orange), H3K27me3 (violet) or H3K27me3 and H2aK119ub (yellow)
(right).

C. Comparison of promoters occupied by H3K27me3 and H3K27me3/H2aK119ub in fGSCs
with the repressive epigenetic state of these promoters in ThPGCs. Chi-square “goodness-of-
fit” test ****: P <0.001

D. Epigenetic state of promoters associated with DNA methylation sensitive genes identified
before (2) in fhPGCs (left panel) and mhPGCs (right panel). Colour code indicates the co-
occupancy with the active marks H3K4me3 (opal), H3K27ac (green), both marks (orange) or
none of them (grey). Chi-square “goodness-of-fit” derived effect size (r) no practical difference
(nN):r<0.2,* 02<r<03,** 03<r<05**r>0.5

A-D. H3K27me3 occupancy was determined in wk9 fhPGCs/fGSCs.
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Figure S4: Putative epigenetic compensation for the loss of DNA methylation in
fhPGCs.

A. Scattered plot depicting the correlation between changes of promoter DNA methylation
and promoter H3K4mel levels (left) or changes promoter H3K27me3 and H3K4mel levels
(right). Differential 5mC levels were determined between mhPGCs and fGSCs, differential
H3K27me3 and H3K4mel levels were determined between mhPGCs and mGSCs. Colour code
indicates changes in H3K4me3 promoter levels between mhPGCs and mGSCs (Log2 FC
mhPGCs/mGSCs). Pearson correlation coefficient (r) is shown. Promoters co-occupied by
H3K27me3 and 5mC in mhPGCs or GSCs were excluded from the analysis. Density
distribution is shown on each axis.

B. Expression and chromatin accessibility of promoters specifically occupied by 5mC (opal)
or H3K27me3/H2aK119ub (green) in fGSCs and marked by the indicated epigenetic
modification specifically in fhPGCs. The analysed promoters harboured no detectable
repressive marks in fhPGCs and were only occupied by the indicated repressive marks in
fGSCs. Wilcoxon effect size is shown.

C. DNA methylation and H3K9me3 levels of fhPGC-specific H3K9me3 promoters occupied
in fGSCs (S) by no repressive mark (grey) or 5mC (red). Promoters specifically co-occupied
by H3K9me3 and 5mC in fhPGCs (P) are depicted in orange. Wilcoxon effect size is shown.

D. Gene ontology enrichment analysis of promoters with fhPGC-specific H3K9me3 occupancy
and no repressive marks (grey) or 5mC occupancy (red) in somatic cells.

E. Epigenetic state of fhPGC-specific H3K27me3 promoters in fhPGCs. Depicted are
combinations of repressive epigenetic marks found at these promoters in fhPGCs (left) and
fGSCs (right). Colour code indicates the co-occupancy with the active marks H3K4me3 (opal),
H3K27ac (green), both marks (orange) or none of them (grey).

F-G. Expression and epigenetic state (F) and gene ontology enrichment analysis (G) of
promoters, not occupied by a repressive mark in somatic cells and marked by H3K27me3
(grey) or H3K27me3 and H2aK119ub (yellow) in fhPGCs. In addition, promoters are shown
occupied by 5mC (red) or 5mC and H3K9me3 (orange) in somatic cells and only marked by
H3K27me3 in fhPGCs.

A-G. H3K27me3 occupancy was determined in wk9 fhPGCs / fGSCs.

Effect size levels as in Figure 1.
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Figure S5: Characterisation of the epigenetic environment at TEs in hPGCs.

A. SOM analysis of TEs depicting H3K27me3 occupancy in wk7 fhPGCs (upper panel) and
TE loading in all SOM nodes shown in Fig. 5A, Fig. S5A, C (lower panel).

B. TE SOM node average values for H3K27me3 in wk7 and wk9 fhPGCs and H2aK119ub in
wk9 fhPGCs. Nodes were ranked by the H3K27me3 occupancy in wk7 fhPGCs (upper panel).
TE SOM node average values for H2aK119ub in fhPGCs and fGSCs. Nodes were ranked by
the H2aK119ub occupancy in fhPGCs (lower panel).

C.TE SOM analysis depicting H3K4mel occupancy in fhPGCs and fGSCs.

D. SOM analysis on TEs (upper panel) and promoters (lower panel) in fhPGCs. SOM node
average values for H3K4mel and H3K4me3 and 5mC are depicted. Nodes were ranked by the
H3K4mel occupancy in fhPGCs.

E. Relative occupancy levels of the indicated modifications in fhPGCs/fGSCs at TEs occupied
by the corresponding modification specifically in fhPGCs (green), or fGSCs (red) or in both
cell types (blue). Wilcoxon effect size (r). no practical difference (n): r <0.2, *: 0.2<r<0.3,
**:03<r<05,***:r>0.5

F. Analysis of TEs specifically occupied by H3K9me3, H2aK119ub or H3K27me3 in thPGCs
while exhibiting occupancy with another repressive epigenetic mark in fGSCs. For simplicity
only epigenetic state changes that are found in more the 1% of the total analysed TEs (370,102)
are shown.

G. Alluvial plot depicting the repressive chromatin modification detected in fhPGCs at TEs
marked in somatic cells by 5mC or 5mC/H3K9me3.

H. Pie chart depicting the proportion of autosomal TEs in male and female hPGCs harbouring
the same or sex-specific repressive chromatin profiles (left panel). Number of TEs occupied by
the indicated marks sex-specifically (right panel). H3K27me3 occupancy was determined in
wk9 fhPGCs / mhPGCs. Chi-square “goodness-of-fit” derived effect size. no practical
difference (n): r<0.2,*: 0.2< r<0.3,** 03< r<05,***r>0.5

I. Number of TEs occupied by the indicated combinations of repressive marks in female and
male hPGCs. Colour code indicates the co-occupancy with the active marks H3K4me3 (opal),
H3K27ac (green), both marks (orange) or none of them (grey). H3K27me3 occupancy was
determined in wk9 fhPGCs / mhPGCs.

J. Absolute and relative (fhPGCs/fGSCs) levels of the indicated epigenetic marks in TE
subgroups associated with the indicated combinations of epigenetic marks in fhPGCs.
Wilcoxon effect size with levels as shown in Figure 1. Level of fhPGC-specifically expressed
TEs falling into the indicated TE subgroups is shown as Log2 (observed/expected) with
hypergeometric test indicating significance of depletion. *** P < 0.001, n.s. P >0.05
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Figure S6: Interconnection between TE and gene expression.

A. Scattered plot analysing the correlation of differential TE expression with differential
expression of the closest gene (+ 100kb to TSS). Pearson correlation coefficient (r), p value (p)

B. Box plot comparing differential expression (fhPGCs/fGSCs) of genes associated with no,
one or multiple differentially expressed TEs (DE-TEs). Genes associated with TEs induced

(red) or repressed (blue) in fhPGCs are shown.




C. Number of differentially expressed TEs relative to the TSS of the closest gene (= 100kb
TSS) (upper panel). Pearson correlation coefficient of differential gene and DE-TES expression
within the indicated distances to the TSS of the associated gene (lower panel).

D. Box plot comparing differential expression of genes harbouring DE-TEs up- (opal) and
downstream (red) of the TSS. DE-TEs are segregated into induced or repressed in fhPGCs
relative to fGSCs.

E. Enrichment of TE families within passively transcribed DE-TEs (harbour no H3K27ac or
H3K4me3 or showing H3K27ac/ H3K4me3 in fhPGCs downstream of a genic promoter), and
putative regulatory DE-TEs (fhPGC-specific H3K27ac/H3K4me3 upstream of a genic
promoter or fhPGC-specific H3K27ac/H3K4me3 in the presence of an ATAC-seq signal)
induced in fhPGCs (upper panel). Differential expression of genes associated with the indicated
subgroups of DE-TEs (lower panel). TE position was determined relative to closest genic TSS
(= 100kb). TE enrichment was derived from the observed relative to the expected TE number.
Chi-square “goodness-of-fit” derived effect size. no practical difference (n): r <0.2, *: 0.2 <
r<03,** 03<r<0.5,**r>0.5

F. Depiction of the indicated histone modifications, ATAC-seq signal, and differential
expression of all DE-TEs in the vicinity of the DAZL locus (-100kb TSS - +100 kb TTS).

G. Gene ontology enrichment analysis of promoters induced in ThPGC or fGSCs associated
with putative regulatory induced DE-TEs.

H. Comparison of the epigenetic environment of putative regulatory DE-TEs (upper panels)
induced in fhPGCs (red) or fGSCs (opal) and the genic promoters associated with these DE-
TEs (lower panels). H3K27me3 occupancy was determined in wk9 fhPGCs / fGSCs.
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Figure S7: Characterisation of H3K27me3 and H2aK119ub occupied TEs in fhPGCs.

A. Analysis of the epigenetic and transcriptional state of H3K27me3 and H2aK119ub occupied
TEs. Absolute and relative (fhPGCs/fGSCs) levels of expression and occupancy with indicated
epigenetic marks in TE subgroups associated with the indicated combinations of epigenetic
marks in fhPGCs are depicted. Number differentially expressed TEs between fhPGCs and
fGSCs falling in each TE subgroup are shown. Wilcoxon effect size with levels as shown in
Figure 1.

B. Enrichment of TE families in TEs marked by H3K27me3, H2aK119ub or both in the
presence or absence of H3K27ac and H3K4me3 (grey). Enrichment of TE families in TEs
induced in fhPGC and co-occupied by H2aK119ub, H3K27ac and H3K4me3 (green). Arrows
indicate evolutionarily young TE families enriched in the TE subgroup occupied by
H2aK119ub in the absence of H3K27me3. n.d. = not detected. Chi-square “goodness-of-fit”
derived effect size with levels as shown in Figure 1.

C. Overlap of genic promoters associated TEs that are occupied by H2aK119ub (green),
H3K27me3 (red) or both (blue).

D. Analysis of genic promoters associated with H3K27me3, H2aK119ub or H3K27me3/
H2aK119ub occupied TEs in the vicinity (TSS +/- 100kb) in fhPGCs. Promoter occupancy
with H3K27ac and H2aK119ub in fhPGCs as well as relative levels (fhPGCs/fGSCs) of
H3K4mel, H3K27me3, H2aK119ub and expression are depicted.

E. Gene ontology enrichment analysis of promoters associated with TEs marked by H3K27me3
and H2aK119ub or only H2aK119ub in fhPGCs.

F. Repressive epigenetic environment in fGSCs of promoter-proximal TEs identified in
fhPGCs. TEs were grouped by their promoter association into i.) only H2aK119ub (lower
panel), or ii.) H3K27me3 and H2aK119ub promoter-proximal TEs (upper panel).

G. Overlap between genic promoters that lost (grey) or retained (violet) H3K27me3 between
wk7 and 9 in fhPGCs and promoters associated with H2aK119ub occupied TEs (green).

H. Overlap between genic promoters that lost (grey) or retained (violet) H3K27me3 between
wk7 and 9 in mhPGCs and promoters associated with H3K27me3/H2aK119ub occupied TEs
(yellow).
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Figure S8: H3K27me3 mediates somatic gene repression in fhPGCs.

A. Western Blot on somatic cells purified from human genital ridges ex vivo cultured for 10
days in the presence of UNC1999 or control. Membranes were decorated with the indicated
antibodies.

B. FACS analysis depicting portions of alkaline phosphatase/CD117 double-positive fhPGCs
in non-cultured and ex vivo cultured female genital ridges treated with DMSO or 1uM
UNC1999 for 10 days. Non-cultured and ex vivo cultured genital ridges originate from different
and ex vivo cultured genital ridges from the same embryo.

C. Repressive marks detected at promoters associated with genes induced in UNC1999 treated
fhPGCs. Repressive marks detected in fhPGCs (left panel) or f{GSCs (right panel). Colour code
indicates the co-occupancy with the active marks H3K4me3 (opal), H3K27ac (green), both
marks (orange) or none of both (grey). Note that H3K27me3 promoter occupancy was obtained
from wk9 fhPGCs and fGSCs.

D. Overlap between genes induced in UNC1999 treated fhPGCs and genes associated with
promoters occupied by H3K27me3 in week 7 or week 9 fhPGCs. Genes were counted to be
associated with H3K27me3 when at least one of the annotated promoters was occupied by
H3K27me3 in fhPGCs.

E. Gene ontology enrichment analysis of genes associated with H3K27me3 occupied
promoters, which were induced in UNC1999 treated fhPGCs (upper panel) or fGSCs (lower
panel) relative to control.
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Figure S9: Inefficient euchromatization and retention of H3K9me3 at most evolutionarily
young TEs in fhPGCs.

A. Analysis of the epigenetic and transcriptional state of H3K9me3 and 5mC occupied TEs.
Absolute and relative (fhPGCs/fGSCs) level of expression and occupancy with indicated
epigenetic marks in TE subgroups associated with the indicated combinations of epigenetic
marks in fhPGCs are depicted. Number differentially expressed TEs between fhPGCs and
fGSCs within the indicated TE subgroups is shown.

B. Enrichment of TE families in TE subgroups marked by H3K9me3, 5mC, or H3K9me3 and
5mC alone or in combination with H3K4me3 or H3K27ac and H3K4me3 in fhPGCs.
Enrichment is depicted for TEs annotated within the genome (grey), and for TEs specifically
induced in fhPGCs (green). n.d. = not detected. Chi-square “goodness-of-fit” derived effect
size. no practical difference (n): r<0.2, *: 0.2< r<0.3,**: 0.3< r<0.5, ***:r>0.5

C. Portion of TEs within major TE families that residing in repressed (only repressive
modifications), bivalent (repressive and active modifications) or neutral (no modifications)
epigenetic states in fhPGCs. Repressive and bivalent states were subdivided into regulation
through A.) H3K9me3 and/or 5mC, and B.) H2aK119ub and/or H3K27me3

D. Alluvial plots comparing the epigenetic states of SVA, L1HS and DNA:hAT elements in
fhPGCs and fGSCs. All TEs were selected for occupancy by H3K9me3 in fGSCs.

E. Relative levels of H3K9me3 (fhPGCs/fGSCs) and TE number of SVA, L1HS and
DNA:hAT elements grouped according to their epigenetic state in fhPGCs. All TEs were
selected for occupancy by H3K9me3 in fGSCs.

F. Comparison of relative levels of H3K9me3 and H3K4me3 (fhPGCs/fGSCs) of SVA, L1HS
and DNA:hAT elements. Colour code indicates changes in H3K27ac levels (upper panels) or
expression in fhPGCs relative to fGSCs (lower panels). All TEs were selected for being
occupied by H3K9me3 in fGSCs. Note, transcriptional induction in fhPGCs is most frequently
observed at elements harbouring high levels of H3K4me3 and H3K27ac.

G. Absolute levels of H3K9me3 at SVA and L1HS elements grouped according to their
epigenetic state in fhPGCs. All TEs were selected for being occupied by H3K9me3 in fGSCs.
Note, SVA but not L1HS elements exhibit reduced H3K9me3 levels when co-occupied by
H3K4me3 and H3K27ac.

H. Correlation between relative expression (fhPGCs/fGSCs) of SVA (upper panel) or
DNA:hAT elements (lower panel) with expression of the nearest promoter (£100kb TSS).
Colour code indicates changes in H3K27ac level between fhPGCs and fGSCs. All shown
elements were occupied by H3K9me3 in fGSCs. r = Pearson correlation coefficient
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Figure S10: Depletion of SETDB1 in hESCs using an inducible degron.

A-B. Western Blot analysis (A) and bright field images (B) of SETDB1 wild-type and SETDB1-
AID hESCs expressing ER-TIR1 cultured in Essential 8 conditions. Cells were treated for 1
and 6 days with 20 nM Tamoxifen, 25 uM IAA, 20 nM Tamoxifen and 25 uM IAA or vehicle
control.

C. FACS analysis on SETDB1 wild-type and SETDB1-AID naive hESCs as well as SETDB1
wild-type hESCs cultured in Essential 8 conditions stained with anti-alkaline phosphatase
(AP)-BV421 and anti- CD75-eFluro660.

D. qRT-PCR analysing the indicated transcripts in FACS purified SETDB1 wild-type AP+,
CD75+ double-positive naive hESCs, AP+ converting hESCs, and AP+ hESCs cultured in
Essential 8 conditions (n=4, independent technical replicates). Student's t test p<0.05 (*),
p<0.001 (****)

E. Immunofluorescence staining detecting 5mC and OCT4 in passage 2 naive and Essential 8
SETDBL1 wild-type hESCs.

F. Bright field images of the conversion of SETDB1 wild-type and SETDB1-AID cells from
Ess8 cultured hESCs to naive hESCs.
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Figure S11: SETDB1-deposited H3K9me3 safeguards the hypomethylated human
genome against evolutionarily young TE expression.

A. Immunofluorescence staining of SETDB1 wild-type and SETDB1-AID naive hESCs
expressing ER-TIR1. Cells were treated for 4 days with 20 nM Tamoxifen and 25 pM IAA and
stained with antibodies detecting HA, OCT4 and SETDB1.

B. Experimental outline of the transcriptomic analysis of SETDB1 depleted naive hESCs
(upper panel) and number of differentially expressed genes and TEs (lower panel). In brief, 2
SETDB1-AID and SETDB1-WT hESC clones harbouring an ER-TIR1 transgene were converted
into the naive state and treated with IAA and TAM for 4 days before naive hESCs were purified
by FACS and analysed by RNA-seq. SETDB1 depletion was confirmed by
immunofluorescence.

C. Comparison of TE subfamilies enriched for TEs marked in fhPGCs by H3K9me3 alone
(blue) or in combination with 5mC (green), with TE subfamilies enriched for transcriptionally
induced TEs upon SETDB1 deletion in naive hESCs (red).

D. TE families and subfamilies of TEs gaining expression upon SETDB1 depletion in naive
hESCs. The colour code indicates whether the corresponding TE locus in ThPGCs is marked
by H3K9me3 (red) or not (grey).

E-F. Occupancy of the indicated repressive epigenetic marks in fhPGCs at TEs (E) or genes
(F) transcriptionally induced upon SETDB1 depletion in naive hESCs. Colour code indicates
the co-occupancy with the active marks H3K4me3 (opal), H3K27ac (green), both marks
(orange) or none of them (grey). H3K27me3 occupancy was determined in wk9 fhPGCs.

G. Portion of the 3,897 differentially expressed genes between SETDB1-AID and wild-type
naive hESCs harbouring differentially expressed TEs upstream (green) or downstream (blue)
of the TSS (100 kb) (upper part). Correlation of expression changes of genes and upstream
DE-TEs. Colour code indicates the distance from the nearest TSS (lower part). r = Pearson
correlation coefficient.

H. Genome browse snapshots of the DAZL locus depicting H3K9me3, 5mC and expression
levels in the indicated cell types.



Antibodies used for ChIP-seq

Antibody host clonality provider cat. Number lot amount per IP
anti-H3K4mel Rabbit polyclonal Active Motif 39298 19417002 0.25ul
anti-H3K4me3 Rabbit polyclonal Abcam ab8580 GR273043-4 0.25pg
anti-H3K9me3 Rabbit polyclonal Abcam ab8898 GR257230-1 0.25ug
anti-H3K27ac Rabbit polyclonal Active Motif 39134 20017009 0.25ug

anti-H3K27me3 Rabbit monoclonal cell signaling 9733 8 0.5l
anti-H2AK119ub Rabbit polyclonal cell signaling 8240 6 0.25ul
Antibodies used for Immunofluorescence

Antibody host clonality provider cat. number | lot number dilution

anti-GFP Chicken Polyclonal Abcam ab13970 GR3361051-1 1:1000
anti-OCT4 Mouse monoclonal BD Biosciences 611203 8087969 1:500
anti-HA Rabbit monoclonal Cell Signaling Technology 3724 1:500
anti-5mC Rabbit polyclonal Cell Signaling Technology 28692 1:150
anti-SETDB1 Mouse monoclonal Abcam ab107225 GR315074-2 1:500
Antibodies used for FACS
. . . Volum r
Antibody host clonality provider cat. number | lot number 0 u. .e pe
stalnlng
Alexa Fluor 488-
conjugated anti-Alkaline | Mouse Monoclonal BD Pharmingen 561495 7132712 Sul/sample
Phosphatase
APC-conjugated anti-c-
conJuS;e anti-c Mouse Monoclonal Invitrogen CD11705 20289675A Sul/sample
FI 660-conjugated
eriuor ) conjugate Mouse Monoclonal eBioscience 50-0759-42 Sul/sample
anti-CD75
BV421-conjugated anti-
Human Alkaline Mouse Monoclonal BD biosciences 565624 Sul/sample
Phosphatase
Antibodies used for Western Blot
Antibody host clonality provider cat. number | lot number Volumg per
staining
anti-H3 Rabbit polyclonal Abcam ab1791 7132712 1:10000
anti-HA Rabbit monoclonal Cell Signaling Technology 3724 20289675A 1:1000
anti-H3K27me3 Rabbit monoclonal Cell Signaling Technology 9733 1:2500
anti-H3K9me3 Rabbit polyclonal Abcam ab8898 GR257230-1 1:5000
anti-H2AK119ub Rabbit polyclonal Cell Signaling Technology 8240 1:2500
anti-SETDB1 Mouse monoclonal Abcam ab107225 GR315074-2 1:1000
Table S1.

Antibodies used in this study




gRT-PCR primers

- Forward (5’->3’) - Reverse (5'->3’)
EZH2 CCAGACTGGTGAAGAGTTGTTTT CAAGGGATTTCCATTTCTCG
RNF2 CGACAGCGCACAGACAAG TTCTCCTTTGCTTCGAAGTTCT
SETDB1 AGGCACGTGGTGGAAGTC CCACTCACATCTTTTGTCATCC
KLF2 ACCTACACCAAGAGTTCGCATC CCGTGTGCTTTCGGTAGTGG
KLF17 GCTGCCCAGGATAACGAGAAC ATCTCTGCGCTGTGAGGAAAG
DNMT3L GAAGACCTGGACGTCGCATC AGTGCCTGCTCCTTATGGCT
0oTX2 GGGAGAGGACGACGTTCA TCTGGGTACCGGGTCTTG
DNMT1 ACTGGCGCGATCTGCCCAAC AGGCTTTGCCGGCTTCCACG
TFCP2L1 AGCTCAAAGTTGTCCTACTGCC TTCTAACCCAAGCACAGATCCC
PRDM14 CTACCGAGCCCGAGTGGCCTAC TAGAGCCATCCCGGGACCGCA
GAPDH CGCTTCGCTCTCTGCTCCTCCTGT GGTGACCAGGCGCCCAATACGA J

CRISPR sgRNA

gRNA name Target Target coordinate (hg38) gRNA sequence
SETDB1_sgRNA SETDB1 chr1:150,964,345-150,964,364 GCAGAGGACGTCTTCTTTAG
Table S2.

Oligonucleotides used in this study
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