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Search Method1

For the literature reviewed in Table 1: Data were extracted from PubMed / Med-2

Line using the search: (explaina*) AND ("artificial intelligence" OR "machine3

learning") AND ("mental health" OR "psychiatry") in the title and abstract fields.4

The date range was 1st January 2018 through 12th April 2022 and extracted on5

the latter date. The search delivered 32 papers, of which 7 were excluded as they6

addressed applications in 1) surgical mortality 2) an editorial preface to a special is-7

sue 3) psychophysics of visual perception 4) inflammatory processes in osteoarthritis 5)8

polypharmacy (only tangentially linked to psychiatry) 6) quantifying altered states of9

consciouness and 7) feature set selection in osteoarthritis.10

The full-text of the remaining 25 papers were reviewed and the 15 which presented11

original research retained.12

Literature Summary13

For papers reporting original research, we assessed the following properties:14

� the broad domain addressed in the research: most studies were on survey or neu-15

roimaging data, with one examining physiological data16

� the intended application (i.e. AI for prediction/forecasting, discovery or decision17

making/decision support ): finding that most studies contained a prediction and18

discovery component19

� what AI/ML methods were used: in most survey-based papers, multiple methods20

were compared especially in applications where prediction performance was tested21

and in neuroimaging, deep learning methods dominated22

� which XAI methods were used: we grouped these into feature importance, ex-23

plainability “by design”, causal inference and presentation/visualisation methods24
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finding that feature importance methods dominated across applications25

� whether the research evaluated the claimed “explainability”: finding that in papers26

using survey data, evaluation was more commonly reported27

� whether the research deferred “explainability” to the technical method used: find-28

ing that half of survey data-based applications deferred to the method; in papers29

that did not define explainability in their application, they always deferred to the30

method used (e.g. in all of the neuroimaging studies)31

Of note, we did not rate the quality of definitions (i.e. whether or not they were32

detailed or precise) – rather, we examined if the paper made any attempt to define terms33

such as “explainability” beyond stating that it was merely important or necessary.34

A Tutorial Example of Structure and Function35

To motivate our discussion of structure and function in the TIFU framework, we in-36

troduce a simple toy example of recommending whether or not a patient should receive37

antidepressant medication based on seven predictor variables; the patient’s age, natal38

sex, history of previous major depressive episodes, previous treatment with medication39

and/or psychotherapy as well as the current episode severity and duration in weeks. We40

simulated 3759 patients where the decision to offer medication was a non-linear function41

of the seven predictor variables and divided this into a training and testing set of 264342

and 1116 samples respectively.43

44
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Supplementary Figure 1: Structure and Function in a Toy Model to Predict Antide-
pressant Prescribing from Clinical Characteristics: (A) The
structure of a simple neural network consisting of a 7-node
input layer fully (densely) connected to a 32-node hidden layer,
fully connected to a single output node. Grey squares indicate
computations over the preceeding layer’s outputs; grey circles
represent (usually non-linear) operations or activation func-
tions. (B) the structure of an equivalent logistic regression
model for the same problem presented using the same descrip-
tion of weights (parameters) and operations (weighted linear
sums and activation functions). (C) The function of the neu-
ral network showing an example patient and the pattern of
activations as computations proceed (“feedforward”) from the
input to output layer via the hidden layer. (D) The same
example patient being “fed-forward” in the logistic regression
model

In Supplementary Figure 1, we show the structure of a feedforward neural network45

model (panel A) with 7 inputs nodes, each corresponding directly to one of seven pre-46
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dictor variables. We perform no feature engineering on this data so that the inputs to47

the model directly correspond to the clinical variables used to make predictions. In this48

feed-forward network, the layer of input nodes therefore have activations identical to the49

values of the inputs (denoted by the column vector x). This input layer is densely (fully)50

connected to 32 hidden nodes by a matrix of adjustable weightsV (or parameters) shown51

as the rectangular red/blue coloured matrix; this is to enable the hidden layer to capture52

interactions or more precisely, representations of the input as linear weighted sums the53

input variables. The outputs of the hidden nodes are then transformed through another54

vector of weights w which transform the outputs of the hidden layer to a single output55

node y whose output is proportional to the probability of offering (or not) antidepressant56

medication (y = 1 or 0 respectively).57

The function of the network can be visualised as a pattern of activations propogating58

through the network (panel C) as follows; each input node has activation identical to the59

values of the predictor (input) variables – shown as the coloured squares for an example60

patient at the left of panel C. This example patient has the following characteristics61

(corresponding to the visual representation in panels C and D): they are a 46 year old62

female, with no previous history of MDD, medication or psychotherapy treatment and63

with a MADRS score of 60 and episode duration of 20 weeks. The logistic regression64

model and the neural network recommend antidepressant medication with probability65

Pr(y = 1|x) = 0.99.66

These activations feed-forward to the hidden layer where each node computes a net67

input (shown as grey squares) as a weighted sum aj = x⊺Vj where Vj is the column68

vector (e.g. the vertical green bar in panel A) of the weights connecting the hidden69

node j to every input node i. Conversely, this means the effect of an isolated input70

node i is “distributed” over all hidden nodes – illustrated by the horizontal green bar71

in panel A. Next, each hidden node computes it’s activations by taking the net input aj72

and delivering an output through a rectified linear activation (ReLU) function f(aj) =73

5



max(0, aj) – represented in panel C as the row of coloured circles. ReLU hidden nodes74

effectively “switch off” hidden nodes where the net input aj falls below a threshold which75

by convention, is modelled using a so-called bias node that can be viewed as similar to76

the intercept in a traditional linear regression model. Finally, the output layer has only77

a single node that, similarly, computes a linear weighted sum of inputs (i.e. the outputs78

of the hidden layer): b = fw⊺ (this operation is again shown as a grey square) where f is79

the row vector of 33 hidden-layer node outputs (32 hidden nodes plus a single bias node)80

and w is a row vector of weights connecting every hidden node to the output y. Instead81

of a ReLU function, however, the output node y computes a sigmoid (logistic) function82

of it’s inputs resulting in y = g(f) = 1
1+exp(−f) which approximates the probability83

that a patient (x) is recommended a prescription for antidepressant treatment. For84

completeness, the weights V and w were estimated using stochastic gradient descent.85

Note that the final output of the network, y, can be written compactly as a sequence86

of function compositions: y = g(f(x)) or equivalently y = g ◦ f , emphasising that the87

output depends on the input passing through one layer of computations (f) which feed88

into the second layer (g) to arrive at the output (y). The “deeper” the network, the89

more function compositions are involved.90

Contrast with a logistic regression model shown in panel B; here, we have adopted the91

same diagrammatic convention of showing the structure as weights (commonly referred92

to as “betas” or the coefficients of the model) and computations (panel D) where the93

input x is multiplied by the weights β (grey square) and then transformed via a sigmoid94

or logistic function (grey circle) to arrive at an output proportional to the probability95

of recommending an antidepressant. In essence, logistic regression can be viewed as a96

trivially-simple neural network without hidden layers, where the input layer is densely97

and directly connected to the output node. The weights/parameters are estimated using98

an iteratively re-weighted least squares algorithm. The output of the logistic regression99

is a single function of the input: y = g(x) = 1
1+exp(−x⊺β)100
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Both models provide the same behaviour when seen as a “black box” – that is, mod-101

elling the probability of recommending an antidepressant given a patient’s characteristics102

but they achieve this through differing model structure (architecture) and functions103

(computations). Relevant to the TIFU concept, the neural network allows for more104

flexible representations by virtue of the input activations being “distributed” over the105

hidden layer nodes. The logistic regression model can only account for weighted linear106

sums of the seven input variables – meaning that there are no modelled interactions107

between variables.108

To understand how the neural network arrives at an output, we must recognise109

the output (y) results from two function compositions of multivariate inputs, neither of110

which have prima-facie transparency with respect to the input X or outputs y and111

Pr(y = 1|X).112

Contrast with the logistic regression model (panel B) where the weights/parameters113

(structure) possess a well-developed formal relationship to the predictor variables i.e.114

exponentiating the weights yields the direct interpretation of each predictor variable115

having an associated odds ratio. Similarly, the function of the logistic regression model116

can be easily interpreted – the weighted sum x⊺β (computed by the grey square in117

panel D) is the log odds or probability of y = 1 on the logit scale [1]. The computation118

performed over the weighted sum (the grey circle in panel B and C) is the logistic function119

which maps log odds to the probability scale resulting in Pr(y = 1|X). In the logistic120

regression model, we retain the inputs-to-model structure (odds ratios) and function121

(the effect on Pr(y = 1|X) of selectively modifying one or more inputs holding all others122

constant) offering interpretablility by design.123

124

Supplementary Figure 2 shows that we can qualitatively visualise the outputs of the125

hidden layer f(·) in an attempt to provide interpretability of the function of the model126
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Supplementary Figure 2: Two-dimensional projection (by metric multidimensional scal-
ing) of the activations of the 32 hidden layer nodes (f) in-
duced by each of 1116 patients, where the colour represents
the model’s output, Pr(y = 1|x). The black diamond shows
the location corresponding to the example patient from Sup-
plementary Figure 1

with respect to the outputs. We use metric multidimensional scaling [2] to “project”127

the native 32 dimensional space of activations into two, unitless dimensions that stand128

in correspondence to the inputs in a non-trivial way; for example, the patient from129

Supplementary Figure 1 is a 46 year old female with no treatment or depression his-130

tory presenting with severe symptoms of duration 20 weeks and the location in this131

dimensionality-reduced space of activations is shown with a black diamond. There is no132

straight-forward way of directly mapping these input variables to the two-dimensional133

space of activations in a way that would be transparent or interpretable. Further, at134

least as we present here, the presentation of this information does not help us with ab-135
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ductive (or inductive) reasoning about why this recommendation was made. While the136

projection shows some qualitative pattern in relation to the probability of being recom-137

mended an antidepressant medication, it is far from clear how to use this to aid human138

interpretation.139

In summary, the model becomes further removed from prima facie interpretability140

as a consequence of the structure (architecture of the model) and function (i.e. corre-141

sponding to the depth or number of function compositions). We should note two further142

points: i) that the example “toy” neural network presented is substantially less complex143

compared to a typical application of deep learning in contemporary AI/ML and ii) with144

some knowledge of linear algebra, we could describe a systematic relationship between145

the inputs and hidden-layer nodes’ net inputs (structure and function), but this is com-146

plicated by there being a non-linear function f(·) and this is unlikely to be available to147

a clinician or patient using such a model.148

Given this, we have post-hoc methods such as LIME [3]1 and Shapley-based methods149

[4] which both anchor the concept of “explainability” to perturbation of inputs to a model150

and observing changes in the output – analogous to classical linear regression, where we151

understand the concept of a change in the dependent variable for a unit-change in an152

independent variable.153

To conclude this section, we define what we mean by transparency – using the154

same examples, both the neural network and the logistic regression models are equiv-155

alently transparent because the relationship between x and the data the network is156

“ingesting” is straight-forward; that is, there is no pre-processing or feature engineer-157

ing/selection and we can assert that the activations of the input layer are identical to158

the data. We deem this to be an important property of the TIFU framework because if a159

model requires sophisticated pre-processing – for example, dimensionality reduction via160

principle components analysis with subsequent projection of each sample or input to the161

1Of note, [3] do emphasise the concept of interpretability that we advocate for here
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dimensionality-reduced feature space – clinicians will require further tools to understand162

how the data (representing patients in units of the original measurement scale) relates to163

the feature space the model operates on. It is not the case that pre-processing inputs to164

a model precludes transparency, rather, the engineering and presentation of the model165

must account for this transforming of inputs to a feature space so clinicians and patients166

can interrogate relationships.167
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