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Supplementary Note 1

1 PRECAST method

We first introduce the implementation details for PRECAST. Recall that the observation
x,; € RP is an observed gene expression vector measured on tissue sample r in a spatial spot
s, € R4 ie., d =2, and y,, is a latent class label, denoting cell type/spatial domain, for spot
Spiy 7 =1, ,M,2 = 1,--- ,n,, where M, taking any finite positive integer, represents the
number of experimental samples and n, is the number of spots for sample r.

We start with some notations. Let y, = (yp1,- -, ymT)T be the vector of latent class labels
for all spots of sample r, Z, = (2,1, - - - 7zm,«)T € R" 4 be the aligned low-dimensional feature
matrix of sample r, and V, = (v,q, - - ,er)T € R" >4 be the latent matrix of sample r that
captures the spatial dependence among neighboring spots. Let 0 represent a full-zero vector
or matrix with an appropriate shape. Moreover, denote [n,] = {1,--- ,n.},[n,] \ i = {j,] #
i,j <n.},n= 27]}4:1 n,, and for a set G C [n,] and a random variable y.;, y,¢ = {ym,7 € G}.

1.1 Pseudo full/observed log-likelihood

By choosing the same number of neighbors for each spot, i.e, m,; = m, we re-parameterize
m W, as U,. Denote @ = (ug, Xp, k < K, W, A, ¥, 3,,7 < M) to be the model parameters
involved. According to Models (1)—(4) in the main text, we obtain the full likelihood given by

P(X,Z,V,y;0) = 1L [ITZ, { P(Xvil2pi, vii) P(2rilyri) } P(yr) P(V2)] (1)

T T

where X = (X[, X,,---,X,,) €e R Z = (Z),Z5,--- ,Z,,) € ROV = (V,, V), -,

V) €R™y = (y,,¥y, - ,¥y) €R™. The full log-likelihood is given by

nP(X,Z,y;0) =) Z{1np(x”|zmvﬂ)+1np(zm|ym)}+1np(y,,)+1np(vr) . (2)

T 7

It is very difficult to estimate the parameters due to the inter-correlation of latent variables
y, and V,, and use of conventional EM algorithms is not feasible because E{ln P(y,) +
In P(V,)|X} has a complex form, where the expectation is taken on (y,,Z., V,) given X.
Thus, a pseudo-likelihood technique is used to replace the joint likelihood of class labels y,
and latent features V, with a pseudo likelihood, making the joint one separable. This technique
was the key to making the computation tractable.

Following Besag [[1], suppose that we have a prediction of y, and V,, denoted by y, and
{/}, then the pseudo likelihoods of y, and V,. are defined as

P(Y'I‘;/BT) = Hip(yri|eri)7 (3)
P(V,;¥,) = ILP(vy|V,,). (4)

In a later subsection, we discuss how to obtain y, and \Afr, which are also updated iteratively.
Combining (E]), (a) and (@), we obtain the pseudo full likelihood

P(y,X,Z;0) = LI P(Xyi|Zri, Vi) P(Zrei Yri) P(YrilGn,, ) P (Vi Vi, )-
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We will show this pseudo full log likelihood is feasible. Furthermore, we obtain the pseudo
observed log-likelihood given by

hlPXH ZZIHZP Xm’ym: 5 ) (ym_k’yN”v )7 (5)

where X,y = k ~ N(W (g + fio,.), W(T, + )W + A,). Based on the pseudo observed
log-likelihood (H), we developed an EM-type algorithm, called ICM-EM, to estimate the param-
eters and achieve embedding alignment, dimension reduction and spatial clustering simultane-

ously. The ICM-EM is derived to maximize the lower-bound function of the pseudo observed
log-likelihood.

1.2 ICM-EM algorithm
1.2.1 ICM step to predict y and V'

Given all model parameters, we can obtain the predictions y and \Y, by maximizing the posterior
of y and V, P(y, V|X;80). However, the joint distribution P(y, V|X; ) is extremely complex,
so we apply iterative conditional mode (ICM, [2]) method to alternately predict y,; and v,;
for each sample r. We call this the ICM step, which composes an important part of [CM-EM.
First, given V = V, we predict y based on ICM. Using Bayes’s formula, we obtain
P(yrz’|X;y[nr]\iaV) X P(Xm'|ym';‘AWNM)P(?JM}A’NM).
Thus, we can predict y,; by

gri = arg max P(sz|ymv ‘A’N”-)P<yri|me‘)a (6)
ym-e{Lm 7[(}

where (%,i|yi = k; Vi) ~ N(W (ug + i, ), W(T, + Z)W' +A,).
Next, we predict V given y. Similarly, from Bayes’s formula, we know

P(Vri|X7yvv[nr]\i) o P(Xpi|Gris Vi) P(Vril VN, )-
Moreover, we have
In P<Xri’gri;Vri)P(Vri‘{’Nri)
= WA i) (WS W 4 A,)7 65 — W+ v,1)

2
1 T =~ —1
- i(vri = o) Vo (Vi — fhay, ),
sSo we obtain
Vi = argmaxlIn P(X.i|Uri, Vi) P(Vei|ViN,,)

Vri

= (W'SuW + 0 (W S(x; — W) + 0 1,), (7)

where S, = (WE,W' +A,) " = A7 = AJPTWC W A and C, = W AW + 501 We
define the total objective function with respect to (V,,y,) for sample r as

Ny

Er(Va y; i\/7 S;) = Z [h’l {P(XM|ymv {,NM)P(Z/M‘}A’NM)} + In P(Xr’i|gria VM)P(VM”\A’NM)} ) (8>

i=1
which will be used for the stop rule in the ICM step.

3



1.2.2 E-step

In this subsection, we derive the lower-bound function of the pseudo observed log-likelihood,
called the Q-function (with respect to @), by taking the expectation of the pseudo full log-
likelihood given the model parameters ) obtained by ¢-th iteration. First, we have

In P(X;0) = 1n///15(y,x,z,v;0)dydzczv
yJVJZ

= St [ [ [ POl v 0)P (il O)Punlin, 6
7-71' Yri Zyq Vri
XP(Vm'l\A’N

ri ; O)dym dzridvri
P(Xyi|Zyi, Vii; @) P(Zyi|Yri; @) P(Yri|Un,.; ) P (Vi VN, 0
> By fn PO Ol OP bl OP el O
— P(Yris Zris Vir X5 Gy Vi, 00)

where expectation Eg«) is taken with respect to (Y, Zri, Vi) given X, Un,., V,, and O(t), and

the inequality follows from the Jensen’s inequality. Next, to obtain the specific form of Q-
function, we derive the explicit form of P(ym,z”,vir\xm;QN”,,\AINM,,O(t)) for evaluating the
expectation in equation ().

We define the responsibility that component k& takes for explaining the observation x,;

A~

Rrik = P(ym = k|xfri; y[n]\ma V)
. P(sz‘|ym‘ = k;Vn,,, O)P(yri = k;}A’NM)
= - o (10)
2w Pl = K5V, O)P(yri = K5 9 N,,)

where P(y,; = k;¥yn.,) = P(yri = k|yn,, = ¥n,,). Note that R, is also the pseudo posterior
probability of y,;. Then, we have

P(ym' = k7 Zyi, Vm'|Xri; me'a ‘A/wa 0)
= P(y’m = k|XT‘l7 yNT” {,N”')P(Zrh Vri’XM'? Yri = k7 yNT” \A/'N”)

- Rrikp(zri7 Vri|Xria Yri = ka YN, VNn)?

thus, we only require to derive the conditional distribution (z.;, v,.;|X.;, - = k) given the
predictions (¥n,,, V., ).
_ ~ -1 _ _

Denote S, = {W(\Ifr T ROW 4 AT} = AT ATWC WA with G = WATTW
(\i/,A—Ek)_l. Since (24, Vi, Xpi |y = k) is a multivariate normal distribution, we use the formula
for the conditional expectation and covariance of multivariate normal distribution. Conditional
on y,; = k, we have

Eed (Zrs, vii) %0} = (s fo,) + (S U)W Spie{xs — W (e + f1,,)}

~ T

Vark{(z”’ VTi)|XTi} = diag(Ek’ \I/T) - Z(z,v)xmkgrkz(

z,0)z,rk?
where E(z,) = E(2zri|yri = k), varg(z,;) = var(z.|y, = k) and X )0 = (Zk;@r)WT €
R2axp,



Based on the conditional joint distribution of (z,;, v,;) given (x,;, y,; = k), we derive some
quantities used for the M-step. First, we have

Hi + ZkWT Srk (Xm' - W(:uk: + #’vm-»

Ek’(zm|xrz)

vark(zm-\xm) = Ek—EkWTSTkWEk,
)
)

Ek(V “XM = Uy, + \Ij W Srk(XM - W(Mk + :uvm‘))
varg(vei|x.) = U, — U, w' S, WU, .
Moreover,
Zri + Vm"XM', Yri = k ~ N(,U/zv,rka Ezv,rk>7
where

Hzvrk = Mk + EkWT Srk(xri - W(:uk + :uvri)) + Mo, + qlTWT Srk(xri - W(:uk + /’Lv'ri))7
and
Yook = Sk — Sy W S WS, + 0, — 0, W' S, WU, — U, W' S, W, — 5, W S, WU,

Next, we provide some notations for the posterior expectation and covariance of latent
random variables. Denote

<Z”'i l(ct) = Ek (Z’/‘i|xri; e(t))’
<ZMZ:; ](Ct) = varg (ZTi|X7"Z'; O(t)) + Ek(zri|x7’i; a(t))Ek (Zrilxrie(t)>T7

)
)
<V7’i>§:) == Ek: (Vm' |Xri; O(t))a
>](:) = Varg (Vri|xri; O(t)) + Ek (Vri|xri; e(t))Ek (VTilei; e(t))T’
>I(c = Hzurk,
( T

>k - sz,rkz + ,Uzv,rk,uzv,rk;-

Furthermore, on the basis of the above derivation, we give the explicit form of Q-function
by

Q(O’ e(t)’ Y, ‘7) - Z RS)kE(Zme')|xri,yri:1€;9(t) In P(X”|ZM’ Vri; 0)

ri,k

t
+ Z Ri‘i)kEerXriyyri:k;o(t) ln P(Z’ri|y7”i = k’ 0)

ri,k

. R .
+ Z Rv("i)kEvTi|x7.i,y,.i:k:;B(t) In P(v,i|[Vn,,; ¥,)

r,i,k

+ > RY n P(y,i = k|yn,.: Br)

r,i,k

= Z([m + Lyio + Liis + Iia) + const,

Ty

where R% is the value of R,;, when 8 = 8", const is a constant term independent of param-
eters, and

Zer{—‘lnlAr (30 50 (W A W ({ (20 4 ¥30) (21 + vi) )

1
2
— 2X”AT 1W (Zyi + Vii)y, )}



_ 1 v
Ek1<ZM>( - _Nkzkl,uk} ;

T

1 1
Lin=>_ R} {—— In S — (S zz)y)) + (u) :

2
k

K
1 .
Lig = =5 > RO W+ g 07, + (8 v ) = 20, 07 ()}
k=1
and
Iri4 - _lncri(ﬁrame ﬁT’ZRmk Z {1 - k yrz )}

i'ENy;

At this point, we have obtained the explicit Q-function; next, we solve the iterative solution
for the model parameters, called the M-step, based on the Q-function.

1.2.3 M-step

Taking derivatives of ) function with respect to each parameter in @, we obtain the iterative
solution of model parameters in the (¢ + 1)-th iteration, given by

Ky = {ZZTRSL} {ZZRmk Zri)), } (11)

5, X RO iz} = 2020 () + gy |
>, % Rear(07)

(t) T T\ (t) (t) T
ﬁlr _ Zz Zk erk(/’l’vriuvri + <V7"ivri>k - 2<V7’i>k N’v”-)7 (13>

ny

vec(W') = Bllvec(A,), (14)

where A, = >SS RO A %0 (20 + v

= Z Z Z RO @ (201 + Vi) (2 + Vi) )Y,
RO DI AC RS (19
L S -

where the vec operator is an operator that transforms a matrix into a column vector by verti-
cally stacking the columns of the matrix, s2,;;, = (T, — W, (Z,; + v,i) 2, Sorik = W Zitv) W
and w; is the j-th column of w".

To extract batch-corrected and cell-type/domain-relevant low dimensional representations

of X, for each sample, we estimate z,; by the posterior expectation

K
E(Zri’XM) = Z Rm'kEk(Zri’Xm')’ (17>

since E Zrzlxm fzm Zri’XM;H)dZM with P(Zri|xri;0> = Zf:l P(ym = k|Xri)P(Zri|ym' =
k7xm) — Zkzl sz(zmlym — k,Xm').



1.3 Computational challenge

Since the derivative of () function with respect to 3, is complicated due to the complexity of
the partition function C.;(8,,¥n,,), we use a grid search strategy to update 3, using the fact
B, = argmaxg, »_, I;ia. Given a grid of §,, such as {81, -, Brs}, we evaluate the value of
> Iria for each f,5,5 < S, then we choose the value that maximizes ), 1,4

To update W, we are required to evaluate a pq x pg matrix inverse B!, requiring the
computational complexity O(¢3p?) in each iteration. However, it is not feasible to compute
this directly, as the dimension of genes p is very large. Therefore, we derive a simple expression

by the fact that B, is a block diagonal matrix, i.e.,

B, = ZZZerkA ® (wsur)?
Zr Zz Zk rik ;1< u,;u, >](€t) 0

t _ T\ (t
0 Zr Zz Zk Riz‘)k)‘rpl <u”u7‘i>/(€)
— diag(Bwl, Tt 7Bwp)7 Bw] E quth S p?

where u,; = z,; + v,;. Thus, using the inverse formula of the block diagonal matrix, we have

wi o Buy):

= diag(B

_ T _ (t) y—1 (),"
Denote A, = (a1w, *+,8pw) , Where a;,, = > > > ) RN Xpij(Zri + Vi), then we
have
_n-l

where By; = >, A, {Zz >k RS)k((zri + i) (2 + Vri)T>,(f)}- Thus, we reduce the computa-
tional complexity from O(¢*p?) to O(¢®p), which makes the ICM-EM of PRECAST computa-
tionally efficient.

1.4 Algorithm implementation of PRECAST

We summarize the proposed ICM-EM algorithm as algorithms m and E Algorithm E] describes
the detailed implementation of ICM algorithm used in the algorithm E for predicting y and
V. Algorithm P presents details of the ICM-EM algorithm. Following the suggestion of Besag
[2], we set the initial value of /3, to 1.5. To get the initial values of other parameters, we
perform PCA analysis on X with the number of PCs ¢, then obtain loading matrix L; and
score matrix Lo, and perform Gaussian mixture model estimation on the score matrix Lo, then
obtain mean component fix, equal covariance component 3, and cluster labels y. Finally, we
initialize y© = 3, VO = o0, WO = [, ,/L;i,) f, k< K, Z,E:O) = 5,0 = cov(Ly) and
/\7(3) = n% Yo (xif — LQM;L;]-_)%T < M, where Ly ,; is the row of Ly corresponding to i-th

spot in sample r and L, ; is the j-th row of L;.

1.5 Determining the number of clusters

Modified BIC criteria [3, 4] were used to determine the number of clusters K,

MBIC(K) = —2In P(X; 0(K)) + Codf (K) Inn, (18)
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Algorithm 1 ICM algorithm used in ICM-EM algorithm

Input: X, y* 9 0V S = {5}, maximum iterations of ICM maxIter_ICM, relative
tolerance of difference of total objective function eps_ IC'M.
Output: y®,V®.
1: foreachrel,--- M do

2 for each l € 1,--- ;maxlter ICM do

3 Update yﬁt_l)’l based on equation (%,

4 Update VI based on equation ([1);

5: Evaluate the total objective function, =, (1), by (H)
6 if |=2,.(0) —=.(1—1)|/|Z.(I—=1)|] <eps_ICM then
7 break;

8 end if

9 end for

10: end for

11: S}'(t) — S}'(t_l)vl’ ‘7(t) — {\/(t_l)vl
12: return &, V®

Algorithm 2 The proposed ICM-EM algorithm for PRECAST
Input: X,, § = {s,;},r < M,i < n,, q, K, grid points of f3,, beta_ grid, maximum itera-

tions of EM maxlter, relative tolerance of pseudo loglikelihood epsLogLike, maximum
iterations of ICM maxIter_ICM, relative tolerance of total objective function in ICM
eps_ 1CM.
Output: y, \A/', 7 and 0
1. Initialize @, V© and §©
2: for eacht e 1,--- ,maxlter do
3. Update (3®, V®) based on function ICM (X, 3D, V=D 00D S maxlter ICM,
eps_ICM);
Update {Bﬁt), r < M} based on grid search on beta_ grid;
Update {u,(f), k < K} based on Equation ( :
Update {E,(:), k < K} based on Equation ( ;
Update {\ifs«t), r < M} based on Equation (),
Update W® based on Equation (@),
Update {Ag), r < M} based on Equation (@),
10:  Evaluate the pseudo observational loglikelihood, LogLike(t), by (H)
11:  if |LogLike(t) — LogLike(t — 1)|/|LogLike(t — 1)| < epsLogLike then
12: break;

13:  end if

14: end for

15: Evaluate Z based on Equation () by replacing R,z and (z.;); with Rg)k and (zm-),(:),
respectively.

16: return y,\A/, Z and 6




where df (K) = 2¢K + pqg + M(p + @ + 1) and C, is a positive constant that can depend
on n and p. When C,, = 1, the modified BIC reduces to the traditional BIC [5]. Following
the lead of Ma et. al [4], we take the same strategy and let C,, = cIn(In(p + n)), where ¢
is the positive constant default 1. This modified BIC is proposed for high-dimensional data
settings to select tuning parameters, which is more suitable than conventional BIC criteria
for our proposed model involving high-dimensional gene expressions. Since the observed log-
likelihood In P(X; @(K)) is intractable in Enq. (), it is approximated by the pseudo observed

~

log-likelihood In P(X; 8(K)) in Enq. (B)

1.6 Definition of neighbors

We briefly introduce the precise definition of the neighborhood system in this section. We set
the number of neighbors for each spot to m, i.e., m,; = m. We define the neighbors of a spot
using the Euclidean distance between spatial coordinates for two different spots. For spot s,.,
the m nearest spots, in the sense of Euclidean distance between them and s,.;, are defined as the
neighbors of spot s,;. In this paper, we consider m = 4 for data from ST platform due to the
rectangle lattice structure, and m = 6 for data from 10X Visium platform due to the hexagonal
lattice structure. Because the low-resolution data obtained by Slide-seqV2 platform has close
resolution with the data from 10X Visium, we also use m = 6 for the resolution-reduced data.
In contrast, we use m = 24 for the raw-resolution data measured on the Slide-seqV2 platform,
whose resolution is four-fold that of 10X Visium.

1.7 Details of compared methods

We provided more details about the compared integration methods. Seurat V3 method is
based on finding the mutual nearest neighbors. First, anchor pairs between different batches
were obtained using the function FindIntegrationAnchors in the Seurat R package. Then,
the IntegrateData function in Seurat was used to integrate the datasets based on the anchor
pairs and their confidence scores. Finally, we obtained the aligned 15-dimensional embeddings
using the function RunPCA in Seurat. Compared with the original MNN method, fastMNN
is a faster version based on PCA and is used to find the mutual nearest neighbors, greatly
increasing the computational efficiency. We used fastMNN in the R package batchelor with the
top 15 PCs and other default parameters and obtained all aligned 15-dimensional embeddings.
Another PCA-based method, Harmony corrects batch-contaminated PCs by iteratively per-
forming maximum diversity clustering and linear mixture model correction. For the analysis,
we first obtained the 15-dimensional PCs by performing PCA on the combined normalized ex-
pression matrix, then took the obtained PCs and batch information as input for the function
HarmonyMatrix in the R package harmony, and lastly, obtained the aligned 15-dimensional
embeddings as output. Scanorama is a generalization of mutual nearest-neighbor matching
used to find similar elements among many datasets. Instead of searching for similar elements
in high-dimensional gene space, Scanorama applies randomized singular value decomposition
to extract the aligned embeddings from the combined cell-by-gene expression matrix. We con-
ducted the analysis following the author’s pipeline https://scanpy-tutorials.readthedocs.
io/en/latest/spatial/integration-scanorama.html and set the parameter dimred=15 in


https://scanpy-tutorials.readthedocs.io/en/latest/spatial/integration-scanorama.html
https://scanpy-tutorials.readthedocs.io/en/latest/spatial/integration-scanorama.html

function correct_scanpy to extract aligned 15-dimensional embeddings. The pipelines for sc-

Gen and scVI, which are two deep-learning-based methods, were followed using the two respec-

tive links, https://scgen.readthedocs.io/en/latest/tutorials/scgen batch removal.

html and https://docs.scvi-tools.org/en/stable/tutorials/notebooks/tabula_muris.
html, and we set the number of latent embeddings to 15 for both methods in the analysis.
MEFISTO is a factor-model-based integration method that integrates multiple datasets by
simultaneously identifying and aligning the underlying patterns of variation. To implement

this, we followed the author’s pipeline provided at https://github.com/bioFAM/MEFISTO_
tutorials/blob/master/MEFISTO microbiome.ipynb and https://github.com/bioFAM/MEFISTO_
tutorials/blob/master/MEFISTO ST.ipynb, and set the number of factors to 15. PASTE is

a pairwise alignment method that integrates adjacent slices based on transcriptional and spatial
similarity using optimal transport and nonnegative matrix factorization; we followed the au-
thor’s pipeline https://github.com/raphael-group/paste/blob/main/docs/source/notebooks/
getting-started.ipynb for implementation and set the number of low-dimensional represen-
tation of center slice to 15.

More details were also presented for the compared clustering methods. SC-MEB and
BayesSpace were recently developed to perform spatial clustering based on a discrete Markov
random field [6, [7], Louvain is a conventional non-spatial clustering algorithm based on com-
munity detection in large networks [8], and BASS is a newly developed clustering method for
multiple SRT data based on the aligned embeddings from Harmony. The aligned embeddings
and spatial coordinates were used as input for SC-MEB and BayesSpace, only the aligned em-
beddings were the input for Louvain, and the count matrices and spatial coordinates were the
input for BASS. Similar to PRECAST, SC-MEB uses MBIC [3] to determine the number of
clusters in a data-driven manner, BayesSpace adopts the average loglikelihood-maximization-
based method in early iterations, Louvain uses a community-modularity maximizing rule [§],
while BASS requires users to specify the number of clusters [9]. For fair comparison, BASS
uses the number of clusters selected by PRECAST.

1.8 Details of evaluation metrics

In the simulation, the F1 score of average silhouette coefficients and cLISI/iLLISI were used to
assess performance in batch correction. ARI and NMI were adopted to measure the similarity
between the estimated clusters and the true one. CCor was used to measure the similarity
of the batch corrected low-dimensional embeddings and the true one. Concor was used to
measure remained information between gene expressions and spatial domains by excluding the
effect of the extracted latent features. In the real data analysis, manual annotations based
on additional experiments were available. ARI and NMI were used to measure the similarity
between labels from the estimated partition and the manually annotated clusters, and the
F1 score of average silhouette coefficients and cLISI/iLISI were also evaluated based on the
manual annotations.

Local inverse Simpson’s index. To assess the performance of the batch correction,
cell-type/integration local inverse Simpson’s index (cLISI/iLISI) [10] was used to evaluate
the quality of merging the shared cell populations among batches and mixing spots from M
tissue slides, respectively. Korsunsky et al. [10] pointed out that LISI is more sensitive to

10
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local distances and more interpretable than conventional metrics such as entropy score [L1]
and kBET [12]. LISI assigns each spot a diversity score which is the effective number of cell
types/data batches in that cell’s/batch’s neighborhood. For M SRT batches with K cell types,
accurate integration should maintain a cLISI value close to 1, reflecting the purity of unique
cell type in the neighbors of each spot defined by the low-dimensional embeddings, and an iLISI
value close to M, means the sufficient mixing of M data batches. An erroneous embedding
would include neighborhoods with a cLISI more than 1 and an iLISI less than M, where an
extremely worse case is cLISI close to K and iLLISI close to 1, indicating that neighbors have
K different types of cells but one data batch.

Silhouette coefficient. To simultaneously evaluate the separation of each cell/domain
cluster and mixing of multiple datasets, we also consider a metric called the F1 score of
average silhouette coefficients based on two groupings. Specifically, we calculated the silhouette
coefficient [[11] with clusters defined by cell types/domains and batches, respectively. For a
spot 7, let a(i) be the average distance between i and all the other spots within the same
cluster, and denote b(i) to be the smallest average distance between spot ¢ and all the spots
in any other cluster, then the silhouette coefficient of spot ¢ is defined as

~a(i) —b(i) B
S0) = axtat@ vy € Ch Y

After batch effect removal, the average silhouette coefficient of all spots from different batches

is calculated by

silh— ZZS

Do 1 Nr 21 jes,

where S, represents the spot index of sample r. We evaluated the average silhouette co-
efficient of SRT expression data using two different clusters: (i) clusters defined by known
cell types/domains as the cell type/domain silhouette coefficient (silheyser); and (2) clus-
ters defined by batches as the batch silhouette coefficient (silhpyser). Ideally, the aligned
low-dimensional embeddings matrix has a large silh.,ser, Which indicates the preservation
of biological signals, and a small silhyq.,, which suggests the spots are not grouped by batch.
To jointly consider these two evaluation measurements, we calculated the harmonic mean of
these two average silhouette coefficients following transformation, which is called the F1 score,
ranges from 0 to 1, and is given by

2(1 — silhy ;. )silh' quster

__score__sl Sllh cluster + (1 - Sﬂhl/oatch)

€ [0,1],

_ 1+silbhpaten _ 14silheyyeg 1 1 1
where silhy,, = 5tk and silhfy . = st A larger value of F1_score_silh indicates

that the cell type/ domaln assignment in the aligned dataset is more appropriate, where a spot
is close to spots of the same type and distant from spots of different types. S(7) is calculated
using the Euclidean distance on the batch-corrected low-dimensional embeddings.

Canonical correlation coefficients & conditional correlation. For dimension reduc-
tion, we consider two measurements to assess the performance of the recovery of true latent
features. The first one is the mean canonical correlation between the estimated features and
the true one defined as

CCor = ZQ (zi,2;),

l 1
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where (; is the [-th canonical correlation coefficients. The mean canonical correlation coefficient
measures the similarity of two sets of random variables, and a larger value means a better
estimation of true latent features. The second one is the mean conditional correlation between
gene expression x; and cell-type/domain label y; given the estimated latent features z; defined
as
12
ConCor p ; corr(y;, resid;;),

where resid; is the residual of x;; regressing on z; and corr(y;, resid;;) is the Pearson correlation
coefficient between y; and resid;;. Ideally, we want to obtain the estimated aligned low-
dimensional features that contain all information on cell types/domains, in other words, y; L
X;|z;. Thus, a smaller conditional correlation suggests a better performance. In the simulation
studies, the true latent features are known, thus, both CCor and ConCor are evaluated. In
the real data analysis, only ConCor is evaluated since true latent features are infeasible.

Adjusted Rand index. For evaluating clustering performance, we consider the adjusted
Rand index (ARI) [13] and normalized mutual information (NMI) [14]. ARI [13] is the cor-
rected version of the Rand index (RI) [15] that avoids some drawbacks of RI [13] and is defined
as

RI — E(RI)
max(RI) — E(RI)’

where F(RI) and max(RI) are the expected value and maximum value of RI, respectively.

ARI =

Suppose there are n spots in SRT dataset. Let U = (uy, -+ ,u;, -+ ,ug) and U = (Gy, - -+ , U, -+ -

denote two clustering labels for n spots of all combined samples from two different clustering
methods, where K and L corresponds to the numbers of clusters from these two methods. Let
n;; be the number of spots belonging to both classes u; and u;, and a; and b; be the number
of spots in classes u; and ;, respectively; then the specific formula of ARI is given by

2y (3) — 1 (5) 5 ()1 G)
3 (5) + 5 (D=1 (5 X VG

ARI measures the similarity between two different partitions and ranges from —1 to 1. A

ARI =

larger value of ARI means a higher similarity between two partitions. ARI takes a value of 1
when the two partitions are equal up to a permutation.

Normalized mutual information. NMI is a revised version of mutual information (MI)
that makes the value of MI range from zero to one. MI originates from probability theory
and information theory, and measures the mutual dependence of two random variables. More
specifically, it quantifies the amount of information” in units such as Shannons (bits) obtained
for one random variable by observing the other random variable. Let x and y be two discrete
random variables, i.e. the random variables taking the values of class labels on two different
partitions, then their MI can be defined as

Ml(xay)zzzp(%y)lﬂm:H($)+H(?J)—H($7y)a (19)

where P(x,y) is the joint distribution of (z,y), P(x) and P(y) are the marginal distributions
of x and vy, respectively, and H(x), H(y) and H (z,y) are the marginal entropies of x, y and the

12



joint entropy of (z,y), respectively. Intuitively, mutual information measures the information
that = and y share. If z and y do not share information and are mutually independent, then
MI(z,y) = 0. At the other extreme, if y = x, then MI(z,y) = H(z). This indicates MI
does not take values between zero and one. Therefore, some normalized versions have been
proposed and we used one version of them, defined as

MI(z, y)
max(H (z), H(y))

NMI(z,y) =

From the above formula, we know when the two partitions are equal up to a permutation, the
NMI takes a value of 1.

1.9 Additional simulations

Scenario 4. Normalized gene expression data: domain labels and spatial coordi-
nates from Potts models. For this scenario, we generated log-normalized gene expres-
sion data for three samples and the spatial coordinates based on Potts models with four
neighborhoods. The class label y,;, loading matrices W, W, latent features v,; and z,;
were generated in the same way as described for scenario 1, except that u;, had a different
value (Supplementary Data 8), and we only generated normalized gene expression X,; using
Xy = W(zy; +v,) + W,(,;, + € and g, ~ N(0,A,), where A, = diag(\,;),j = 1,...,p,
Ay = 2(1 + 0.52y,]) with z; "% N(0,3); Ay = 2(1 + 0.229;) with z; ‘%" U[0,1]; and
Asj = 2(1 + 235) with z3; "< U0, 1].

Scenario 5. Normalized gene expression data: domain labels and spatial coordi-
nates from DLPFC data. In this scenario, we generated log-normalized gene expression
data based on three DLFPC datasets (ID: 151507, 151669 and 151673) from three donors
(Visium platform). The class label y,;, loading matrices W, W,., latent features v,; and z,;
were generated as described for scenario 2. The only difference was that normalized gene
expression data x,; was generated using x,; = W(z,; + v,;) + W,(,, + €., 7,; ~ N(0,4) and
€.i ~ N(0,A,), where A, = diag(A;),j = 1,...,p, Ay = 2(1 + 0.5]z,]) with z; & N(0,3);

Aoj = 2(1 + 0.225) with zo; "% U[0,1]; and Agj = 2(1 + 23;) with 255 "< U[0, 1]

13
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Figure S1: Batch correction and dimension reduction performance for simulated data (n =
11,425 spots over 50 independent experiments). a. Violin plot of ¢LISI/iLIST based on the
batch-corrected 15-dimensional embeddings from PRECAST and eight other compared meth-
ods in scenarios 1-3. b. Bar plot of canonical/conditional correlations based on the batch-
corrected 15-dimensional embeddings from PRECAST and eight other methods in scenarios
1-3. In scenario 3, the true low-dimensional embeddings are unknown, so we could not eval-
uate the canonical correlation (CCor). c. Violin plot of c¢LISI/iLISI/F1 score based on the
batch-corrected 15-dimensional embeddings from PRECAST and five other compared meth-
ods in scenarios 4 and 5. d. Violin plot showing the canonical correlations between estimated
slide-specific embeddings due to neighboring microenvironments from PRECAST and the
underly truth; Bar plot of canonical/conditional correlations based on the batch-corrected 15-
dimensional embeddings from PRECAST and five other methods in scenarios 4 and 5. Note
that scVI and PASTE are only applicable to the scenarios 1-3 with count matrices. In the
bar plot, the error bands represent the mean value + standard deviation. In the boxplot, the
center line, box lines and whiskers represent the median, upper, and lower quartiles, and 1.5
times interquartile range, respectively.
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Figure S2: Clustering analysis of simulated data from 50 repeatitions. a. Domain clustering
performance of PRECAST and eight other integration methods based on SC-MEB clustering
in scenarios 1-3. Upper panel: Violin plot of ARIs from SC-MEB clustering based on the
low-dimensional embeddings of Harmony, fastMNN, Scanorama, scGen, scVI, MEFISTO and
PASTE. Middle panel: Violin plot of NMIs from PRECAST and other compared methods.
Bottom panel: Bar plot showing the number of clusters selected by PRECAST and other
compared methods, where the true number of clusters is K = 7. b. Domain clustering
performance of PRECAST and eight other integration methods based on SC-MEB clustering
in scenarios 4 and 5. scVI and PASTE are only applicable to the scenarios 1-3 with count
matrices. In the bar plot, the error bands represent the mean value + standard deviation. In
the boxplot, the center line, box lines and whiskers represent the median, upper, and lower
quartiles, and 1.5 times interquartile range, respectively.
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Figure S3: Clustering analysis based on embeddings from PRECAST and Harmony in scenario
4 and scalability analysis (n = 11,425 spots over 50 independent experiments). a. Left panel:
Box plot of ARIs from PRECAST, and BASS, SC-MEB, BayesSpace and Louvain based on
the low-dimensional embeddings of PRECAST and Harmony. Middle panel: Box plot of
NMIs from these methods. In the boxplot, the center line, box lines and whiskers represent
the median, upper, and lower quartiles, and 1.5 times interquartile range, respectively. Right
panel: Bar plot of the number of clusters selected by PRECAST, SC-MEB, BayesSpace and
Louvain. In the bar plot, the error bands represent the mean value + standard deviation.
Note that BASS cannot choose the number of clusters automatically, so we used the number
of clusters selected by PRECAST. b. Linear computational complexity of PRECAST with
regard to the number of spots/genes. Left panel: Line plot of running time and number
of spots (given 2000 genes) when running 30 iterations of three datasets on a linux server
with 2.10GHz Intel(R) Xeon(R) Gold 6230 CPU and 50G memory. Right panel: Line plot of
running time and number of genes (given 15,000 spots) in total when running 30 iterations of
three datasets on the same machine.
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Figure S4: Dimension reduction with batch correction and clustering analysis for the 12 dor-
solateral prefrontal cortex Visium sections. a. UMAP RGB plots for samples 1-4 with sample
ID 151507-151510 of Donor 1 based on the low-dimensional embeddings from PRECAST and
eight other methods. b. tSNE RGB plots for these methods. c¢. Domain clustering plots
for these methods and manual annotations, where SC-MEB is used in the other methods for
clustering based on the low-dimensional embeddings.

17



PRECAST Seurat V3 Harmony fastMNN Scanorama  scGen scVI  MEFISTO PASTE

i
m
-
C

151669

151670

151671

..-
"

"~

151672
b
PRECAST Seurat V3 Harmony fastMNN Scanorama  scGen scV MEFISTO PASTE
151669
151670 |
151671 |
151672
C

PRECAST Scurat V3 Harmony fastMNN Scanorama  scGen scVI MEFISTO PASTE Annotation
oo R R o ®, 5N
f, o kS r - o - -
T || S

151669

151671 R 3
F

151672! :
ol

Figure S5: Dimension reduction with batch correction and clustering analysis for the 12 dor-
solateral prefrontal cortex Visium sections. a. UMAP RGB plots for samples 5-8 with sample
ID 151669-151672 of Donor 2 based on the low-dimensional embeddings from PRECAST and
eight other methods. b. tSNE RGB plots for these methods. c¢. Domain clustering plots
for these methods and manual annotations, where SC-MEB is used in the other methods for
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clustering based on the low-dimensional embeddings.
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Figure S6: Dimension reduction with batch correction and clustering analysis for the 12 dorso-
lateral prefrontal cortex Visium sections. a. UMAP RGB plots for samples 9-12 with sample
ID 151673-151676 of Donor 3 based on the low-dimensional embeddings from PRECAST and
eight other methods. b. tSNE RGB plots for these methods. c¢. Domain clustering plots
for these methods and manual annotations, where SC-MEB is used in the other methods for
clustering based on their low-dimensional embeddings.



0.020 Method

W PRECAST
W Seurat V3
& Harmony
W fastMNN
£ Scanorama

' ‘l # scGen
B seVi
0.005 & MEFISTO
M8 N I & PASTE
o !

ﬁ, Sample
¥ 1
°2
3
4
5
6
o7
* 8
]
© 10
o 11
12
; 40 0 10 20 30 -20 -0 0 10 20 30 -
z
7]
£
Domain
1
°2
3
.4
®5
*6
7
* 8
N *9
o | . 10
30 20 -i0 0 10 20 3C -30 -i0 20 <0 0 10 20 30
¢ tSNE 1
7
060 25 [ Method
6 = PRECAST
o = Seuat V3
g N @20 " = e
3056 . o= &5 S Scanorama
2 5 i 3 2 & scGen
L . = = sovi
& MEFISTO
+ %% ' % 15 R RN Rl 4 & PASTE
0.52 + $ + i
- . [ 3
. 1.0

0.6

0.5
_ ﬂ 8 Method 03 04 Method
W PRECAST
- W Seurat V3 03 PRECAST
Hp = oy
X & Scanorama O 02 = B et
5  scGen < 4 Scanorama
S sovi 0.2 B scGen
& MEFISTO sovi
I W PASTE 6 M MEFISTO
02 03 ' 01 i paste
0.1 0.0 0.0

Figure S7: Dimension reduction with batch correction and clustering analysis for the 12 dor-
solateral prefrontal cortex Visium sections (n = 47,680 locations over 12 tissue sections). a.
Boxplot/violin plot of conditional correlations from PRECAST and eight other methods. b.
tSNE plots of the data batch/spatial domain labels from PRECAST for five other methods.
c. Boxplot of F1 score (F1 score of the average silhouette coefficients), c¢LISI and iLISI for
PRECAST and eight other methods. d. Boxplot/violin plot of ARIs/NMIs for each sample
from PRECAST, and SC-MEB clustering based on the low-dimensional embeddings of other
compared methods, and bar plot of ARIs/NMIs for 12 combined samples from PRECAST and
other methods. In the boxplot, the center line, box lines and whiskers represent the median,
upper, and lower quartiles, and 1.5 times interquartile range, respectively.
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Figure S8: Microenvironment spatial dependence analysis for the 12 dorsolateral prefrontal
cortex Visium sections. a. UMAP RGB plot of the inferred embeddings from the intrinsic
CAR of PRECAST for 12 sections. First row, sections with sample ID 151507-151510 of
donor 1; second row, sections with sample ID 151669-151672 of donor 2; third row, sections
with sample ID 151673-151676 of donor 3. b. tSNE RGB plot of the inferred embeddings from
the intrinsic CAR of PRECAST for the 12 sections with the same layout.
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Figure S9: Clustering analysis based on different embeddings for the 12 dorsolateral prefrontal
cortex Visium sections (n = 47,680 locations over 12 tissue sections). Upper panel: Box plot
of ARIs/NMIs for each sample from PRECAST, BASS, SC-MEB, BayesSpace and Louvain
clustering, based on the low-dimensional embeddings of PRECAST and Harmony. In the
boxplot, the center line, box lines and whiskers represent the median, upper, and lower quar-
tiles, and 1.5 times interquartile range, respectively. Bottom panel: Bar plot of ARI/NMI for
combined samples from BASS, SC-MEB, BayesSpace and Louvain clustering, based on the
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low-dimensional embeddings of PRECAST and Harmony.
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Figure S10: Combined DE analysis of the 12 dorsolateral prefrontal cortex Visium sections. a.
Spatial heatmap of scaled expression of top four DE genes for Domains 2-6 of Sample 10 with
ID 151674. (b)-(f): Ridge plots of raw gene expression of top four DEGs in each of Domains
2-6 in Sample 10.
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Figure S11: Combined DE analysis of the 12 dorsolateral prefrontal cortex Visium sections. a.
Spatial heatmap of scaled expression of top four DE genes for Domains 7-10 of Sample 10 with
ID 151674. (b)-(e): Ridge plots of raw expression of top four DE genes in each of Domains
7-10 in Sample 10.
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Figure S12: Combined DE analysis of the 12 dorsolateral prefrontal cortex Visium sections.
Heatmap of top 10 differentially expressed genes for each domain identified by PRECAST.
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Figure S13: Combined trajectory analysis for 12 samples from the dorsolateral prefrontal
cortex Visium sections. a. Spatial heatmap of the inferred scaled pseudotime by Slingshot.
b. Heatmap of PRECAST batch-corrected expression levels of top 30 genes with significant
changes with respect to the scaled Slingshot pseudotime. Each column represents a spot that
is mapped to this path and ordered by its pseudotime value. Each row denotes a top significant
gene.
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Figure S14: Comparison of the inferred pseudotime with embeddings from PRECAST, DR-SC
and PCA for the 12 dorsolateral prefrontal cortex Visium sections (n = 47,680 locations over
12 tissue sections). PCA and DR-SC were performed on each slide to obtain the embeddings
while PRECAST was performed on all slides to obtained aligned embeddings. In the boxplot,
the center line, box lines and whiskers represent the median, upper, and lower quartiles, and
1.5 times interquartile range, respectively.

27



Samplel Sample2
Ribosome|  [— Ribosome|  I—
” Parkinson discasc] NN " Parkinson discasc{  [NEIII—————
£ Diabetic cardiomyopathy{  INEG_— £ Pathways of neurodegencration - multiple discases 1
3 Alzheimer discase{  [INEEEG_—_— g Diabetic cardiomyopathy{  INEEG_——
= Pathways of neurodegencration - multiple discascs] [ IN— = Alzheimer discasc{  INIE_—_—_———
5 Amyotrophic lateral sclerosis] NN 2 Oxidative phosphorylation| [ INEEG—
2 Thermogenesis{ NN E) Amyotrophic lateral sclerosis{  [INEG_———
. Oxidative phosphorylation| I 2 Prion discase] I
Huntington discase{ NN Thermogenesis| N
Gastric acid secretion] NN Huntington discase{ [N
[ 20 30 [ 10 20 30
-log10(p-adj) -log10(p-adj)
Sample3 Sample4
Ribosome]  [I—— Ribosome] I —
” Parkinson discase{ [N " Parkinson discase{ (NG
£ Alzheimer disease{  [INEG_———— g Alzheimer disease{  [INEG_—_——
32 Amyotrophic lateral sclerosis{  [INEIEG_—_—_——— & Pathways of neurodegeneration - multiple discases{ [ INEG_—__————
G Pathways of neurodegeneration - multiple diseases I 3 Diabetic cardiomyopathy{  [INEGEG_—
‘& Diabetic cardiomyopathy{  [INEG_— ‘B Amyotrophic lateral sclerosis{ — [INEEG_————
.g Oxidative phosphorylation{  [INEG_—— % Prion discase{  [INEG_—_
& Prion dis I & Huntington dis |
Huntington di I Thermogenesis| — INEEG_—_—
hermogene | 1 Oxidative phosphorylation{ [ INEEEG_
[ 0 [ 3 10 15 20
-log10(p-adj) -log10(p-adj)
Sample5 Sample6
Parkinson disease{ I — Ribosome I —
" Ribosome I — ” Parkinson disease{  INEEG_—_—__————
£ Alzhcimer discase]  INE——— g Alzheimer discase]  [INEEEEE_—_———
8 Pathways of neurodegeneration - multiple discases{ NG 8 Pathways of neurodegeneration - multiple discases{  INEGEG_—_—
= Amyotrophic lateral sclerosis|{ IR = Oxidative phosphorylation{  [NEEEEGEG—
5 Prion disease]  IN—— S Prion discase{  INEG_——
k) Oxidative phosphorylation{ N k) Amyotrophic lateral sclerosis|  INEEGEG—
S e o S op e e
& Diabetic cardiomyopathy| [N & Diabetic cardiomyopathy] | INEEEEG_—
Huntington disease| [N Huntington disease{  INNEEG_—_
Chemical carcinogenesis - reactive oxygen specics| [N Thermogenesis| N
0 5 10 15 0 10 20 30 40
-log10(p-adj) -log10(p-adj)
Sample7 Sample8
Ribosome| I —— Ribosome] I ——
” Parkinson discasc| | INEEG_—__— Parkinson discasc{ NI
£ Pathways of neurodegeneration - multiple discases{  [INREG_—_—_-_ & Alzheimer discasc{  INEEG_—_———
s Alzheimer discase|  IEG_—_:_—_— 3 Diabetic cardiomyopathy| | EEG_——
= Diabetic cardiomyopathy{ I 5 Pathways of neurodegeneration - multiple discases{  INEEG_—_—__——S)1
Amyotrophic lateral sclerosis{ I % Oxidative phosphorylation|  [IEEG_—_—
Oxidative phosphorylation{ [N % Prion discasc|  INE_—_—_—_
i z Amyotrophic lateral sclerosis{ N
. Chemical carcinogenesis - reactive oxygen spec I
Thermogenesis | Huntington disease{ [N
[ 10 20 30 0 ES [ 0 20 30
-log10(p-adj) -log10(p-adj)
Sample9 Samplel0
Ribosome]  [IN—— Ribosome]  [IN—
” Parkinson discase{ (NG " Parkinson discase{ NN
£ Oxidative phosphorylation{ [N 8 Oxidative phosphorylation{ | INEEG_———
2 Diabetic cardiomyopathy{  [INEGEG_—— & Pathways of neurodegeneration - multiple discases{  [INEG___———
= Huntington discase] | INEEG_——— = Alzheimer discasc{  [INEG_——
-2, Pathways of neurodegeneration - multiple 1 2 Huntington discasc{ I
Lo’ Prion discase{ [N % Prion discase{  [INEEG_—_—_—
& Alzhcimer discasc{  INEG_——— & Synaptic vesicle cycle{  INEG_—_—
Amyotrophic lateral sclerosis{  [INEGEG_———_ Diabetic cardiomyopathy{  [INEEG_——
Thermogenesis|  [INEIEG___ Amyotrophic lateral sclerosis{  [INEG_
[ 10 20 30 0 50 [ 20
-log10(p-adj) -log10(p-adj)
Samplell Samplel2
Ribosome]  [I—— Ribosome I —
” Parkinson discase{  INEEG_—— " Parkinson discase|  INEE——————
£ Oxidative phosphorylation| NN E Disbetic cardiomyopathy] N
2 Diabetic cardiomyopathy{  [INEG_— @ Pathways of neurodegeneration - multiple discases{  [INEG_—__—_—_—
G Pathways of neurodegeneration - multiple ses{ (I 3 Prion 1
‘5 Alzheimer discasc{  [INEG_—_ By Alzheimer discase{ NG
2 Prion disease{  [INE_—_- 9 Oxidative phosphorylation{ [N
S : ) S ‘
& Amyotrophic lateral sclerosis{ NN & Amyotrophic lateral sclerosis{ NG
Huntington disease{ NN Huntington disease{ | INEEG_—_————_
Gastric acid scerction] [N Gastric acid scerction{ [N

o
5
s
&
o
3

20 30
-log10(p-adj)

o
=
S

0
-log10(p-adj)

Figure S15: Enrichment analysis of conditional SVGs based on low-dimensional embeddings
extracted by PRECAST from the 12 dorsolateral prefrontal cortex Visium sections. Bar plot
of -logl0(adjusted p-value) for top 10 KEGG pathways in enrichment analysis of SVGs of
each sample. The p-values are based on one-sided Fisher’s exact tests with multiple testing
corrections using the Benjamini-Hochberg FDR method.
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Figure S16: Enrichment analysis of conditional SVGs based on low-dimensional embeddings
extracted by PRECAST from the 12 dorsolateral prefrontal cortex Visium sections. Bar plot of
-log10(adjusted p-value) for top 10 HPA pathways in enrichment analysis of SVGs of each sam-
ple. The p-values are based on one-sided Fisher’s exact tests with multiple testing corrections
using the Benjamini-Hochberg FDR method.
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Figure S17: Enrichment analysis of conditional SVGs based on low-dimensional embeddings
extracted by PRECAST from the 12 dorsolateral prefrontal cortex Visium sections. Bar plot
of -logl0(adjusted p-value) for top 10 GO biological process (BP) pathways in enrichment
analysis of SVGs of each sample. The p-values are based on one-sided Fisher’s exact tests with
multiple testing corrections using the Benjamini-Hochberg FDR method.
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Figure S18: Enrichment analysis of conditional SVGs based on low-dimensional embeddings
extracted by PRECAST from the 12 dorsolateral prefrontal cortex Visium sections. Bar plot
of -logl0(adjusted p-value) for top 10 GO cellular component (CC) pathways in enrichment
analysis of SVGs of each sample. The p-values are based on one-sided Fisher’s exact tests with
multiple testing corrections using the Benjamini-Hochberg FDR method.
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Figure S19: Enrichment analysis of conditional SVGs based on low-dimensional embeddings
extracted by PRECAST from the 12 dorsolateral prefrontal cortex Visium sections. Bar plot
of -logl0(adjusted p-value) for top 10 GO molecular function (MF) pathways in enrichment
analysis of SVGs of each sample. The p-values are based on one-sided Fisher’s exact tests with
multiple testing corrections using the Benjamini-Hochberg FDR method.
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Figure S20: Dimension reduction with batch correction and clustering analysis using top 2000
HVGs for the 12 dorsolateral prefrontal cortex Visium sections (n = 47,680 locations over
12 tissue sections). a. Boxplot/violin plot of conditional correlations from PRECAST and
eight other methods. b. Boxplot of F1 score (F1 score of the average silhouette coefficients),
cLIST and iLISI for PRECAST and eight other methods. c. Boxplot/violin plot of ARIs/NMIs
for each sample from PRECAST and SC-MEB clustering based on the low-dimensional em-
beddings of other compared methods, and bar plot of ARIs/NMIs for 12 combined samples
from PRECAST and other methods. In the boxplot, the center line and box lines denote the
median, upper, and lower quartiles, respectively.
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Figure S21: Performance comparison of results from PRECAST using SPARK, SPARK-X,
Spatial DE, nnSVG and HVGs gene selection methods, for the 12 dorsolateral prefrontal cortex
Visium sections (n = 47,680 locations over 12 tissue sections). a. Barplot of running times for
each sample (left panel) and all samples. In the bar plot, the error bands represent the mean
value £ standard deviation. b. Boxplot/violin plot of conditional correlations. c¢. Boxplot
of F1 score of the average silhouette coefficients, cLIST and iL.ISI. d. Boxplot/violin plot of
ARIs/NMIs for each sample, and bar plot of ARIs/NMIs for the 12 combined samples. In
the boxplot, the center line, box lines and whiskers represent the median, upper, and lower
quartiles, and 1.5 times interquartile range, respectively.
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Figure S22: Comparison analysis and spatial microenvironment analysis of mouse liver ST
data (n = 4,865 locations over 8 tissue sections). a. Boxplot/violin plot of NMIs for each
sample from PRECAST, and SC-MEB clustering based on the low-dimensional embeddings of
other compared methods, and bar plot of NMIs for eight combined samples from PRECAST
and other methods. b. Boxplot of F1 score (F1 score of the average silhouette coefficients)
for PRECAST and eight other methods. c¢. Boxplot/violin plot of conditional correlations
from PRECAST and eight other methods. d. tSNE plots of the data batch/spatial domain
labels from PRECAST for five other methods. e & f. UMAP/tSNE RGB plot of the inferred
embeddings from the intrinsic CAR of PRECAST for the eight samples. In the boxplot, the
center line and box lines denote the median, upper, and lower quartiles, respectively.
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Figure S23: Clustering analysis for the eight mouse liver sections. Domain clustering plots for
PRECAST and eight other methods as well as manual annotations, where SC-MEB is used
in the other methods for clustering based on their low-dimensional embeddings. The ARIs
resulted from top three methods are presented with red, blue and green colors, respectively.
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Figure S24: Clustering analysis for mouse liver ST data (n = 4,865 locations over 8 tissue
sections) based on different embeddings. Upper panel: Box plot of ARIs/NMIs for each
sample from PRECAST, BASS, SC-MEB, BayesSpace and Louvain clustering, based on the
low-dimensional embeddings of PRECAST and Harmony. In the boxplot, the center line, box
lines and whiskers represent the median, upper, and lower quartiles, and 1.5 times interquartile
range, respectively. Bottom panel: Bar plot of ARI/NMI for combined samples from BASS,
SC-MEB, BayesSpace and Louvain clustering, based on the low-dimensional embeddings of
PRECAST and Harmony.
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Figure S25: Enrichment analysis of DE genes in data for each domain detected by PRECAST in
the eight mouse liver sections. Top five pathways for each category. The p-values are based on

one-sided Fisher’s exact tests with multiple testing corrections using the Benjamini-Hochberg
FDR method.
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Figure S26: Enrichment analysis of unique DE genes of subtypes detected by PRECAST in
the eight mouse liver sections. a. Top five pathways for each category of DE genes correspond-
ing to two subtypes of central veins. b. Top five pathways for each category of DE genes
corresponding to two subtypes of portal veins. The p-values are based on one-sided Fisher’s
exact tests with multiple testing corrections using the Benjamini-Hochberg FDR method.
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Figure S27: Cell-type deconvolution analysis for the eight mouse liver sections. a. Spatial
heatmap of proportions of the remained 11 cell types annotated in MCA on liver tissues for
the three slices of Sample 1. b. Spatial heatmap of proportions of 17 cell types annotated in
MCA on liver tissues for the two slices of Sample 2.
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Figure S28: Cell-type deconvolution analysis for the eight mouse liver sections. Spatial

heatmap of proportions of 17 cell types annotated in MCA on liver tissues for the three
slices of Sample 3.
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Figure S29: Dimension reduction with batch correction and clustering analysis using the top
2,000 HVGs for mouse liver ST data (n = 4,865 locations over 8 tissue sections). a. Box-
plot/violin plot of conditional correlations from PRECAST and eight other methods. A lower
conditional correlation score is better. b. Boxplots of F1 score (higher is better), cLISI (lower is
better) and iLISI (higher is better) for PRECAST and eight other methods. c. Boxplot/violin
plot of ARIs/NMIs (higher is better) for each sample from PRECAST and SC-MEB cluster-
ing based on the low-dimensional embeddings of other compared methods, and bar plot of
ARIs/NMIs for 12 combined samples for PRECAST and other methods. In the boxplot, the

center line and box lines denote the median, upper, and lower quartiles, respectively.
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Figure S30: Comparison of PRECAST performance using five gene selection methods: SPARK,
SPARK-X, Spatial DE, nnSVG and HVGs, to analyze mouse liver ST data (n = 4, 865 locations
over 8 tissue sections). a. Barplot of running times for each sample (left panel) and all samples
(right panel). In the bar plot, the error bands represent the mean value + standard deviation.
b. Boxplot/violin plot of conditional correlations. c. Boxplot of F1 score, ¢LISI and iLISI.
d. Boxplot/violin plot of ARIs/NMIs for each sample, and bar plot of ARIs/NMIs for the
eight combined samples. In the boxplot, the center line, box lines and whiskers represent the
median, upper, and lower quartiles, and 1.5 times interquartile range, respectively.
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Figure S31: Dimension reduction with batch correction and clustering analysis of data for the
16 mouse olfactory bulb sections with reduced resolution. a. UMAP RGB plots for Samples
1-4 based on the low-dimensional embeddings from PRECAST and eight other methods. b.
tSNE RGB plots for these methods. c. Domain clustering plots for these methods.
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Figure S32: Dimension reduction with batch correction and clustering analysis of data for the
16 mouse olfactory bulb sections with reduced resolution. a. UMAP RGB plots for Samples
5-8 based on the low-dimensional embeddings from PRECAST and eight other methods. b.
tSNE RGB plots for these methods. c. Domain clustering plots for these methods.
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Figure S33: Dimension reduction with batch correction and clustering analysis of data for the
16 mouse olfactory bulb sections with reduced resolution. a. UMAP RGB plots for samples
9-12 based on the low-dimensional embeddings from PRECAST and eight other methods. b.
tSNE RGB plots for these methods. c. Domain clustering plots for these methods.
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Figure S34: Dimension reduction with batch correction and clustering analysis of data for the
16 mouse olfactory bulb sections with reduced resolution. a. UMAP RGB plots for samples
13-16 based on the low-dimensional embeddings from PRECAST and eight other methods. b.
tSNE RGB plots for these methods. c. Domain clustering plots for these methods.
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Figure S35: Batch correction analysis of data for the 16 mouse olfactory bulb sections. a.
tSNE plots of five other compared integration methods (Scanorama, scGen, scVI, MEFISTO
and PASTE) for resolution-reduced data; tSNE plot is colored for sample index and domain
index. b. tSNE plots for PRECAST and eight other integration methods, as well as the
uncorrected tSNE for the original-resolution data. It is noted that Seurat V3 and PASTE can
not be implemented for this data due to the large number of spots.
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Figure S36: Microenvironment spatial dependence analysis of data for the 16 mouse olfactory
bulb sections with reduced resolution. a. UMAP RGB plot using the inferred embeddings
from the intrinsic CAR of PRECAST for the 16 samples. First row, Samples 1-4; second row,
Samples 5-8; third row, Samples 9-12; fourth row, Samples 13-16. b. tSNE RGB plot using
the inferred embeddings from the intrinsic CAR of PRECAST for the 16 samples.
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Figure S37: Combined DE analysis of data for the 16 mouse olfactory bulb sections with
reduced resolution. Heatmap of top 10 DE genes for each domain identified by PRECAST.
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Figure S38: Enrichment analysis of data for the 16 mouse olfactory bulb sections with reduced
resolution. Top 4 significant pathways (term size <500) for each category of DE genes for
Domains 1-12 identified by PRECAST. The p-values are based on one-sided Fisher’s exact
tests with multiple testing corrections using the Benjamini-Hochberg FDR method.
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Figure S39: Spatial clustering analysis of data for the 16 mouse olfactory bulb sections with

original resolution. Each sample is arranged by row, and clusters (1-12) obtained by PRECAST
are sorted by column.

22 PRPOGDwmw
06onp0em=n=

g'b"ﬂﬂ!ﬂﬂd-

ﬁi@ﬁoionogﬂ!ﬂbw-

samplel5

samplel6

iﬁ

52



samplel

sample2

sample3

sampled

sample5

sample6

sample7

sample8

sample9

samplel0

samplell

samplel2

samplel3

samplel4

samplel5

samplel6

0007000 o000 n=mnw

00000 oop0¢n=n=w’
@6o@e ot rogddnmnw

0007000 onp0dn=aw’
GoGreeoecerpRiamnm

0009000 onpt¢n=an'
000s e eopddnon®

GORO QRO PAPNG BDemw'
GoBraele o 09O nemw:

000 0doo0Ppadn

@009 000 0RPBIRmm=}
Bed®reRe PRPOIommm

Figure S40: Spatial clustering analysis of data for the 16 mouse olfactory bulb sections with
original resolution. Each sample is arranged by row, and clusters (13 -24) obtained by PRE-
CAST are sorted by column.
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Figure S41: Combined DE analysis of data for the 16 mouse olfactory bulb sections with
original resolution. Heatmap of top 5 DE genes among all clusters identified by PRECAST.
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Figure S42: Cell-type deconvolution analysis of data for the 16 mouse olfactory bulb sections
with reduced resolution (n = 594,890 locations over 16 tissue sections). a. Percentage of
different cell types in each domain detected by PRECAST, with (left panel) or without (right
panel) scaling to the summation of all cell types across all domains equal to 100%. b. Bar
plot of ARIs/NMIs for 16 combined samples from PRECAST and SC-MEB clustering based
on the low-dimensional embeddings of other compared methods. c¢. Boxplot/violin plot of
ARIs/NMIs for each sample from PRECAST and other methods. d. Boxplot/violin of iLISI,
cLIST and F1 score (F1 score of the average silhouette coefficients) for PRECAST and eight
other methods. e. Boxplot/violin plot of conditional correlations from PRECAST and eight
other methods. In the boxplot, the center line and box lines denote the median, upper, and
lower quartiles, respectively.
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Figure S43: Combined trajectory inference of data for the 16 mouse olfactory bulb sections
with reduced resolution. a. Visualization of the trajectory inferred by PRECAST in spatial
heatmap of Samples 9-16; the first row shows Samples 9-12, and the second row shows Samples
13-16. b. Heatmap of top 20 differentially expressed genes along pseudotime.



PRECAST Seurat V3  Harmony fastMNN Scanorama scGen scVI MEFISTO PASTE

S AV V2V JV JV 2V JF JF
HCC 3 ¥ W
~ BRI S U9 D
b PRECAST Seurat V3 fastMNN  Scanorama scGen scVI MEFISTO  PASTE
S AV 2V JF 2V JF JF a2V JF -
RN C T eSS
¢ PRECAST Seurat V3 Scanorama scGen MEFISTO  PASTE
e P - ‘
HCC 1 5 || 2 A -3 -
; : 53 FAAS ~ 7
& g % :% :Z‘." - ;
o G A . Ar ¥ ¥ JF -
ot et o e | —
~SdEed Ve

Figure S44: Dimension reduction with batch correction and clustering analysis of data for
the four Human HCC sections. a. UMAP RGB plot based on low-dimensional embeddings
from PRECAST and eight other methods. b. tSNE RGB plots for the methods. c¢. Domain
clustering plots for the methods, where SC-MEB is used in the other methods for clustering
based on their low-dimensional embeddings.
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Figure S45: Batch correction analysis and correlation analysis of data for the four Human HCC
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from five different integration methods including Scanorama, scGen, scVI, MEFISTO and
PASTE; bottom panel: visualization of the cluster labels estimated by PRECAST based on

the same tSNE embeddings. b. Heatmap of correlations of batch-corrected low-dimensional
embeddings estimated by PRECAST.
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Figure S46: Microenvironment spatial dependence analysis and combined DE analysis of data
for the four Human HCC sections. a. UMAP /tSNE RGB plot of the inferred embeddings
from the intrinsic CAR of PRECAST for the four samples. b. Heatmap of top 10 DE genes
for each domain identified by PRECAST.
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Figure S47: Combined DE analysis of data for the four Human HCC sections. a. First row:
spatial heatmap of spatial domains 1-4 and 8 of HCC1 detected by PRECAST. Second/Third
row: spatial heatmap of scaled expression of top two DE genes in Domains 1-4, and 8 of HCC1.
Bottom row: Ridge plots of log-normalized gene expression of top DE gene in each of Domains
1-4 and 8 of HCC1. b. First row: spatial heatmap of spatial domains 1, 4 and 8 of HCC2
detected by PRECAST. Second/Third row: spatial heatmap of scaled expression of top two
DE genes in Domains 1, 4 and 8 of HCC2. Bottom row: Ridge plots of log-normalized gene
expression of top DE gene in each of Domains 1, 4 and 8 of HCC2.
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Figure S48: Combined DE analysis of data for the four Human HCC sections. a. First row:
spatial heatmap of spatial domains 4-7 and 9 of HCC3 detected by PRECAST. Second/Third
row: spatial heatmap of scaled expression of top two DE genes in Domains 4-7 and 9 of HCC3.
Bottom row: Ridge plots of log-normalized gene expression of top DE gene in each of Domains
4-7 and 9 of HCC3. b. First row: spatial heatmap of spatial domains 4-6 and 9 of HCC4
detected by PRECAST. Second/Third row: spatial heatmap of scaled expression of top two
DE genes in Domains 4-6 and 9 of HCC4. Bottom row: Ridge plots of log-normalized gene
expression of top DE gene in each of Domains 4-6 and 9 of HCC4.
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Figure S49: Enrichment analysis of DE genes in data for each domain detected by PRECAST
in the four Human HCC sections. Top 4 pathways for each category, as well as some additional
interesting pathways for Domains 1, 4, and 5. The p-values are based on one-sided Fisher’s
exact tests with multiple testing corrections using the Benjamini-Hochberg FDR method.
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Figure S50: Enrichment analysis of spatially variable genes while controlling the domain-
related low-dimensional embeddings obtained by PRECAST in the four human HCC sections.
Bar plot of top 10 significant KEGG pathways (term size < 500). b. Bar plot of top 10
significant HPA pathways (term size < 500). The p-values are based on one-sided Fisher’s
exact tests with multiple testing corrections using the Benjamini-Hochberg FDR method.
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Figure S51: GO enrichment analysis of spatially variable genes while controlling the domain-
related low-dimensional embeddings obtained by PRECAST in the four human HCC sections.
a. Bar plot of top 10 significant BP pathways (term size < 500). b. Bar plot of top 10
significant CC pathways (term size < 500). c¢. Bar plot of top 10 significant MF pathways
(term size < 500). The p-values are based on one-sided Fisher’s exact tests with multiple
testing corrections using the Benjamini-Hochberg FDR method.

64



0.

oo

0.

(6]

0.2

0.0

0.

oo

0.

(6]

0.

N

0.0

HCCI1 HCC2

@

(6]

N

Cell Type

1.0
0.
1 0.
0.
0.0
1 2

3 4 6 7 8 9

1 4 7 8 9

HCC4

1.0

0.

©

0.

(6]

0.

N

0.0

Malignant cell
Immune cell
CAF

TAM

HPC-like cell

HCC1

HCC3

1 4 5 6 7 8 9

Latent time

0.8
0.6
- 04

Latent time

1.00
0.75
0.50
025

HCC2

Latent time

0.8
- 07

HCC4

Latent time

0.75
0.50
025

0.00

Figure S52: Cell-type deconvolution analysis and RNA velocity analysis of the four human
HCC sections. a. Percentage of different cell types in each domain detected by PRECAST. b.
Heatmap of RNA velocity in latent time in the spatial coordinates for the four HCC samples.
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