
Supplementary figures

Supplementary Figure 1. Shared abstract structure of all (evolutionary) predictions. Starting
from prior knowledge (blue circle), models can be formalized (pink circle) which may project into the
unknown (visualized by the yellow ellipse), using assumptions (grey aura). If pointing outwards, the
yellow area of the ellipse constitutes a prediction, whereas the green area is used for validation of the
model and its assumptions. The model assumptions and output will determine the orientation of the
ellipse, and to what extent it projects into the unknown. The predictive output will range from the most
risky predictions of more fundamental and serendipitous nature, to safer predictions which will be
more suitable for predicting more practical matters such as potential pathogen escape mutants.
Hypothesis testing here is the case where predictions are made about results that are known, to test if
the model that we have of a process explains the observations.

As an example we apply the conceptual model to the prediction about seasonal influenza
strains in the next season, which is used to design the next vaccine. Prior knowledge (blue circle) is
the current state of the population as inferred by observed frequencies of influenza strains in humans
and other hosts, and the trajectory of these frequencies in the recent past. The model assumptions
(grey) can include mathematical descriptions of how the frequency trajectories can be extrapolated
into the future (taking into account mutation, drift and selection). The outcome of the model (yellow) is
the predicted frequencies of the major strains during the next influenza season, only the list of the
most prevalent clades, or the antigenic phenotypes of the future virus population.

In terms of the four attributes described in the main text, the predictive scope is the genetic or
antigenic composition of the population, the predictive horizon is a time scale 6-12 months into the
future. The predictive precision is high in terms of time (we need to know the common strains for the
next season, not earlier or later than that) and genetics, as we are predicting the exact strains. The a
priori likelihood is bounded when we consider only existing strains, as there may only be a small
number of possible outcomes when only few strains currently exist in the population. However, the
exact predictive risk depends on whether a common or uncommon strain is predicted to be prevalent
the next season. Over longer time scales de novo mutations become important. De novo mutations
are hard to predict, which is one reason why predictability is reduced over longer time scales.



Methods for making evolutionary predictions

1. Experimental evolution

A straightforward method for evolutionary predictions is creating the conditions of interest (in
the lab or a different natural environment), observe (a lack of) evolution, and extrapolate
from these observations into the future.

Laboratory experimental evolution is diverse; it is commonly used for fast-evolving microbial
systems (e.g. antibiotic resistance evolution (Kawecki et al. 2012, Remigi et al. 2019), but
also larger organisms such as Drosophila (Burke & Rose 2009) and Caenorhabditis
(Teotónio et al. 2017). Experimental evolution can also include interactions with the
environment (i.e. eco-evolutionary interactions), such as the role of environmental spatial
structure (Nadell et al. 2016) or the natural biotic context (Zandbergen et al. 2021).

Field studies are more appropriate for conditions or organisms that cannot be studied in the
lab, for example because habitats are too large. In such cases, the effect of environmental
conditions on evolution can be studied with reciprocal transplant experiments (Edwards
2015) or observations of “natural field experiments”, such as sticklebacks that have moved
from marine environments to fresh water repeatedly (Jones et al. 2012).

Experimental evolution can also be used to study the predictability of evolution, and many
such studies have indeed focused on the predictability (or repeatability) of evolution (e.g.,
(Bull & Molineux 2008, Sackman et al. 2017, Lind 2019, Schenk et al. 2022).

2. Using the mutational and fitness landscape

Though currently still out of reach, one day, it may be possible to predict the next
evolutionary step for a population using detailed knowledge of the mutation and fitness
landscape for the population in a given environment. To know what variation is available to a
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population, we need to know the single step mutational landscape (the probability of each
mutation to occur) and the effect of these mutations on the fitness of the organism (fitness
landscape). Limited information on the mutational landscape might already inform
evolutionary predictions (e.g., knowledge of epistasis for key mutations can predict
evolutionary pathways (Salverda et al. 2011)).

Obtaining the single step mutational landscape with the accompanying fitness effects is a
hard problem given the sheer scale of it. Even if we only focus on a single mutational step,
and assume that the environment is stable, the number of possible mutations is very high
(~>109 in eukaryotes) which makes it hard to determine the fitness effect for each mutation.
Several approaches have been used to try and tackle parts of this problem, by focussing on
small genome viruses (Tisthammer et al. 2020), mutational scanning of one gene (Lee et al.
2018), or on a small metabolic pathway (Kemble et al. 2020). Mutation accumulation
experiments can also be used to understand the mutational landscape although they are
unlikely to capture all mutations (Sane et al. 2018). For any prediction to be relevant, we
need to take into account changing environments and multiple mutations and their
interactions (epistasis), although there is some indication that environmental change does
not change the fitness landscape completely (Vos et al. 2018).

Nevertheless, progress has been made through a combination of two approaches: the
statistical approach where measured fitness effects are correlated with specific mutations
(top-down) (Wang et al. 2018) and a mechanistic approach to predict by reconstructing the
genotype-phenotype-fitness map (bottom-up) (de Vos et al. 2015). For instance, all the
epistatic interactions between mutations affecting the expression of two genes in a linear
metabolic pathway were resolved with a mechanistic perspective taking into account the flux
in the pathway, the toxicity of the intermediate metabolite and the protein expression cost
(Kemble et al. 2020). At a more integrated level, the well-established polarity network in
budding yeast was predictive of mutation effects (Daalman & Laan 2020). Both approaches
have their own advantages and disadvantages, and in most cases both approaches will
need to be combined to make the best prediction.

3. (Microbial) metabolic and growth models

In many environments, selection on microorganisms is differential population growth of
alternative genotypes, and therefore metabolism and growth are directly linked to fitness.
This means we can use metabolic and growth models to predict evolution. The most
well-known predictions are growth rates and metabolic adaptations in new environments
(e.g. in E. coli (Schuetz et al. 2007) and Lactobacillus plantarum (Teusink et al. 2009)).
These predictions use genome-scale metabolic models (Gu et al. 2019), which predict
metabolic enzymes from genome information, constrain uptake fluxes with experimental data
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and optimise for growth rate with flux balance analysis (Orth et al. 2010). Genome-scale
metabolic models are also used for biotechnological applications, for example to predict how
knock-outs of specific enzymes affect growth and product formation (see the Box in the main
text)

Microbial growth and metabolism models come in different levels of detail. A simple
phenomenological model can predict fitness increase (Wiser et al. 2013) and a more
detailed model with intracellular ‘macro’-reactions can be used to predict antibiotic resistance
evolution (Pinheiro et al. 2021), or overflow metabolism (Molenaar et al. 2009, Wortel et al.
2016). Much more detailed models include genome-scale metabolic models (GEMs, current
status in (Gu et al. 2019)), metabolism and expression models (ME models, (O’Brien et al.
2013)), resource balance analysis models (RBA models, (Goelzer et al. 2015)) and the most
extensive whole cell models (Karr et al. 2012). Flux Balance analysis can be used to predict
fluxes that lead to optimal growth, constrained by measured maximal fluxes, in GEMs, and
therefore as a prediction of evolution . To improve predictions, proteome and kinetic
constraints can be added (Sánchez et al. 2017, Chen & Nielsen 2021), or detailed
descriptions of protein-metabolite dynamics can be incorporated at the expense of
decreasing the model size (Wortel et al. 2018).

4. Population-genetic models

Population-genetic models are models that keep track of the genetic status (often at one or a
few loci) of an entire population (Hartl 2020). Population genetic models can include
mutation, fitness, reproduction, recombination and other parameters, with both deterministic
and stochastic forces. These models are used widely to predict allele frequencies, e.g.
incidence of deleterious recessive alleles in human populations (e.g. due to
mutation/selection balance), or of conditionally beneficial alleles (e.g. sickle cell anaemia
alleles in areas with Malaria parasites). Additionally, they can be used as a null model, to
detect signatures of selection within population genomics, or deviations from panmixia (e.g.
population differentiation).

Population-genetic models predict the evolutionary dynamics of allelic variants of genes.
They use population-genetic theory, to describe the frequencies of alternative alleles (at one
or multiple loci) over time. New alleles can be created from the wildtype allele by mutation, or
may get introduced through immigration. Alleles at multiple sites can be recombined in
following generations.

However, population genetic theory only works well for predicting changes in allele
frequencies or population sizes if it is known which mutations have an effect on fitness and
what these effects are (though see the extensive literature on adaptive walks (Gillespie
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1983, Orr 1998)). Inferring the distribution of fitness effects of new mutations is difficult
because of the sheer number of possible mutations and because this distribution may differ
between genetic backgrounds and between different environments. Moreover, the mutations
of interest, which are the beneficial ones, are only a small fraction of the possible mutations.
Using population genetic theory to predict evolution relies either on the availability of large
data sets capturing the genetic variation in natural populations (e.g. (Eyre-Walker &
Keightley 2007, Tataru et al. 2017)) or on extensive measurements of fitness effects of
selected mutations in the laboratory (e.g., (Fowler & Fields 2014, Cote-Hammarlof et al.
2021)).

Both Mendelian and non-Mendelian inheritance can be incorporated into the models. The
models follow a population of individuals, to assess the separate or combined effects of
mutation, selection, drift, non-random mating and migration, to calculate expectations for
which allele(s) will spread, stabilise in frequency or disappear. In the absence of any of the
evolutionary processes, allele frequencies are expected to remain largely constant and
genotype frequencies can be accurately predicted, as described by the Hardy-Weinberg
principle. If a beneficial allele is present in the population (from standing genetic variation,
immigration or due to new mutations), it is expected to become more common in the
population due to natural selection, and the models can predict the rate of change and the
eventual equilibrium frequency to which the allele frequencies in the population will evolve.
Ultimately, these models specify the particulars of the various deterministic and stochastic
processes that operate concurrently, and how these processes contribute to the resulting
evolutionary dynamics.

One interesting case study of population genetic models for predicting evolution is the
evolutionary dynamics of gene drive systems (Unckless et al. 2017). This is explained in
more detail in Box 1. In this model the frequencies of three alleles are followed over time.
The alleles are (1) the wildtype allele (which is susceptible to the gene drive system), (2)
the driver allele (which can convert the wildtype allele into a driver allele and may come with
a fitness cost, in particular when the gene drive is used to control a population) and (3) a
resistant allele, which can be created from the wildtype allele by mutation, and cannot be
converted to the driver allele. An additional layer of complexity that was included in the
model by Unckless et al. is that the CRISPR/Cas9 gene drive system itself is mutagenic,
because the cuts it makes in chromosomes are often repaired by the non-homologous
end-joining pathway which leads to mutations. The population-genetic model showed that if
we want gene drive systems to be successful, we need to either reduce the rate at which
resistance alleles are created, or we need to drastically increase the cost of resistance. Both
of these methods have now successfully been used in experimental populations (Noble et al.
2017, Champer et al. 2020).
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5. Quantitative genetics and the breeder’s equation

The field of quantitative genetics was developed in close association with animal and plant
breeders. In situations where the focus is on altering one or a few phenotypes, over short
timescales and in relatively controlled environments, it has achieved great predictive
success. For example, plant-breeding programs that are designed to improve crop yield
focus on creating variable populations of hybrids and selecting for plants with the highest
yield (under normal or stressed conditions) (Cooper et al. 2014, Gaffney et al. 2015, Masuka
et al. 2017). Thanks to quantitative genetics, it is well understood that faster improvements
will be attained when there is either more genetic variation to start with, or stronger selection.
Specific predictions are achieved through the application of general statistical tools, often
under simple assumptions of polygenicity and additivity (the infinitesimal model), to large
sample sizes (Barton et al. 2017).

While application of the ‘Breeder’s equation’ to predict the response of single traits, from
their heritability and a defined selection differential, has yielded encouraging results (Walsh
& Lynch 2018), p. 607), multivariate selection often fails, even in the controlled environment
of the laboratory (Milocco & Salazar-Ciudad 2020, Rouzic et al. 2020) reviewed in (Roff
2007), though see (Beldade et al. 2002, Bolstad et al. 2015). In the wild, our aspirations
must currently be limited to a number of exceptional, closely-studied systems such as the
red deer on the Isle of Rum in Scotland (Bonnet et al. 2019), Soay sheep on St Kilda island
(Clutton-Brock et al. 1991), and bird populations such as great and blue tits (Charmantier et
al. 2008, 2014, 2016).

6. Epidemiological models (SIR models)

Classical SIR models are used to model the spread of an infectious agent in a population
with susceptible, infected and recovered individuals. When we include the possibility of the
pathogen to evolve (e.g., changing virulence or infection probabilities), we can predict the
spread of an evolving infectious agent (Gordo et al. 2009). This type of model has been
applied to modelling of influenza evolution (Boni et al. 2006).
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In the most simple case, evolution in SIR models can be modelled by including two or more
versions of the pathogen with different parameters such as the replication number or
transmission probability. Such models are used for the SARS-CoV-2 pandemic to predict
case numbers in the near future and the spread of new variants. In early 2021, two main
virus variants affected the predictions of cases in the near future in Europe: the “wildtype”
strain and the alpha variant. In many locations, a simultaneous decline of the wildtype virus
and increase of the alpha variant resulted in an initial reduction of total cases, followed by an
increase (see figure). When enough sequencing data was available and R0 was known for
both variants, this U-shaped pattern of cases over time could accurately be predicted. When
predictions are made further into the future, they need to account for the possibility that new,
currently unknown, variants will emerge (Cobey 2020, Day et al. 2020, Kissler et al. 2020).

7. Species distributions across space and environmental
conditions

Forecasting biodiversity responses to climate change are generally done through species
distribution models, which include niche, envelope and bioclimatic models (Waldvogel et al.
2020). These models have been used in so-called rewilding, i.e. conservation efforts that
include ecological restoration and reintroduction of predators and keystone species.
However, species distribution models usually do not include intraspecific variation, adaptive
plasticity and evolutionary potential (Jay et al. 2012, Fitzpatrick & Edelsparre 2018), and
therefore greatly underestimate species range dynamics. Alternative models that include
genomic data and evolutionary responses have been developed to predict the (potential)
range expansion of Aedes aegypti mosquitoes transmitting dengue virus (Kearney et al.
2009), to predict coral adaptation to future ocean warming (Bay et al. 2017) and to predict
future population declines of yellow warblers (Setophaga petechia) and to guide effective
mitigation efforts for these birds (Bay et al. 2018). With models that include genomic data
from a species, genomic variation can be related to environmental variables (Fitzpatrick &
Keller 2015). This information can then be used to predict how vulnerable populations are to
environmental change, such as climate change.
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8. Multi-scale evolutionary modelling

Predictions to test fundamental assumptions of evolving systems often require predictions
over very long timescales. These predictions are complicated by the fact that the local
mutational landscape changes with the accumulation of many new mutations, and the
genotype-phenotype map changes as evolutionary innovations occur. Studying long-term
evolution therefore requires models in which the genotype-phenotype map can evolve. An
evolvable genotype-phenotype map can be achieved by including more than one level of
organisation in a model and allowing for the evolution of traits at multiple spatiotemporal
scales, leading to multi-scale evolutionary models.

Examples of multi-scale models are: the coupling of large gene regulatory networks to
tissue-level patterning, which have been used for hindcasting the order of evolutionary
innovations in bilateral animals (Vroomans et al. 2016), and estimating the likelihood that
mutations increase morphological complexity (Hagolani et al. 2021); models of genome
evolution (Cuypers & Hogeweg 2012), which predict that genomically complex ancestors
primarily adapted through gene loss during major radiation events (Deutekom et al. 2019);
and agent based models with rudimentary genomes, which predict emergent selective forces
that can drive major evolutionary transitions (Colizzi et al. 2020). Multi-scale models can also
generate predictions for clinically relevant evolutionary problems, such as HIV evolution
(Doekes et al. 2017) or tumour progression (Szabó & Merks 2017).

A different scale on which selection can act, is at the level of the community (Doulcier et al.
2020, Chang et al. 2021). Predicting evolution at the level of communities is a newly
emerging field with possible applications in medicine, biotechnology and agriculture. A
promising application is for microbial communities that degrade hazardous compounds.

Multi-scale models are also used to study the predictability of evolution. This may either be
done directly, e.g., to determine under what conditions evolution is predictable (Meijer et al.
2020), and show that although evolutionary paths and detailed characteristics can be hard to
predict, in some cases population level traits are predictable (van Dijk et al. 2019). More
indirectly, they can predict properties of the evolutionary landscape that affect predictability
(see Section 2 of main text). E.g., common predictions of multi-scale models are that
ruggedness and smoothness coexist in high dimensional fitness landscapes (e.g. arising
from many-genes interactions), and the distribution of fitness effects is biased to high
neutrality and high lethality, but with few intermediately deleterious mutants (Hogeweg
2012).
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9. Machine learning

In cases where large amounts of data on repeated evolutionary trajectories in the past are
available, machine learning approaches are likely to become increasingly important for
predicting evolution. However, depending on the particular machine learning approach
taken, these methods may or may not increase our understanding of the underlying
evolutionary forces. An important limitation for using machine learning to make predictions is
that it requires data from a very similar situation because the predictions can usually not be
extended to novel situations beyond the data set used for training, in contrast to mechanistic
models. One interesting example of machine learning for evolutionary predictions is a study
on experimental evolution using the integration of numerous evolve and resequence
experiments with E. coli. The researchers developed a predictor of the genes that will be
modified in the course of adaptation, depending on the E. coli strain and the selection
pressure (Wang et al. 2018). The model could predict around one third of the mutational
targets in a new but similar evolve and resequence experiment.

Machine learning methods have also been used to predict the somatic evolution of cancer
(Caravagna et al. 2018, Gerhauser et al. 2018) and success of influenza virus variants
(Hayati et al. 2020). A particularly promising future direction is the ability for machine
learning methods to combine increasingly complex cancer genomic data with data on
transcriptome, epigenome and advanced imaging to guide precision medicine (Gerstung et
al. 2020).
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