Supplementary Information:

Simplified Purification of Glycoprotein-modified Ferritin Nanoparticles for Vaccine Development

Payton Weidenbacher^{#1,2}, Sriharshita Musunuri^{#,1,3}, Abigail E. Powel^{1,3}, Shaogeng Tang^{1,3}, Jonathan Do^{1,3}, Mrinmoy Sanyal^{1,3}, Peter S. Kim^{1,3,4,*}

[#] These authors contributed equally, Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA, ² Department of Chemistry, Stanford University, Stanford, CA 94305, USA, ³ Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA 94305, USA, ⁴ Chan Zuckerberg Biohub, San Francisco, CA 94158, USA, * Corresponding author (kimpeter@stanford.edu)

Supplemental Information

Supplemental Table 1		
Plasmid description	Plasmid name (HA –	Plasmid name (spike
	based on accession	– based on accession
	ID KF356052)	ID QJE39038)
His-1 –	HA-His-1-Fer	spike-His-1-Fer
GGSHHHHHHGGS was inserted into H.		
Pylori ferritin sequence between pos. 71 and		
72 (QLT–SIS). N-terminus of ferritin starts at		
position 5 (DIIKL) as previously		
described ¹ .		
His-2 –	HA-His-2-Fer	spike-His-2-Fer
As with His-1 except the insertion is between		
pos. 77 and 78 (APE–HKF).		
His-3 –	HA-His-3-Fer	spike-His-3-Fer
As with His-1 except the insertion is between		
pos. 78 and 79 (PEH–KFE).		
His-4 –	HA-His-4-Fer	spike-His-4-Fer
As with His-1 except the insertion is between	Also	Also
pos. 147 and 148 (GNE–NHG).	HA-His-4.6-Fer	spike-His-4.6-Fer
His-4.4 –	HA-His-4.4-Fer	HA-His-4.4-Fer
As with His-4 except the insertion is		
GGSHHHHGGS		
His-4.5 –	HA-His-4.5-Fer	spike-His-4.5-Fer
As with His-4 except the insertion is		
GGSHHHHHGGS		
His-4.7 –	HA-His-4.7-Fer	spike-His-4.7-Fer
As with His-4 except the insertion is		
GGSHHHHHHHGGS		
His-4.8 –	HA-His-4.8-Fer	spike-His-4.8-Fer
As with His-4 except the insertion is		
GGSHHHHHHHHGGS		

Supplementary Figure 1 – A conservation analysis of *H. pylori* ferritin generated using the ConSurf server with related counterparts identifies residues that are highly variable. Boxes indicate sites between which the polyhistidine insertions were made. Selections were made based on the surface exposure, flexibility, conservation, and computational modeling (Figure 1). Exposed (e), buried (b), predicted functional (f), predicted structurally important (s).

Supplementary Figure 2 – A dot blot demonstrating that an octahistidine insertion shows superior wash stability to a hexahistidine insertion for spike-His-Fer. Columns demonstrate the Load, flow through (FT), wash with 20mM, 40mM, 60mM, 80mM, 100mM, or elution with 250mM imidazole. Less protein dissociated from the column during the higher wash concentrations for the spike-His4.8-Fer (row 3) compared to spike-His4.6-Fer (row 2).

Supplementary Figure 3 – A dot blot demonstrating that Ni²⁺-coordinated resin facilitated optimal purification compared to other divalent cations. Columns demonstrate the Load, flow through (FT), wash (Wash), and eluate (Elu) from cube-bio resins containing either Co²⁺, Zn²⁺, Ni²⁺, or Cu²⁺. Purifications were conducted with either the WT-spike-Fer (showing no elution) or His-4.6 or His-4.8. Ni²⁺-coordinated resin facilitated maximal purification.

Supplementary Figure 4 – A dot blot demonstrating that ThermoFisher His-Pur resin was the optimal Ni²⁺-coordinated resin among competitors. Columns show purifications from Ni²⁺- coordinated resins from a range of vendors. Rows depict the Load, flow through (FT), wash with 20mM, 40mM, 60mM, 80mM imidazole, and elution (250nM). HA-His-4.8-Fer is shown in the left panel and spike-His4.8-Fer is shown in the right panel. Both nanoparticles were purified best using the ThermoFisher resin. Some resins could not accommodate nanoparticle purification.

Supplementary Figure 5 – ELISA binding against His-tagged sfGFP protein for serum from mice immunized with WT-HA-Fer (green) and HA-His-4.8-Fer (yellow) on day 28. Dotted line indicates the average signal from preimmunization serum from all animals (negative control). Incubation with mouse IgG1 anti-His Ab served as the positive control and resulted in an A450 signal of 2.6 (not shown). The binding results demonstrate that the two immune responses were similar, and that the HA-His-4.8-Ferritin protein does not elicit a significant anti-His-Tag response.

P.furiosus	GLSERMLKALNDQLNRELYSAYLYFAMAAYFEDLGLEGFANWMKAQAEEEIGHALRFY	58
A.fulgidus	MASISEKMVEALNRQINAEIYSAYLYLSMASYFDSIGLKGFSNWMRVQWQEELMHAMKMF	60
H.pylori	DIIKLLNEQVNKEMQSSNLYMSMSSWCYTHSLDGAGLFLFDHAAEEYEHAKKLI	54
E.coli	MLKPEMIEKLNEQMNLELYSSLLYQQMSAWCSYHTFEGAAAFLRRHAQEEMTHMQRLF	58
	::: ** *:* *: ** *::: :.* . :: : ** * ::	
	His-1 His-2 His-3	
P.furiosus	NYIYDKNGRVELDEIPKPPKEWESPLKAFEAAYEHEKFISKSIYELAALAEEEKDYSTRA	118
A.fulgidus	DFVSERGGRVKLYAVEEPPSEWDSPLAAFEHVYEHEVNVTKRIHELVEMAMQEKDFATYN	120
H.pylori	IFLNENNVPVQLTSISAPEHKFEGLTQIFQKAYEHEQHISESINNIVDHAIKSKDHATFN	114
E.coli	DYLTDTGNLPRINTVESPFAEYSSLDELFQETYKHEQLITQKINELAHAAMTNQDYPTFN	118
	···· · · · · · · · · · · · · · · · · ·	
P.furiosus	FLEWFINEQVEEEASVKKILDKLKFAKDSPQILFMLDKELSARAPKLPGLLMQGGE	174
A.fulgidus	FLQWYVAEQVEEEASALDIVEKLRLIGEDAAALLFLDKELSLRQFTPPAEEEK	173
H.pylori	FLQWYVAEQHEEEVLFKDILDKIELIGNENHGLYLADQYVKGIAKSRKS	163
E.coli	FLQWYVSEQHEEEKLFKSIIDKLSLAGKSGEGLYFIDKELSTLDTQN	165
	:*:: ** * .*::*: : * : *: :.	

His-4

Supplementary Figure 6 – Sequence alignment of ferritin from other bacteria identifies His.4 as a homologous potential insertion site in other ferritins. (Top) A sequence alignment produced using Clustal Omega² for ferritin from P. furiosus, A. fulgidus, E. Coli. and H. pylori. H. pylori starts at position 5, the position of the glycoprotein fusion. (Bottom) The ferritin monomers for each of the bacterial ferritins was modeled using using RosettaRemodel (PDB ID: P. furiosus – 2JD6, A. fulgidus – 3KX9, E. Coli – 1EUM). Polyhistidine insertions of length 6 (6xHis) were made at each of the sequence-derived loop sites including the three flanking residues on either side to facilitate a mobile backbone. Ten structures were generated for each site, the mutated monomers were then multimerized and relaxed in Rosetta. Modeling demonstrates site His-4 has high homology between bacterial ferritins and may work for installation into other bacterial ferritins.

Sequences

spike-Ferritin protein

MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTW FHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKV CEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREF VFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGW TAGAAAYYVGYLOPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVOP TESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKL NDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYN YLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVL SFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVR DPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSN VFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPGSASSVASQSIIAYTMSLGAENSVA YSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAV EQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQY GDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQM AYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQL SSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSEC VLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGV FVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSGGDIIKLLNEQV NKEMQSSNLYMSMSSWCYTHSLDGAGLFLFDHAAEEYEHAKKLIIFLNENNVPVQLTSISAPEH KFEGLTQIFQKAYEHEQHISESINNIVDHAIKSKDHATFNFLQWYVAEQHEEEVLFKDILDKIELIG **NENHGLYLADQYVKGIAKSRKS**

HA-Ferritin protein

MYRMQLLSCIALSLALVTNSDTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLEDSHNGKLCLLK GIAPLQLGNCSVAGWILGNPECELLISKESWSYIVETPNPENGTCFPGYFADYEELREQLSSVS SFERFEIFPKESSWPNHTVTGVSASCSHNGKSSFYRNLLWLTGKNGLYPNLSKSYVNNKEKEV LVLWGVHHPPNIGNQRALYHTENAYVSVVSSHYSRRFTPEIAKRPKVRDQEGRINYYWTLLEP GDTIIFEANGNLIAPWYAFALSRGFGSGIITSNAPMDECDAKCQTPQGAINSSLPFQNVHPVTIG ECPKYVRSAKLRMVTGLRNIPQRETGGLFGAIAGFIEGGWTGMVDGWYGYHHQNEQGSGYA ADQKSTQNAINGITNKVNSVIEKMNTQFTAVGKEFNKLERRMENLNKKVDDGFLDIWTYNAELL VLLENERTLDFHDSNVKNLYEKVKSQLKNNAKEIGNGCFEFYHKCNNECMESVKNGTYDYPKY SEESKLNREKIDGSSGGDIIKLLNEQVNKEMQSSNLYMSMSSWCYTHSLDGAGLFLFDHAAEE YEHAKKLIIFLNENNVPVQLTSISAPEHKFEGLTQIFQKAYEHEQHISESINNIVDHAIKSKDHATF NFLQWYVAEQHEEEVLFKDILDKIELIGNENHGLYLADQYVKGIAKSRKS

Site 1 His-Ferritin

DIIKLLNEQVNKEMQSSNLYMSMSSWCYTHSLDGAGLFLFDHAAEEYEHAKKLIIFLNENNVPV QLT**GGSHHHHHHGGS**SISAPEHKFEGLTQIFQKAYEHEQHISESINNIVDHAIKSKDHATFNFLQ WYVAEQHEEEVLFKDILDKIELIGNENHGLYLADQYVKGIAKSRKS

Site 2 His-Ferritin

DIIKLLNEQVNKEMQSSNLYMSMSSWCYTHSLDGAGLFLFDHAAEEYEHAKKLIIFLNENNVPV QLTSISAPE**GGSHHHHHHGGS**HKFEGLTQIFQKAYEHEQHISESINNIVDHAIKSKDHATFNFLQ WYVAEQHEEEVLFKDILDKIELIGNENHGLYLADQYVKGIAKSRKS

Site 3 His-Ferritin

DIIKLLNEQVNKEMQSSNLYMSMSSWCYTHSLDGAGLFLFDHAAEEYEHAKKLIIFLNENNVPV QLTSISAPEH**GGSHHHHHHGGS**KFEGLTQIFQKAYEHEQHISESINNIVDHAIKSKDHATFNFLQ WYVAEQHEEEVLFKDILDKIELIGNENHGLYLADQYVKGIAKSRKS

Site 4 His-Ferritin

DIIKLLNEQVNKEMQSSNLYMSMSSWCYTHSLDGAGLFLFDHAAEEYEHAKKLIIFLNENNVPV QLTSISAPEHKFEGLTQIFQKAYEHEQHISESINNIVDHAIKSKDHATFNFLQWYVAEQHEEEVLF KDILDKIELIGNE**GGSHHHHHHGGS**NHGLYLADQYVKGIAKSRKS

References

- Powell, A. E. *et al.* A single immunization with spike-functionalized ferritin vaccines elicits neutralizing antibody responses against SARS-CoV-2 in mice. *ACS Cent. Sci.* 7, 183– 199 (2021).
- 2. Sievers, F. *et al.* Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Mol. Syst. Biol.* **7**, 539 (2011).