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Investigating structural preferences of mRNA degradation via model interpretation4

To elucidate structural preferences of mRNA degradation, we analyze attention weights of our best single model (k = 6)5

and its attention weights right before outputting predictions. While it’s not surprising to see that stem loops have low6

reactivity and our model predictions have low mean absolute error on stem loops, taking the column-wise sum of attention7

weights across different loop types, we see strikingly that a disproportionate amount of attention paid to dangling ends8

(Table S1). Inspecting some examples of attention weights of the last transformer layer, we see that the model pays9

lots of attention to the beginning of sequences, which are typically dangling ends (Figure S1). This can perhaps be10

explained by dangling ends in the beginning loosely intra-molecularly interacting with the nucleotides in the rest of the11

entire sequence, which is probably very difficult to capture; therefore, the model dedicates a disproportionate amount of12

attention to understanding these interactions. Comparing the Pearson R correlation coefficients of our model predictions13

of loop types, we see that our model shows the best correlation with dangling ends, while excluding the first 5 positions14

when doing the same analysis shows decreased correlation on dangling ends reactivity (Table S1). These results indicate15

that indeed the model is correctly learning the complex interactions of dangling ends in the beginning that contribute16

quite a bit to the degradation/stability of mRNA [1, 2].17

Selection of hyperparameters and robustness against different hyperparameters18

During the competition, we first selected an initial set of hyperparameters based on experience and then experimented19

with batch size, epochs trained, etc. We experimented with one hyperparameter at a time (e.g. for batch size we tried20

8,16,32), and kept using the best one while testing the rest. Compared to grid search, which would involve many more21

sets of hyperparameters to test, our approach is much more efficient, especially during the competition, where time22

was very limited. For instance, if we want to test 3 different hyperparameters, each with 3 values, our approach would23

be to test one a time 3 times for a total of 9 sets of hyperparameters (3+3+3), whereas grid search would mean a24

total of 27 (3x3x3). Because the competition had an independent private test set that is bigger and more diverse, our25

relatively less aggressive approach also resulted in less overfitting to the validation and public test set, as evidenced by26

our improved placing in private test compared to public. Following the competition, we only made small adjustments to27

hyperparameters. By far, we have found k to have the biggest impact on performance, since larger k-mer convolutions28

can enable the model to learn more high level interactions but also run the risk of overfitting (Figure S3). In practice,29

we found ensembling different ks by simply averaging predictions from models with differernt ks to provide a good boost30

to performance. In addition, we tested the (unsupervised+supervised) RNAdegformer’s robustness against different31

hyperparameters by rerunning training of RNADegformer while changing hyperparameters one at a time and see that32

RNAdegformer is relatively robust against different hyperparameters. Batch sizes of 8, 16, and 32 all provide similar33

performance (Figure S3). Further, we varied the number of epochs trained during supervised learning and found that34

RNAdegformer’s performance remains good across different numbers of epochs trained (Figure S4). As for α and β, we35

found that RNAdegformer can perform well under different degree of error weighting but using α = 0.5 and β = 5 gives36

slightly better results in both public and private test set (Figure S5). Similarly, RNAdegformer is robust against different37

weight decay values but 0.1 seems to be the optimal value by a small margin (Figure S6).38
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loop type avg reactivity avg attention weight loop avg ubpp reactivity mae bpp pearsonr react pearsonr
bulge 0.8979±0.5929 0.7873±0.1291 0.8791±0.1617 0.2988 0.2944 0.7676

dangling End 0.6133±0.4434 2.6260±5.2492 0.7303±0.2732 0.2099 0.5490 0.7945
Hairpin 0.7919±0.5936 0.7842±0.1283 0.8477±0.2043 0.2733 0.3092 0.7529
Internal 0.5288±0.4401 0.7859±0.1401 0.8090±0.2280 0.2217 0.2002 0.7016
Multi 0.6075±0.4144 0.7925±0.1325 0.7830±0.2296 0.2215 0.3775 0.7201
Stem 0.1330±0.2073 0.7945±0.3489 0.1073±0.1236 0.0782 0.5427 0.7012

eXternal 0.5264±0.3657 0.8057±0.1412 0.7204±0.2623 0.1830 0.4799 0.7790

Table S1: Analysis of attention weights against different loop types. The columns correspond to avg reactivity: average
SHAPE reactivity for the paricular loop type, avg attention: average attention(column) sum for the paricular loop type,
loop avg ubpp: average unpaired probability for the paricular loop type, NT mae: mean absolute error of RNAdegformer
predictions for the particular loop type, upp pearsonr: Pearson R correlation of unpaired probability with SHAPE
reactivity, NT pearsonr: Pearson R correlation of RNAdegformer predictions with SHAPE reactivity

loop type avg reactivity avg attention weight loop avg ubpp reactivity mae bpp pearsonr react pearsonr
bulge 0.8975±0.5932 0.7867±0.1272 0.8792±0.1618 0.2987 0.2950 0.7677

dangling End 0.4734±0.3856 0.7791±0.1358 0.6326±0.2773 0.1718 0.4861 0.7749
Hairpin 0.7918±0.5937 0.7842±0.1283 0.8476±0.2044 0.2734 0.3092 0.7530
Internal 0.5286±0.4403 0.7847±0.1298 0.8087±0.2281 0.2218 0.1999 0.7016
Multi 0.6075±0.4144 0.7925±0.1325 0.7830±0.2296 0.2215 0.3775 0.7201
Stem 0.1327±0.2070 0.7883±0.1313 0.1069±0.1231 0.0779 0.5417 0.7019

eXternal 0.5264±0.3657 0.8057±0.1412 0.7204±0.2623 0.1830 0.4799 0.7790

Table S2: Analysis of attention weights against different loop types, while excluding the first 5 positions

2



Figure S1: Examples of the transformer scanning the whole sequnece in the first few positions which are dangling ends.
The transformer dedicates much of its attention to the beginning of the sequence which then interacts with the entire
sequence. In the first example, transposing and visualizing the first 5 columns, we notice that the network paying attention
to positions of high degradation in the beginning, while scanning the rest of the sequence. Note that only ground truth
values for first 91 positions are available.
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Figure S2: RNAdegformer’s performance with different ks.
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Figure S3: Robustness of RNAdegformer against batch size used.
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Figure S4: Robustness of RNAdegformer against number of epochs trained.
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α=1, β=1 α=0.5, β=5 α=0.5, β=10
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Figure S5: Robustness of RNAdegformer against different α and β values.
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Figure S6: Robustness of RNAdegformer against different weight decay values.
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