
Supplementary Methods

Simulation of counts

We first introduce how the true cell types were determined in our simulation. For Datasets 1-
3, cell type labels were not available in the original publications, so we applied the consensus
clustering method SC3 [1] to obtain cell type labels. SC3 uses a consensus approach to obtain
robust clustering assignments, and it has been shown to have favorable results in two independent
benchmarking studies [2, 3]. For Datasets 4 and 7, previously annotated cell type labels were
directly used [4, 5]. For Dataset 5 [6], we selected the most abundant cell sub-type in each major
cell type reported in the original publication. For Dataset 6 [7], we selected the eight most abundant
cell types reported in the original publication.

Then, for each dataset, we assigned cell type labels to the individual cells (or spots) using a
custom RShiny application. In this assignment process, we took the real H&E-stained images and
spatial patterns of cell type labels in real data as references. For example, Supplementary Figure
S1 provides an illustration of the R shiny app program used to assign true cell type labels based on
spatial coordinates in Dataset 1. For each cell type label, we can use the application to manually
select spots that belong to this cell type. Cells that have been assigned labels will be shown in the
corresponding color while cells not assigned will remain in gray. We repeat this process for every
cell type until all the spots have been assigned.

For each cell type, we then used scDesign2 to learn gene expression parameters from cor-
responding real data and to generate simulated read counts for the number of synthetic cells (or
spots) determined through the RShiny application. The counts used for the five technical repli-
cates of Datasets 2, 5, 6, and 7 in the robustness to sequencing depth section were generated by
changing the random seed used for scDesign2.

Simulation of H&E images

For each real dataset, the color range was defined by selecting a real H&E-stained image and
choosing one pixel from the darkest region with red, green, and blue values denoted as rd, gd, and
bd and one pixel from the lightest region with values rl, gl, and bl. Ratios of red to green (R/G:
rd/gd, rl/gl) and red to blue (R/B: rd/bd, rl/bl) were then calculated for both pixels and used to
build two uniform distributions of the R/G and R/B ratios. For every cell (or spot) in the simulated
dataset, its corresponding R/G and R/B ratios in the simulated H&E-stained image were randomly
sampled from these uniform distributions. In addition, a normal distribution (truncated at rd and
rl) was used to generate the red channel values. Given a total of K true cell types, for cells
(spots) in cell type k, the mean of the untruncated normal distribution is set to µ+ λk|rl−rd|

C , where
µ = rl+rd

2 and (λ1, λ2, . . . , λK) is a random permutation of (0,1,. . . ,K-1). The standard deviation
of the untruncated distribution is set to 0.5. Simulated red channel values were then divided by
previously sampled R/G and R/B ratios to produce the resulting green and blue channel values.
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The simulated RGB values were plotted with cell/spot coordinates to produce final images for
simulated data.

Generating H&E-Stained images with different variability

To generate H&E-Stained images with different levels of variation, we followed the simulation pro-
cedure described above but changed the standard deviation of the normal distributions. With a
larger standard deviation, the generated RGB values for pixels across cell types become more
similar, and the histology image has less useful information for the clustering of cell types. For
every dataset, five values of the standard deviation were considered: 0.5, 10, 20, 50, and 100.
In the clustering analysis, the spatial locations and gene expression levels were kept the same
regardless of the histology images being used.

Evaluating methods with different cluster numbers as the input

Some clustering methods require or optionally allow a parameter input to specify the number of
clusters. In order to better evaluate the clustering performance of each method in the context of
unknown true cell type numbers, we tested each method in our analysis with varying parameter
values. For each method that uses a parameter indicating the initial cluster number, we applied
the method with five values of the parameter: k − 2, k − 1, k, k + 1, k + 2, where k is the true cell
type number.

Software implementation details

All software parameters are assumed to be the default that is provided by the package of the
specified version, and all pre-processing steps provided by the official repositories or vignettes of
these packages are used unless otherwise specified. Any deviations to the default pipeline for any
of the clustering methods are explained in this section. The seed 2020 was used for all random
seed parameters among all methods.

BayesSpace version 1.00 was used, and functions qTune and qPlot were skipped as they
required manual tuning. The q parameter of the spatialCluster function was set to the true cell
type number.

DR.SC version 2.9 was used, and the DR.SC function with maxIter set to 20, the K parameter
was set to the true cell type number, and the platform specified as ST was used for all DRSC-based
clustering.

Giotto version 1.0.3 was used for all Giotto-based methods. min_det_genes_per_cell was
set to 1 when creating the Giotto object. The k parameter of doKmeans and center parameter
of doHclust were set to the true cell type number input for Giotto-KM and Giotto-H, respectively.
The top 1500 (or number of genes returned by binSpect if it is greater than 1500) genes and
the target ranges recommended by https://qzhudfci.bitbucket.io/spatialgiotto/giotto_
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spatial_pattern_mining.html for the beta parameter were used for Giotto-HM. The maximum
ARI across all beta parameters used by doHMRF was reported as the final ARI for Giotto-HM in the
results section.

Seurat version 4.0.5 was used for Seurat-LV, Seurat-LVM, and Seurat-SLM. All Seurat-based
clustering was performed using the FindClusters method with the resolution set as 0.5.

SpaCell version 1.0.1 was used. The image_normalization.py file was used for preprocess-
ing and tiling of the simulated histology images, and the spacell_clustering.py file was used
for clustering with the k parameter set to the true cell type number and the -l parameter set to
mean_squared_error. The default pre-trained convolutional network was used. Additionally, for
cases where the true cell type number exceeds 10, the default number of unique color_map val-
ues in the config.py file is not sufficient and causes a runtime error. For these cases, we add
additional unique hex colors to these color_map values.

SpaGCN version 1.2.0 was used, and the n_clusters of the detect_spatial_domains_ez_mode

function was set to the cluster number input for SpaGCN+ and SpaGCN. For SpaGCN, only
the spatial coordinates were provided as input to the calculate_adj_matrix function, and the
histology parameter was set to false.

stLearn version 0.3.2 was used. The min_cells parameter for filter_genes was set to 3. 50
(or number of genes if it’s smaller than 50) components were used for the run_pca function, and
the parameter values for add.image were: library_id=”Old ST”, quality = ”hires”, scale=1.0,
and spot_diameter_fullres=50.
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Supplementary Figures
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Figure S1: An illustration of the Rshiny app program used to assign true cell type labels based on spatial coordinates
in Dataset 1.
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Figure S2: Comparison between simulated and real gene expression data for Datasets 1-4 (A-D). The count mean
of a gene was calculated as log-transformed average counts. The count variance of a gene was calculated as log-
transformed variance. The gene (cell) zero proportion was calculated as the proportion of zero counts across cells
(genes).
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Figure S3: Comparison between simulated and real gene expression data for Datasets 5-7 (A-C). The count mean
of a gene was calculated as log-transformed average counts. The count variance of a gene was calculated as log-
transformed variance. The gene (cell) zero proportion was calculated as the proportion of zero counts across cells
(genes).
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Figure S4: Cell-cell correlations in Dataset 1. Correlations are calculated based on the scaled gene expression levels
of top 2000 highly variables identified by Seurat. For cell types with more than 100 cells, we randomly selected 100
cells to reduce the size of the heatmap.
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Figure S5: Cell-cell correlations in Dataset 2. Correlations are calculated based on the scaled gene expression levels
of top 2000 highly variables identified by Seurat. For cell types with more than 100 cells, we randomly selected 100
cells to reduce the size of the heatmap.
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Figure S6: Cell-cell correlations in Dataset 3. Correlations are calculated based on the scaled gene expression levels
of top 2000 highly variables identified by Seurat. For cell types with more than 100 cells, we randomly selected 100
cells to reduce the size of the heatmap.

9



Figure S7: Cell-cell correlations in Dataset 4. Correlations are calculated based on the scaled gene expression levels
of top 2000 highly variables identified by Seurat. For cell types with more than 100 cells, we randomly selected 100
cells to reduce the size of the heatmap.
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Figure S8: Cell-cell correlations in Dataset 5. Correlations are calculated based on the scaled gene expression levels
of top 2000 highly variables identified by Seurat. For cell types with more than 100 cells, we randomly selected 100
cells to reduce the size of the heatmap.
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Figure S9: Cell-cell correlations in Dataset 6. Correlations are calculated based on the scaled gene expression levels
of top 2000 highly variables identified by Seurat. For cell types with more than 100 cells, we randomly selected 100
cells to reduce the size of the heatmap.
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Figure S10: Cell-cell correlations in Dataset 7. Correlations are calculated based on the scaled gene expression levels
of top 2000 highly variables identified by Seurat. For cell types with more than 100 cells, we randomly selected 100
cells to reduce the size of the heatmap.
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Figure S11: Concordance between different methods on Dataset 1. Concordance was measured by the ARI score
between two sets of inferred cluster labels.
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Figure S12: Concordance between different methods on Dataset 2. Concordance was measured by the ARI score
between two sets of inferred cluster labels.
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Figure S13: Concordance between different methods on Dataset 3. Concordance was measured by the ARI score
between two sets of inferred cluster labels.
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Figure S14: Concordance between different methods on Dataset 4. Concordance was measured by the ARI score
between two sets of inferred cluster labels.
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Figure S15: Concordance between different methods on Dataset 5. Concordance was measured by the ARI score
between two sets of inferred cluster labels.

18



Figure S16: Concordance between different methods on Dataset 6. Concordance was measured by the ARI score
between two sets of inferred cluster labels.
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Figure S17: Concordance between different methods on Dataset 7. Concordance was measured by the ARI score
between two sets of inferred cluster labels.
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Figure S18: Log10 sequencing depths of the first replicate in each dataset.
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Figure S19: Comparison of sequencing depths after downsampling.
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Figure S20: Simulated histology images with increasing standard deviations of pixel colors, ranging from 0.5 to 50.
(A-G): Simulated images corresponding to Datasets 1-7, respectively.
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Figure S21: Comparison of clustering accuracy based on five real spatial transcriptomics datasets. (A-E): Adjusted
Rand index (ARI) scores for real datasets 1-5.
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Figure S22: Ranking of methods based on ARI scores across the five real spatial transcriptomics datasets. Entries
marked by NA indicate that the method encountered an error. Methods that require histology images as the input are
not applicable to datasets 3-5 since no images are available, and the corresponding entries are marked by “-”.
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Supplementary Table

Table S1: Summary of the real data characteristics.

Dataset Technology # of cells # of genes # of true cell types

Real dataset 1 Spatial Transcriptomics 265 16573 5

Real dataset 2 10X Genomics Visium 3611 33538 7

Real dataset 3 osmFISH 4839 33 12

Real dataset 4 MERFISH 5488 160 9

Real dataset 5 Stereo-seq 10000 26145 10
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