Supporting Information

Title: Para-Selective, Iridium–Catalyzed C–H Borylations of Sulfated Phenols, Benzyl Alcohols, and Anilines Directed by Ion-Pair Electrostatic Interactions

Jose R. Montero Bastidas, Thomas J. Oleskey, Susanne L. Miller, Milton R. Smith, III,* and Robert E. Maleczka, Jr.*

Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824-1322 USA

Table of Contents	
Table of Contents	1
General Information	4
Table S1: Integration of known ratios of para-2a to meta-2a	6
Optimization of Conditions: Solvent Effect	6
Optimization of Conditions: Ligand-Counterion Effect	6
Optimization of Conditions: Benzyl sulfate alcohols	7
Synthesis of tetrabutylammonium 2-chlorophenyl sulfate (1a')	7
Synthesis of tetrapropylammonium 2-chlorophenyl sulfate (1a)	8
Synthesis of tetraethylammonium 2-chlorophenyl sulfate (1a'')	9
Synthesis of tetrapropylammonium 2-bromophenyl sulfate (1b)	10
Synthesis of tetrapropylammonium 2-methylphenyl sulfate (1c)	10
Synthesis of tetrapropylammonium 3-fluorophenyl sulfate (1d)	11
Synthesis of tetrapropylammonium 2-fluorophenyl sulfate (1e)	12
Synthesis of tetrapropylammonium 2,3-difluorophenyl sulfate (1f)	13
Synthesis of tetrapropylammonium 2-iodophenyl sulfate (1g)	13
Synthesis of tetrapropylammonium 2-isopropylphenyl sulfate (1h)	14
Synthesis of tetrapropylammonium 2-cyanophenyl sulfate (1i)	15
Synthesis of tetrapropylammonium 2-(trifluoromethyl)phenyl sulfate (1j)	16
Synthesis of tetrapropylammonium 2-(trifluoromethoxy)phenyl sulfate (1k)	16
Synthesis of tetrapropylammonium 2-bromo-6-fluorophenyl sulfate (11)	17
Synthesis of tetrapropylammonium 2-methoxyphenyl sulfate (1m)	18
Synthesis of tetrapropylammonium 3-cyanophenyl sulfate (1n)	19
Synthesis of tetrapropylammonium 3-methoxyphenyl sulfate (10)	19
Synthesis of tetrapropylammonium 3-chlorophenyl sulfate (1p)	20
Synthesis of tetrapropylammonium 1-phenyl sulfate (1q)	21

Para borylation of tetrapropyl ammonium 2-chlorophenyl sulfate (2a)	22
Para borylation of tetrapropyl ammonium 2-bromophenyl sulfate (2b)	23
Para borylation of tetrapropyl ammonium 2-methylphenyl sulfate (2c)	23
Para borylation of tetrapropyl ammonium 3-fluorophenyl sulfate (2d)	24
Para borylation of tetrapropyl ammonium 2-fluorophenyl sulfate (2e)	25
Para borylation of tetrapropyl ammonium 2,3-difluorophenyl sulfate (2f)	26
Para borylation of tetrapropyl ammonium 2-iodophenyl sulfate (2g)	27
Para borylation of tetrapropyl ammonium 2-isopropylphenyl sulfate (2h)	28
Para borylation of tetrapropylammonium 2-cyanophenyl sulfate (2i)	29
Para borylation of tetrapropyl ammonium 2-trifluoromethylphenyl sulfate (2j)	30
Para borylation of tetrapropyl ammonium 2-trifluoromethoxyphenyl sulfate (2k)	31
Para borylation of tetrapropylammonium 2-bromo-6-fluorophenyl sulfate (2l)	32
Para borylation of tetrapropylammonium 2-methoxyphenyl sulfate (2m)	32
Para borylation of tetrapropylammonium 3-cyanophenyl sulfate (2n)	33
Para borylation of tetrapropylammonium 3-methoxyphenyl sulfate (20)	34
Para borylation of tetrapropyl ammonium 3-chlorophenyl sulfate (2p)	34
Para borylation of tetrapropylammonium phenyl sulfate (2q)	35
Synthesis of tetrapropylammonium 2-chlorophenyl sulfamate (3a)	36
Synthesis of tetrabutylammonium 2-chlorophenyl sulfamate (3a')	37
Synthesis of tetrabutylammonium 2-bromophenyl sulfamate (3b')	38
Synthesis of tetrabutylammonium 3-fluorophenyl sulfamate (3c')	38
Synthesis of tetrabutylammonium 2-methoxyphenyl sulfamate (3d')	39
Synthesis of tetrapropylammonium 2-fluorophenyl sulfamate (3e)	40
Para borylation of tetrapropylammonium 2-chlorophenyl sulfamate (4a)	41
Para borylation of tetrabutylammonium 2-chlorophenyl sulfamate (4a')	42
Para borylation of tetrabutylammonium 2-bromophenyl sulfamate (4b')	43

Para borylation of tetrabutylammonium 3-fluorophenyl sulfamate (4c')	44
Borylation of tetrabutylammonium 3-fluorophenyl sulfamate - Acylation work-up (4c')	45
Para borylation of tetrabutylammonium 2-methoxyphenyl sulfamate (4d')	46
Para borylation of tetrapropylammonium 2-fluorophenyl sulfamate (4e)	47
Synthesis of tetrapropylammonium 2-chlorobenzyl sulfate (5a)	48
Synthesis of tetrabutylammonium 2-chlorobenzyl sulfate (5a')	49
Synthesis of tetrapropylammonium 2-bromobenzyl sulfate (5b)	49
Synthesis of tetrabutylammonium 2-bromobenzyl sulfate (5b')	50
Synthesis of tetrapropylammonium 2-trifluoromethylbenzyl sulfate (5c)	51
Synthesis of tetrabutylammonium 2-trifluoromethylbenzyl sulfate (5c')	52
Synthesis of tetrapropylammonium 2-methylbenzyl sulfate (5d)	53
Synthesis of tetrapropylammonium 2-(trifluoromethoxy)benzyl sulfate (5e)	53
Synthesis of tetrapropylammonium 1-(2-bromophenyl)ethyl sulfate (5f)	54
Synthesis of tetrapropylammonium 2-fluorobenzyl sulfate (5g)	55
Synthesis of tetrapropylammonium 3-fluorobenzyl sulfate (5h)	56
Para borylation of tetrapropyl ammonium 2-chlorobenzyl sulfate (6a)	57
Para borylation of tetrabutyl ammonium 2-chlorobenzyl sulfate (6a')	57
Para borylation of tetrapropyl ammonium 2-bromobenzyl sulfate (6b)	58
Para borylation of tetrabutyl ammonium 2-bromobenzyl sulfate (6b')	59
Para borylation of tetrapropyl ammonium 2-trifluoromethylbenzyl sulfate (6c)	59
Para borylation of tetrabutyl ammonium 2-trifluoromethylbenzyl sulfate (6c')	60
Para borylation of tetrapropyl ammonium 2-methylbenzyl sulfate (6d)	60
Para borylation of tetrapropyl ammonium 2-trifluoromethoxybenzyl sulfate (6e)	61
Para borylation of tetrapropyl ammonium 1-(2-bromophenyl)ethyl sulfate (6f)	62
Para borylation of tetrapropyl ammonium 2-fluorobenzyl sulfate (6g)	63
Para borylation of tetrapropyl ammonium 3-fluorobenzyl sulfate (6h)	64

References

Link to NMR spectra

General Information

All commercially available chemicals were used as received unless otherwise indicated. Bis(pinacolato)diboron (B₂pin₂) was generously supplied by BoroPharm, Inc. Bis(η^4 -1,5-cyclooctadiene)-di- μ -methoxy-diiridium(I) [Ir(cod)(OMe)]₂ was made by a literature procedure¹ or purchased from Sigma-Aldrich. Dioxane was refluxed over sodium/benzophenone ketyl, distilled and degassed.

Column chromatography was performed on 240 - 400 mesh Silica P-Flash silica gel. Thin layer chromatography was performed on 0.25 mm thick aluminum–backed silica gel plates and visualized with ultraviolet light ($\lambda = 254$ nm) and alizarin stain to visualize boronic esters according to a literature procedure.²

¹H, ¹³C, ¹¹B and ¹⁹F NMR spectra were recorded on a Varian 500 MHz DD2 Spectrometer equipped with a 1H-19F/15N-31P 5 mm Pulsed Field Gradient (PFG) Probe, or an Innova 300 MHz spectrometer equipped with a QUAD (¹H/¹⁹F and ¹¹B) PFG probe. Spectra were taken in CDCl₃ referenced to 7.26 ppm in ¹H NMR and 77.0 ppm in ¹³C NMR. Resonances for the boron-bearing carbon atom were not observed due to quadrupolar relaxation. All coupling constants are apparent *J* values measured at the indicated field strengths in Hertz (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, ddd = doublet of doublets, bs = broad singlet). NMR spectra were processed for display using the MNova software program with only phasing and baseline corrections applied.

High-resolution mass spectra (HRMS) were obtained at the Michigan State University Mass Spectrometry Service Center using electrospray ionization (ESI+ or ESI-) on quadrupole time-of-flight (Q-TOF) instruments. Melting points were measured in a capillary melting point apparatus and are uncorrected.

Determining Product Ratios by NMR Integration: Product ratios were determined by integration of ¹H or ¹⁹F NMR spectra. To verify the accuracy of the ¹H NMR integration, stock solutions of commercial samples of 3-chloro-4-hydroxyphenylBpin (meta borylated **2a**) and

4-chloro-3-hydroxyphenylBpin (para borylated 2a) were accurately mixed in known amounts with Hamilton gas-tight micro syringes. The ratio determined by integration was compared to the known ratio. All ¹H NMR spectra were taken at 500 MHz with 32 scans and a delay of 10 seconds. All spectra were processed in MNova software with application of an auto-phase correction and a Bernstein polynomial fit baseline correction, followed by manual peak integration.

Two 0.196 M stock solutions of 3-chloro-4-hydroxyphenylBpin (meta borylated 2a) and 4-chloro-3-hydroxyphenylBpin (para borylated 2a) were prepared as follows: A mass of 50.0 mg of commercial 3-chloro-4-hydroxyphenylBpin (meta-2a) was dissolved in CDCl₃ in a 1.0 mL volumetric flask and CDCl₃ was added up to the mark. A mass of 100.0 mg of commercial 4-chloro-3-hydroxyphenylBpin (para-2a) was dissolved in CDCl₃ in a 2.0 mL volumetric flask and CDCl₃ was added up to the mark.

A volume of 6 µL of meta-**2a** stock solution was diluted with CDCl₃ to 1.0 mL in a 1.0 mL volumetric flask, resulting in a 1.18 x 10⁻³ M solution. A volume of 600 µL of this solution was transferred into an NMR tube, making 7.0 x 10⁻⁷ mols of the meta-**2a** compound present in the sample. A ¹H NMR spectrum was taken. Meta-**2a** was clearly observed and all peaks integrated properly, with the data as follows: ¹H NMR (500 MHz, CDCl₃ δ 7.43 (d, *J* = 1.2 Hz, 1H), 7.34 – 7.27 (m, 2H), 5.47 (s, 1H), 1.33 (s, 12H). The ¹H data for the commercial sample of para-**2a** was as follows: ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, *J* = 1.5 Hz, 1H), 7.62 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.01 (d, *J* = 8.1 Hz, 1H), 5.75 (s, 1H), 1.33 (s, 12H).

A sequence of additions of 50 microliters of para-2a stock solution was added directly into the NMR tube and NMR spectra were taken after each addition. For each 50 microliters of stock solution added, 9.8 x 10^{-6} mols of para compound was introduced into the NMR tube. This was repeated 4 times for a total of 3.92×10^{-5} mols para-2a compound to 7.0 x 10^{-7} mols of meta-2a compound, a 56-fold excess of para-2a compound. The integration of the peak at 7.43 ppm of the meta-2a compound was compared to the integration of the peak at 7.77 ppm of the para-2a compound for all determinations of para:meta ratio. The results are shown in Table S1. All NMR spectra are shown in the NMR data section.

entry	mols para-2a	mols meta- 2a	calculated	integrated
			para:meta ratio	para:meta ratio
1	0	7.0 x 10 ⁻⁷		
2	9.8 x 10 ⁻⁶	7.0 x 10 ⁻⁷	14:1	14.10:1.00
3	1.96 x 10 ⁻⁵	7.0 x 10 ⁻⁷	28:1	27.26:1.00
4	2.94 x 10 ⁻⁵	7.0 x 10 ⁻⁷	42:1	44.19:1.00
5	3.92 x 10 ⁻⁵	7.0 x 10 ⁻⁷	56:1	54.68:1.00

Tabl	e S1:	Integration	of known	ratios of	para-2a to	meta-2a

Optimization of Conditions: Solvent Effect

Entry	Solvent	Conversion	para:meta
1	hexane	91	5.5:1
2	cyclohexane	100	4.8:1
3	THF	100	5.6:1
4	dioxane	100	5.9:1

Optimization of Conditions: Ligand-Counterion Effect

Optimization of Conditions: Benzyl sulfate alcohols

$Cl \xrightarrow{0}_{NR'_4} (l.22 M), \xrightarrow{1.5 \text{ equiv } B_2 \text{ pin}_2}{NR'_4} \xrightarrow{1.5 \text{ mol}\% [Ir(cod)OMe]_2} Cl \xrightarrow{0}_{NR'_4} Cl \xrightarrow{0}_{NR'_4} Cl \xrightarrow{0}_{NR'_4} Bpin$					
Entry	NR_4	Ligand	Conversion	para:meta ratio	
1		R=t-Bu (L1)	100	8:1	
2		R=Me (L4)	87	11:1	
3		R=OMe (L5)	100	18:1	
4		$R=NMe_2(L8)$	100	13:1	
5	Ĺ	R=t-Bu (L1)	100	9:1	
6		R=Me (L4)	100	13:1	
7	N +	R=OMe (L5)	100	15:1	
8		$R=NMe_2(L8)$	100	14:1	

Synthesis of tetrabutylammonium 2-chlorophenyl sulfate (1a')

2-Chlorophenol (3.21 g, 25 mmol) and SO_3 •pyridine complex (4.39 g, 27.5 mmol) were placed in a 100 mL round bottom flask. Pyridine (33 mL) and dry dichloromethane (20 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (300 mL) was added and the mixture was washed once with dichloromethane (1 x 300 mL). The aqueous phase was treated with tetrabutylammonium hydrogensulfate (8.45 g, 25 mmol) and stirred for 1 h. The solution was extracted with

dichloromethane (3 x 300 mL). The organic layer was dried over MgSO₄, filtered, and concentrated, resulting in a clear oil. To the concentrated oil, hexanes were added and the suspension was again concentrated by rotary evaporation. This process was repeated until the product was obtained as a white solid. After overnight drying under high vacuum 1a' (6.56 g, 58% yield) was isolated as a white solid.

¹H NMR (500 MHz, CDCl₃) δ 7.78 (dd, J = 7.9, 1.5 Hz, 1H), 7.29 (dd, J = 7.9, 1.6 Hz, 1H), 7.15 (td, J = 7.9, 1.6 Hz, 1H), 6.95 (td, J = 7.9, 1.5 Hz, 1H), 3.23–3.01 (m, 8H), 1.64–1.45 (m, 8H), 1.35 (m, 8H), 0.93 (t, J = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 149.7, 129.7, 127.3, 125.2, 123.8, 122.0, 58.3, 23.8, 19.6, 13.6. HRMS (ESI) m/z calc for C₆H₄ClO₄S [M–Nn-Bu₄]⁻ 206.9519, found 206.9722

Synthesis of tetrapropylammonium 2-chlorophenyl sulfate (1a)

2-Chlorophenol (0.964 g, 7.5 mmol) and SO_3 •pyridine complex (1.31 g, 8.2 mmol) were placed in a 100 mL round bottom flask. Pyridine (10 mL) and dry dichloromethane (6 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (90 mL) was added and the mixture was washed once with dichloromethane (1 x 90 mL). The aqueous phase was treated with tetrapropyl ammonium hydrogensulfate (2.12 g, 7.5 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 90 mL). The organic layer was dried over MgSO₄, filtered, and concentrated, resulting in a clear oil. To the concentrated oil, hexanes were added and the suspension was again concentrated by rotary evaporation. This process was repeated until the product was obtained as a white solid. After overnight drying under high vacuum (**1a**) was obtained as a white solid (1.53 g, 52% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.74 (dd, J = 8.0, 1.5 Hz, 1H), 7.29 (dd, J = 7.8, 1.7 Hz, 1H), 7.15 (td, J = 8.0, 1.7 Hz, 1H), 6.95 (td, J = 7.8, 1.5 Hz, 1H), 3.15–3.01 (m, 8H), 1.59 (m, J = 17.0, 7.3 Hz, 8H), 0.91 (t, J = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 149.7, 129.7, 127.3,

125.4, 124.0, 122.2, 60.2, 15.5, 10.7. HRMS (ESI) m/z calc for C₆H₄ClO₄S [M–N*n*-Bu₄]⁻ 206.9519, found 206.9505

Synthesis of tetraethylammonium 2-chlorophenyl sulfate (1a'')

2-Chlorophenol (1.54 g, 12 mmol) and SO₃•pyridine complex (2.1 g, 12.2 mmol) were placed in a 100 mL round bottom flask. Pyridine (16 mL) and dry dichloromethane (10 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (140 mL) was added and the mixture was washed once with dichloromethane (1 x 140 mL). The aqueous phase was treated with tetraethyl ammonium hydrogensulfate (2.73 g, 12 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated. The concentrated oil was dissolved in dichloromethane (50 mL) and washed once with 0.1 M NaOH aq. (1 x 50 mL). The organic layer was dried over MgSO₄, filtered, and concentrated, resulting in a clear oil. To the concentrated oil, hexanes and ether were added and the suspension was concentrated by rotary evaporation. This hexane/ether process was repeated until the product was obtained as a white solid. After overnight drying under high vacuum (1a") was obtained as a white solid (216 mg, 5% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.72 (dd, J = 8.0, 1.5 Hz, 1H), 7.32 (dd, J = 8.0, 1.6 Hz, 1H), 7.18 (td, J = 8.0, 1.6 Hz, 1H), 7.00 (td, J = 8.0, 1.5 Hz, 1H), 3.21 (q, J = 7.3 Hz, 8H), 1.21 (t, J = 7.3, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 149.5, 129.8, 127.5, 125.6, 124.3, 122.4, 52.3, 7.5. HRMS (ESI) m/z calcd for C₆H₄ClO₄S [M–NEt₄]⁻ 206.9519, found 206.8556.

Synthesis of tetrapropylammonium 2-bromophenyl sulfate (1b)

2-Bromophenol (1.038 g, 6 mmol) and SO_3 •pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrapropyl ammonium bromide (1.60 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated, resulting in a clear oil. To the concentrated oil, hexanes were added and the suspension was concentrated by rotary evaporation. This process was repeated the product was obtained as a white solid. After overnight drying under high vacuum (**1b**) was obtained as a white solid (1.31 g, 50% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.68 (dd, J = 8.3, 1.5 Hz, 1H), 7.41 (dd, J = 8.0, 1.6 Hz, 1H), 7.14 (ddd, J = 8.3, 8.0, 1.6 Hz, 1H), 6.84 (td, J = 8.0, 1.5 Hz, 1H), 3.11–2.82 (m, 8H), 1.52 (m, 8H), 0.84 (t, J = 7.4 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 150.7, 132.8, 128.0, 124.3, 121.8, 114.7, 60.1, 15.4, 10.7. HRMS (ESI) m/z calcd for C₆H₄BrO₄S [M–N*n*-Pr₄]⁻ 250.9014, found 250.9032.

Synthesis of tetrapropylammonium 2-methylphenyl sulfate (1c)

2-Methylphenol (0.645 g, 6 mmol) and SO₃•pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were

added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrapropyl ammonium bromide (1.60 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated, resulting in a clear oil. To the concentrated oil, hexanes were added and the suspension was concentrated by rotary evaporation. This process was repeated until the product was obtained as a white solid. After overnight drying under high vacuum (**1c**) was obtained as a yellowish white solid (1.24 g, 55% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.48 (dd, J = 7.7, 1.2 Hz, 1H), 7.10 (dd, J = 7.7, 1.7 Hz, 1H), 7.06 (td, J = 7.7, 1.7 Hz, 1H), 6.95 (td, J = 7.7, 1.2 Hz, 1H), 3.17 – 2.88 (m, 8H), 2.32 (s, 3H), 1.69 – 1.43 (m, 8H), 0.92 (t, J = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 151.8, 131.1, 130.5, 126.1, 123.8, 122.0, 60.1, 16.9, 15.5, 10.7. HRMS (ESI) *m/z* calcd for C₇H₇O₄S [M–N*n*-Pr₄]⁻ 187.0065, found 187.0069.

Synthesis of tetrapropylammonium 3-fluorophenyl sulfate (1d)

3-Fluorophenol (0.673 g, 6 mmol) and SO₃•pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrapropyl ammonium bromide (1.60 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated, resulting in a clear oil. To the concentrated oil, hexanes were added and the suspension was concentrated by rotary evaporation. This process was repeated until the product was obtained as a white solid. After overnight drying under high vacuum (1d) was obtained as a white solid (1.46 g, 64% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.19 (td, J = 8.2, 6.8 Hz, 1H), 7.14 (dt, J = 10.6, 2.4 Hz, 1H), 7.07 (ddd, J = 8.2, 2.4, 0.9 Hz, 1H), 6.74 (tdd, J = 8.2, 2.4, 0.9 Hz, 1H), 3.15–2.90 (m, 8H), 1.68–1.51 (m, 8H), 0.94 (t, J = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 162.8 (d, J = 244.6 Hz), 154.8 (d, J = 11.2 Hz), 129.6 (d, J = 9.6 Hz), 116.5 (d, J = 2.9 Hz), 110.1 (d, J = 21.1 Hz), 108.3 (d, J = 24.3 Hz), 60.3, 15.5, 10.7. ¹⁹F NMR (470 MHz, CDCl₃) δ –115.73 (m) HRMS (ESI) m/z calcd. for C₆H₄FO₄S [M–Nn-Pr₄]⁻ 190.9814, found 190.9821.

Synthesis of tetrapropylammonium 2-fluorophenyl sulfate (1e)

2-Fluorophenol (0.673 g, 6 mmol) and SO_3 •pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrapropyl ammonium bromide (1.60 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated, resulting in a clear oil. To the concentrated oil, hexanes and ether were added and the suspension was again concentrated by rotary evaporation. This process was repeated until the product was obtained as a white solid. After overnight drying under high vacuum (1e) was obtained as a white solid (1.00 g, 44% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.71–7.60 (m, 1H), 7.07–6.94 (m, 3H), 3.23–3.03 (m, 8H), 1.76 – 1.46 (m, 8H), 0.93 (t, *J* = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 154.3 (d, *J* = 247.1 Hz), 141.2 (d, *J* = 11.3 Hz), 124.2 (d, *J* = 7.1 Hz), 124.0 (d, *J* = 3.8 Hz), 123.7, 116.0 (d, *J* = 18.8 Hz), 60.2, 15.5, 10.7. ¹⁹F NMR (470 MHz, CDCl₃) δ –133.9. HRMS (ESI) *m/z* calcd. for C₆H₄FO₄S [M–N*n*-Pr₄]⁻ 190.9814, found 190.9830.

2,3-Difluorophenol (0.78 g, 6 mmol) and SO₃•pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrapropyl ammonium bromide (1.60 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated, resulting in a clear oil. To the concentrated oil, hexanes and ether were added and the suspension was again concentrated by rotary evaporation. This process was repeated until the product was obtained as a white solid. After overnight drying under high vacuum (**1f**) was obtained as a white solid (1.33 g, 56% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.41 (ddt, J = 8.4, 6.9, 1.6 Hz, 1H), 6.92 (tdd, J = 8.4, 6.2, 2.2 Hz, 1H), 6.82 (dddd, J = 9.7, 8.4, 6.8, 1.6 Hz, 1H), 3.23 – 2.95 (m, 8H), 1.60 (m, 8H), 0.91 (t, J = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 151.0 (dd, J = 246.4, 11.0 Hz), 143.2 (dd, J = 248.2, 14.0 Hz), 142.8 (dd, J = 8.7, 2.6 Hz), 122.7 (dd, J = 8.3, 5.1 Hz), 118.7 (d, J = 3.3 Hz), 111.7 (d, J = 17.1 Hz), 60.3, 15.4, 10.6. ¹⁹F NMR (470 MHz, CDCl₃) δ –141.1 (ddd, J = 20.3, 9.7, 6.2 Hz), –158.23 (dt, J = 20.3, 6.8 Hz). HRMS (ESI) *m/z* calcd. for C₆H₃F₂O₄S [M–N*n*-Pr₄]⁻ 208.9720, found 208.8767.

Synthesis of tetrapropylammonium 2-iodophenyl sulfate (1g)

2-Iodophenol (1.32 g, 6 mmol) and SO₃•pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrapropyl ammonium bromide (1.60 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated, resulting in a clear oil. To the concentrated oil, hexanes and ether were added and the suspension was again concentrated by rotary evaporation. This process was repeated until the product was obtained as a white solid. After overnight drying under high vacuum (**1g**) was obtained as a white solid (1.51 g, 52% yield).

¹H NMR (500 MHz, CDCl₃) 7.65 (m, 2H), 7.17 (ddd, J = 8.6, 7.3, 1.6 Hz, 1H), 6.70 (td, J = 7.6, 1.5 Hz, 1H), 3.15–2.81 (m, 8H), 1.68–1.22 (m, 8H), 0.84 (t, J = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 153.4, 138.9, 129.1, 124.8, 120.7, 89.5, 60.2, 15.5, 10.8. HRMS (ESI) m/z calcd. for C₆H₄IO₄S [M–N*n*-Pr₄]⁻ 298.8875, found 298.8890.

Synthesis of tetrapropylammonium 2-isopropylphenyl sulfate (1h)

2-Isopropylphenol (0.645 g, 6 mmol) and SO_3 •pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrapropyl ammonium bromide (1.60 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated, resulting in a clear oil. To the concentrated oil, hexanes and ether were added and the suspension was again concentrated by rotary evaporation. This process was repeated until the product was obtained as a white solid. After overnight drying under high vacuum (1h) was obtained as a white solid (1.39 g, 58% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.50 (dd, J = 7.3, 1.6 Hz, 1H), 7.16 (dd, J = 7.3, 2.2 Hz, 1H), 7.01 (td, J = 7.3, 2.1 Hz, 1H), 6.98 (td, J = 7.3, 1.6 Hz, 1H), 3.53 (p, J = 6.9 Hz, 1H), 3.13 – 2.94 (m, 8H), 1.59 – 1.44 (m, 8H), 1.14 (d, J = 7.0 Hz, 6H), 0.88 (t, J = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 150.6, 140.9, 125.9, 125.7, 123.9, 121.4, 60.1, 26.4, 23.3, 15.4, 10.7. HRMS (ESI) *m*/*z* calcd. for C₉H₁₁O₄S [M–N*n*-Pr₄]⁻ 215.0378, found 215.0397.

Synthesis of tetrapropylammonium 2-cyanophenyl sulfate (1i)

2-Cyanophenol (0.714 g, 6 mmol) and SO_3 •pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrapropyl ammonium bromide (1.60 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated, resulting in a clear oil. To the concentrated oil, hexanes and ether were added and the suspension was again concentrated by rotary evaporation. This process was repeated until the product was obtained as a white solid. After overnight drying under high vacuum (**1i**) was obtained as a white solid (1.03 g, 45% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.79 (dd, J = 7.6, 1.1 Hz, 1H), 7,46 (dd, J = 7.6, 1.8 Hz, 1H), 7.45 (td, J = 7.6, 1.8 Hz, 1H), 7.05 (td, J = 7.6, 1.1 Hz, 1H), 3.26 – 2.73 (m, 8H), 1.61 (m, 8H), 0.90 (t, J = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 155.7, 133.9, 132.9, 123.2, 121.0, 116.9, 104.6, 60.2, 15.5, 10.7. HRMS (ESI) *m*/*z* calcd. for C₇H₄NO₄S [M–N*n*-Pr₄]⁻ 197.9861, found 197.8931.

Synthesis of tetrapropylammonium 2-(trifluoromethyl)phenyl sulfate (1j)

2-(Trifluoromethyl)phenol (0.973 g, 6 mmol) and SO_3 •pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrapropyl ammonium bromide (1.60 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated, resulting in a clear oil. To the concentrated oil, hexanes and ether were added and the suspension was again concentrated by rotary evaporation. This process was repeated until the product was obtained as a white solid. After overnight drying under high vacuum (**1j**) was obtained as a white solid (0.991 g, 39% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, J = 8 Hz, 1H), 7.46 (dd, J = 7.6, 1.6 Hz, 1H), 7.39 (td, J = 8.0, 1.6 Hz, 1H), 7.02 (t, J = 7.6 Hz, 1H), 3.13–2.93 (m, 8H), 1.67–1.45 (m, 8H), 0.85 (t, J = 7.4 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 151.9 (q, J = 1.8 Hz), 132.8 (s), 126.2 (q, J = 5.0 Hz), 123.5 (q, J = 272.4 Hz), 122.2 (s), 120.7 (s), 120.4 (q, J = 30.6 Hz), 60.1, 15.4, 10.5. ¹⁹F NMR (470 MHz, CDCl₃) δ –64.1. HRMS (ESI) m/z calcd. for C₇H₄F₃O₄S [M–N*n*-Pr₄]⁻240.9782, found 240.9784.

Synthesis of tetrapropylammonium 2-(trifluoromethoxy)phenyl sulfate (1k)

2-(Trifluoromethoxy)phenol (1.07 g, 6 mmol) and SO₃•pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrapropyl ammonium bromide (1.60 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated, resulting in a clear oil. To the concentrated oil, hexanes and ether were added and the suspension was again concentrated by rotary evaporation. This process was repeated until the product was obtained as a white solid. After overnight drying under high vacuum (**1k**) was obtained as a white solid (1.09 g, 41% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.82 (dd, J = 8.2, 1.6 Hz, 1H), 7.23 – 7.10 (m, 2H), 7.01 (t, J = 7.1 Hz, 1H), 3.27 – 2.89 (m, 8H), 1.85 – 1.40 (m, 8H), 0.91 (t, J = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 146.0, 139.68, 127.3, 123.3, 122.4, 121.9, 120.6 (q, J = 257 Hz), 60.2, 15.4, 10.6. ¹⁹F NMR (470 MHz, CDCl₃) δ -60.5. HRMS (ESI) m/z calcd. for C₇H₄F₃O₅S [M–N*n*-Pr₄]⁻ 256.9732, found 256.9768.

Synthesis of tetrapropylammonium 2-bromo-6-fluorophenyl sulfate (11)

2-Bromo-6-fluorophenol (1.15 g, 6 mmol) and SO_3 •pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrapropyl ammonium bromide (1.60 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated, resulting in a clear oil. To the

Table of Contents

concentrated oil, hexanes and ether were added and the suspension was again concentrated by rotary evaporation. This process was repeated until the product was obtained as a white solid. After overnight drying under high vacuum (11) was obtained as a white solid (0.78 g, 28% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.24 (d, J = 8.2 Hz, 1H), 6.97 (t, J = 8.2 Hz, 1H), 6.89 (td, J = 8.2, 5.1 Hz, 1H), 3.16 – 2.96 (m, 8H), 1.63 – 1.42 (m, 8H), 0.89 (t, J = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 156.7 (d, J = 253.7 Hz), 139.7 (d, J = 14.6 Hz), 128.3 (d, J = 3.5 Hz), 125.5 (d, J = 8.1 Hz), 119.8 (d, J = 1.9 Hz), 115.7 (d, J = 19.9 Hz), 60.2, 15.5, 10.7. ¹⁹F NMR (470 MHz, CDCl₃) δ –124.4 (dd, J = 8.2, 5.1 Hz). HRMS (ESI) *m*/*z* calcd. for C₆H₃BrFO₄S [M–N*n*-Pr₄]⁻ 268.8919, found 268.8919.

Synthesis of tetrapropylammonium 2-methoxyphenyl sulfate (1m)

2-Methoxyphenol (0.74 g, 6 mmol) and SO_3 •pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrapropyl ammonium bromide (1.60 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated, resulting in a clear oil. To the concentrated oil, hexanes and ether were added and the suspension was again concentrated by rotary evaporation. This process was repeated until the product was obtained as a white solid. After overnight drying under high vacuum (**1m**) was obtained as a white solid (1.08 g, 46% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.64 (dd, *J* = 8.0, 1.6 Hz, 1H), 6.97 (ddd, *J* = 8.0, 7.3, 1.6 Hz, 1H), 6.87 – 6.80 (m, 2H), 3.79 (s, 3H), 3.26 – 3.04 (m, 8H), 1.68 – 1.46 (m, 8H), 0.92 (t, *J* = 7.3

Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 151.2, 143.0, 123.8, 121.9, 120.6, 113.0, 60.2, 56.3, 15.5, 10.7. HRMS (ESI) *m/z* calcd. for C₇H₇O₅S [M–N*n*-Pr₄]⁻ 203.0014, found 203.0053.

Synthesis of tetrapropylammonium 3-cyanophenyl sulfate (1n)

3-Cyanophenol (0.72 g, 6 mmol) and SO₃•pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrapropyl ammonium bromide (1.60 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated, resulting in a clear oil. To the concentrated oil, hexanes and ether were added and the suspension was again concentrated by rotary evaporation. This process was repeated until the product was obtained as a white solid. After overnight drying under high vacuum (**1n**) was obtained as a white solid (1.19 g, 52% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.69 (dd, J = 2.4, 1.4 Hz, 1H), 7.53 (ddd, J = 8.2, 2.4, 1.3 Hz, 1H), 7.36 (t, J = 7.9 Hz, 1H), 7.32 (dt, J = 7.6, 1.4 Hz, 1H), 3.24 – 2.94 (m, 8H), 1.60–1.72 (m, 8H), 0.96 (t, J = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 154.0, 130.0, 127.0, 125.8, 124.0, 118.8, 112.5, 60.4, 15.5, 10.7. HRMS (ESI) *m/z* calcd. for C₇H₄NO₄S [M–N*n*-Pr₄]⁻ 197.9861, found 197.9884.

Synthesis of tetrapropylammonium 3-methoxyphenyl sulfate (10)

Table of Contents

3-Methoxyphenol (0.74 g, 6 mmol) and SO_3 •pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrapropyl ammonium bromide (1.60 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated, resulting in a clear oil. To the concentrated oil, hexanes and ether were added and the suspension was again concentrated by rotary evaporation. This process was repeated until the product was obtained as a white solid. After overnight drying under high vacuum (**10**) was obtained as a white solid (1.01 g, 43 yield).

¹H NMR (500 MHz, CDCl₃) δ 7.10 (t, J = 8.2 Hz, 1H), 6.96-6.85 (m, 2H), 6.57 (dt, J = 8.2, 1.8 Hz, 1H), 3.71 (s, 3H), 3.11 – 3.03 (m, 8H), 1.63 – 1.46 (m, 8H), 0.91 (t, J = 7.3 Hz, 12H).¹³C NMR (126 MHz, CDCl₃) δ 160.1, 154.7, 129.1, 113.3, 109.2, 107.0, 60.2, 55.3, 15.5, 10.7. HRMS (ESI) *m/z* calcd. for C₇H₇O₅S [M–N*n*-Pr₄]⁻ 203.0014, found 203.0050.

Synthesis of tetrapropylammonium 3-chlorophenyl sulfate (1p)

3-Chlorophenol (0.77 g, 6 mmol) and SO₃•pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrapropyl ammonium bromide (1.60 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated, resulting in a clear oil. To the concentrated oil, hexanes and ether were added and the suspension was again concentrated by rotary evapoation. This process was repeated until the product was obtained as a white solid. After overnight drying under high vacuum (**1p**) was obtained as a white solid (0.96 g, 41% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.37 (t, J = 2.1 Hz, 1H), 7.18 – 7.12 (m, 2H), 6.99 (dt, J = 6.5, 2.1 Hz, 1H), 3.20 – 2.91 (m, 8H), 1.64 – 1.46 (m, 8H), 0.91 (t, J = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 154.3, 133.7, 129.7, 123.4, 121.0, 119.2, 60.1, 15.3, 10.6. HRMS (ESI) *m/z* calcd. for C₆H₄ClO₄S [M–N*n*-Pr₄]⁻ 206.9519, found 206.9544.

Synthesis of tetrapropylammonium 1-phenyl sulfate (1q)

Phenol (0.56 g, 6 mmol) and SO₃•pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at 40 °C for 7 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrapropyl ammonium bromide (1.60 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated, resulting in a clear oil. To the concentrated oil, hexanes and ether were added and the suspension was again concentrated by rotary evaporation. This process was repeated until the product was obtained as a white solid. After overnight drying under high vacuum (**1q**) was obtained as a white solid (1.50 g, 69% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.32 – 7.26 (m, 2H), 7.24 – 7.17 (m, 2H), 7.01 (td, *J* = 7.0, 5.4 Hz, 1H), 3.14 – 2.89 (m, 8H), 1.70 – 1.35 (m, 8H), 0.89 (t, *J* = 7.3 Hz, 12H) . ¹³C NMR (126 MHz, CDCl₃) δ 153.6, 128.8, 123.4, 121.0, 60.1, 15.4, 10.7. HRMS (ESI) *m/z* calcd. for C₆H₅O₄S [M–N*n*-Pr₄]⁻ 172.9909, found 173.0117.

crude reaction mixture isomer ratio (NMR) = 22:1 96% conversion

In a glove box, a 5.0 mL Wheaton microreactor was charged with tetrapropyl ammonium 2-chlorophenyl sulfate (197 mg, 0.5 mmol), $[Ir(cod)(OMe)]_2$ (5 mg, 1.5 mol %), 4,4'-dimethoxy-2,2'-bipyridine (3.3 mg, 3.0 mol %), B₂pin₂ (159 mg, 0.625 mmol) and dioxane (1.5 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 40 °C. After 14 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio. HCl 12 M was added until pH = 1–2 and the resultant mixture was stirred for 1 h. The solution was concentrated and washed with hexanes (0.5 mL). The hexane layer was decanted, and the remaining solution subjected to chromatographic separation with silica gel (CHCl₃ as eluent) to give 76 mg of *para* borylated 2-chlorophenol with traces of the *meta* isomer (< 2%) as a white solid (60% yield, mp 118.6–120.1 °C). The NMR data were consistent with previously reported NMR values.³

¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, *J* = 1.4 Hz, 1H), 7.62 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.00 (d, *J* = 8.1 Hz, 1H), 6.05 (bs, 1H), 1.34 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 153.9, 135.7, 135.1, 119.8, 115.8, 84.0, 24.8. ¹¹B NMR (160 MHz, CDCl₃) δ 30.2. HRMS (ESI) *m/z* calcd. for C₁₂H₁₅BClO₃ [M–H]⁻ 253.0803, found 253.1007.

Performing the same borylation with tetraethylammonium 2-chlorophenyl sulfate gave a para:meta ratio of 6:1, while borylation of tetrabutylammonium 2-chloro sulfate gave a para:meta ratio of 17:1.

crude reaction mixture isomer ratio (NMR) = 23:1 98% conversion

In a glove box, a 5.0 mL Wheaton microreactor was charged with tetrapropyl ammonium 2-bromophenyl sulfate (219 mg, 0.5 mmol), $[Ir(cod)(OMe)]_2$ (5 mg, 1.5 mol %), 4,4'-dimethoxy-2,2'-bipyridine (3.3 mg, 3.0 mol %), B₂pin₂ (159 mg, 0.625 mmol) and dioxane (1.5 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 40 °C. After 14 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio. HCl 12 M was added until pH = 1–2 and the resultant mixture was stirred for 1 h. The solution was concentrated and washed with hexanes (0.5 mL). The hexane layer was decanted, and the remaining solution subjected to chromatographic separation with silica gel (CHCl₃ as eluent) to give 110 mg of *para* borylated 2-bromophenol with traces of the *meta* isomer (< 2%) as a white solid (74% yield, mp 118.4–119.6 °C). The NMR data were consistent with previously reported values.⁴

¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, J = 1.5 Hz, 1H), 7.64 (dd, J = 8.1, 1.5 Hz, 1H), 6.99 (d, J = 8.1 Hz, 1H), 5.92 (bs, 1H), 1.32 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 154.7, 138.7, 135.9, 115.7, 110.3, 84.0, 24.8. ¹¹B NMR (160 MHz, CDCl₃) δ 30.1. HRMS (ESI) *m/z* calcd. for C₁₂H₁₅BBrO₃ [M–H]⁻ 297.0298, found 297.0304.

Para borylation of tetrapropyl ammonium 2-methylphenyl sulfate (2c)

crude reaction mixture isomer ratio (NMR) = 11:1 73% conversion 2-Methylphenyl sulfate (187 mg, 0.5 mmol), $[Ir(cod)(OMe)]_2$ (10 mg, 3 mol %), 4,4'-dimethoxy-2,2'-bipyridine (6.6 mg, 6.0 mol %), B₂pin₂ (159 mg, 0.625 mmol) and dioxane (1.5 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 60 °C. After 36 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio. HCl 12 M was added until pH = 1–2 and the resultant mixture was stirred for 1 h. The solution was concentrated and washed with hexanes (0.5 mL). The hexane layer was decanted, and the remaining solution subjected to chromatographic separation with silica gel (CHCl₃ as eluent) to give 67 mg of *para* borylated 2-methylphenol with traces of the *meta* isomer (*para:meta* = 39:1) as a white solid (57% yield, mp 100.0–102.4 °C). The NMR values were consistent with previously reported NMR values.⁵

¹H NMR (500 MHz, CDCl₃) δ 7.61 (d, J = 1.7 Hz, 1H), 7.54 (dd, J = 7.9, 1.6 Hz, 1H), 6.75 (d, J = 7.9 Hz, 1H), 5.81 (bs, 1H), 2.24 (s, 3H), 1.35 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 156.9, 137.9, 134.2, 123.4, 114.5, 83.7, 24.8, 15.5. ¹¹B NMR (160 MHz, CDCl₃) δ 30.6. HRMS (ESI) m/z calcd for C₁₃H₁₈BO₃ [M–H]⁻ 233.1349, found 233.1367.

Para borylation of tetrapropyl ammonium 3-fluorophenyl sulfate (2d)

crude reaction mixture isomer ratio (NMR) = 2.3:1 >99.9% conversion

In a glove box, a 5.0 mL Wheaton microreactor was charged with tetrapropyl ammonium 3-fluorophenyl sulfate (189 mg, 0.5 mmol), $[Ir(cod)(OMe)]_2$ (5 mg, 1.5 mol %), 4,4'-dimethoxy-2,2'-bipyridine (3.3 mg, 3.0 mol %), B₂pin₂ (159 mg, 0.625 mmol) and dioxane (1.5 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 40 °C. After 20 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio. HCl 12 M was added until pH = 1–2 and the resultant mixture was stirred for 1 h. The solution was concentrated and washed with hexanes (0.5 mL). The hexane layer was decanted, and the remaining solution subjected to

Table of Contents

chromatographic separation with silica gel (12% EtOAc in $CHCl_3$ as eluent) to give 87 mg of a mixture *para* borylated 3-fluorophenol with the *meta* isomer (*para:meta* = 3:1) as a white solid (73% yield, mp 89.4-91.2 °C) The NMR values were consistent with previously reported values.⁶

Para: ¹H NMR (500 MHz, CDCl₃) δ 7.59 (dd, J = 8.2, 7.1 Hz, 1H), 6.77 (s, 1H), 6.62 (dd, J = 8.2, 2.2 Hz, 1H), 6.52 (dd, J = 10.9, 2.2 Hz, 1H), 1.35 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 168.5 (d, J = 250.4 Hz), 160.7 (d, J = 12.3 Hz), 138.0 (d, J = 10.2 Hz), 111.5 (d, J = 2.6 Hz), 103.0 (d, J = 27.3 Hz), 84.0, 24.7. ¹¹B NMR (160 MHz, CDCl₃) δ 31.4. ¹⁹F NMR (470 MHz, CDCl₃) δ -103.8 (dd, J = 10.9, 7.1 Hz). HRMS (ESI) m/z calcd for C₁₂H₁₅BFO₃ [M–H]⁻ 237.1098, found 237.1320.

Meta: ¹H NMR (500 MHz, CDCl₃) δ 7.05 (m, 2H), 6.68 (dt, J = 9.4, 2.4 Hz, 1H), 1.34 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 163.3 (d, J = 246.6 Hz), 156.7 (d, J = 10.5 Hz), 117.1 (d, J = 2.5 Hz), 113.0 (d, J = 19.8 Hz), 106.2 (d, J = 24.4 Hz), 84.4, 24.8. ¹¹B NMR (160 MHz, CDCl₃) δ 31.4. ¹⁹F NMR (470 MHz, CDCl₃) δ –115.7 (t, J = 9.4 Hz). HRMS (ESI) m/z calcd for C₁₂H₁₅BFO₃ [M–H]⁻ 237.1098, found 237.1320.

Para borylation of tetrapropyl ammonium 2-fluorophenyl sulfate (2e)

crude reaction mixture isomer ratio (NMR) = 2.3:1:0.2 di-meta >99.9% conversion

In a glove box, a 5.0 mL Wheaton microreactor was charged with tetrapropyl ammonium 2-fluorophenyl sulfate (189 mg, 0.5 mmol), $[Ir(cod)(OMe)]_2$ (5 mg, 1.5 mol %), 4,4'-dimethoxy-2,2'-bipyridine (3.3 mg, 3.0 mol %), B₂pin₂ (159 mg, 0.625 mmol) and dioxane (1.5 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 40 °C. After 36 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio. HCl 12 M was added until pH = 1–2 and the resultant mixture was stirred for 1 h. The solution was concentrated and washed with hexanes (0.5 mL). The hexane layer was decanted, and the remaining solution subjected to

chromatographic separation with silica gel (10% EtOAc in $CHCl_3$ as eluent) to give 67 mg of a mixture of *para* and *meta* borylated 2-fluorophenol (*para:meta* = 11:1) as a white solid (56% yield, mp 85.0-91.0 °C). The NMR data were consistent with previously reported NMR values, designated as compound **22a** in the cited paper.⁷

Para:

¹H NMR (500 MHz, C_6D_6) δ 7.81 (dd, J = 11.1, 1.4 Hz, 1H), 7.71 (dd, J = 8.1, 1.4 Hz, 1H), 6.84 (t, J = 8.1 Hz, 1H), 1.08 (s, 12H). ¹³C NMR (126 MHz, C_6D_6) δ 151.1 (d, J = 239.2 Hz), 146.9 (d, J = 13.9 Hz), 132.1 (d, J = 3.4 Hz), 121.7 (d, J = 15.8 Hz), 117.2 (d, J = 1.7 Hz), 83.6, 24.4. ¹¹B NMR (160 MHz, CDCl₃) δ 30.9. ¹⁹F NMR (470 MHz, CDCl₃) δ –142.97 (dd, J = 11.1, 8.1 Hz). HRMS (ESI) m/z calcd for $C_{12}H_{15}BFO_3$ [M–H]⁻ 237.1098, found 237.1097. *Meta*:

¹H NMR (500 MHz, C_6D_6) δ 7.49 (ddd, J = 7.4, 5.0, 1.7 Hz, 1H), 6.93 (ddd, J = 8.7, 8.0, 1.7 Hz, 1H), 6.74 (ddd, J = 8.0, 7.4, 0.7 Hz, 1H).¹³C NMR (126 MHz, C_6D_6) δ 155.6 (d, J = 243.3 Hz), 143.8 (d, J = 16.1 Hz), 124.4 (d, J = 3.9 Hz), 120.6 (d, J = 2.8 Hz), 83.7, 24.4 (owing to the small amount of the isomer in the mixture some peaks were not observed). ¹¹B NMR (160 MHz, CDCl₃) δ 30.9. ¹⁹F NMR (470 MHz, CDCl₃) δ –132.41 (dd, J = 8.7, 5.0 Hz). HRMS (ESI) m/z calcd for $C_{12}H_{15}BFO_3$ [M–H]⁻ 237.1098, found 237.1097.

Para borylation of tetrapropyl ammonium 2,3-difluorophenyl sulfate (2f)

crude reaction mixture isomer ratio (NMR) = 23:1 >99.9% conversion

In a glove box, a 5.0 mL Wheaton microreactor was charged with tetrapropyl ammonium 2,3-difluorophenyl sulfate (198 mg, 0.5 mmol), $[Ir(cod)(OMe)]_2$ (5 mg, 1.5 mol %), 4,4'-dimethoxy-2,2'-bipyridine (3.3 mg, 3.0 mol %), B₂pin₂ (159 mg, 0.625 mmol) and dioxane (1.5 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 40 °C. After 20 h, an aliquot of the reaction mixture was taken and analyzed

directly by ¹H NMR to find the conversion and *para:meta* ratio. HCl 12 M was added until pH = 1-2 and the resultant mixture was stirred for 1 h. The solution was concentrated and subjected directly to chromatographic separation with silica gel (10% EtOAc in CHCl₃ as eluent) to give 100 mg of a mixture of *para* borylated 2,3-difluorophenol with the *meta* isomer (para:meta = 30:1) as a white solid (78% yield, mp 125.2–125.9 °C)

¹H NMR (500 MHz, CDCl₃) δ 7.35 (ddd, J = 8.3, 6.0, 2.2 Hz, 1H), 6.75 (ddd, J = 8.3, 7.1, 1.6 Hz, 1H), 5.95 (bs, 1H), 1.34 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 155.3 (dd, J = 251.9, 9.6 Hz), 148.2 (dd, J = 11.0, 2.9 Hz), 139.9 (dd, J = 240.9, 16.5 Hz), 130.8 (dd, J = 9.0, 4.8 Hz), 112.7 (d, J = 2.9 Hz), 84.2, 24.6. ¹¹B NMR (160 MHz, CDCl₃) δ 29.9. ¹⁹F NMR (470 MHz, CDCl₃) δ –131.0 (dd, J = 21.3, 6.0 Hz), –167.9 (ddd, J = 21.3, 7.1, 2.2 Hz). HRMS (ESI) m/z calcd for C₁₂H₁₄BF₂O₃ [M–H]⁻ 255.1004, found 254.9811.

Para borylation of tetrapropyl ammonium 2-iodophenyl sulfate (2g)

crude reaction mixture isomer ratio (NMR) = 22:1 >99.9% conversion

In a glove box, a 5.0 mL Wheaton microreactor was charged with tetrapropyl ammonium 2-iodophenyl sulfate (243 mg, 0.5 mmol), $[[Ir(cod)(OMe)]_2$ (10 mg, 3 mol %), 4,4'-dimethoxy-2,2'-bipyridine (6.6 mg, 6 mol %), B₂pin₂ (159 mg, 0.625 mmol) and dioxane (1.5 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 40 °C. After 20 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio. HCl 12 M was added until pH = 1–2 and the resultant mixture was stirred for 1 h. The solution was concentrated and subjected directly to chromatographic separation with silica gel (CHCl₃ as eluent) to give 132 mg of *para* borylated 2-iodophenol with traces of the meta isomer (< 2%) as a white solid (76% yield, mp 119.7–121.2 °C).

¹H NMR (500 MHz, CDCl₃) δ 8.12 (s, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 6.95 (d, *J* = 8.0 Hz, 1H), 5.89 (bs, 1H), 1.32 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 157.3, 145.2, 136.9, 114.8, 85.9, 84.0, 24.8. ¹¹B NMR (160 MHz, CDCl₃) δ 29.8. HRMS (ESI) m/z calcd for C₁₂H₁₅BIO₃ [M–H]⁻ 345.0159, found 345.0211.

Para borylation of tetrapropyl ammonium 2-isopropylphenyl sulfate (2h)

crude reaction mixture isomer ratio (NMR) = 25:1 62% conversion

In a glove box, a 5.0 mL Wheaton microreactor was charged with tetrapropyl ammonium 2-isopropylphenyl sulfate (201 mg, 0.5 mmol), $[Ir(cod)(OMe)]_2$ (10 mg, 3 mol %), 4,4'-dimethoxy-2,2'-bipyridine (6.6 mg, 3.0 mol %), B₂pin₂ (159 mg, 0.625 mmol) and dioxane (1.5 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 40 °C. After 36 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio. HCl 12 M was added until pH = 1–2 and the resultant mixture was stirred for 1 h. The solution was concentrated and subjected directly to chromatographic separation with silica gel (2% EtOAc in CHCl₃ as eluent) to give 81 mg of *para* borylated 2-isopropylphenol with traces of the meta isomer (*para:meta* = 23:1) as a white solid (62% yield, mp 138.3–145.9 °C). The NMR values were consistent with previously reported NMR values.⁸

¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, J = 1.6 Hz, 1H), 7.54 (dd, J = 8.0, 1.6 Hz, 1H), 6.74 (d, J = 8.0 Hz, 1H), 5.82 (s, 1H), 3.23 (hept, J = 6.9 Hz, 1H), 1.36 (s, 12H), 1.26 (d, J = 6.9 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 156.0, 134.0, 133.9, 133.4, 114.8, 83.7, 27.1, 24.8, 22.4. ¹¹B NMR (160 MHz, CDCl₃) δ 30.7. HRMS (ESI) m/z calcd for C₁₅H₂₂BO₃ [M–H]⁻ 261.1662, found 261.1696.

Para borylation of tetrapropylammonium 2-cyanophenyl sulfate (2i)

crude reaction mixture isomer ratio (NMR): para:meta:dimeta = 7.5:1:0.4 >99.9% conversion

In a glove box, a 5.0 mL Wheaton microreactor was charged with tetrapropyl ammonium 2-cyanophenyl sulfate (193 mg, 0.5 mmol), $[Ir(cod)(OMe)]_2$ (5 mg, 1.5 mol %), 4,4'-dimethoxy-2,2'-bipyridine (3.3 mg, 3.0 mol %), B₂pin₂ (159 mg, 0.625 mmol) and dioxane (1.5 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 40 °C. After 13 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio. HCl 12 M was added until pH = 1–2 and the resultant mixture was stirred for 1 h. The solution was concentrated and passed through a plug of silica gel (4% EtOAc in CHCl₃ as eluent). The fractions containing product were collected and concentrated to give 117 mg of a mixture of *para* borylated 2-cyanophenol with the *meta* and *dimeta* isomers (*para:meta:dimeta* = 1:7:0.4) as a white solid (93% yield, mp 156.6–162.8 °C). The NMR data were consistent with previously reported NMR values.⁹ *Para:*

¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, J = 1.7 Hz, 1H), 8.15-7.55 (bs, 1H), 7.83 (dd, J = 8.3, 1.7 Hz, 1H), 6.97 (d, J = 8.3 Hz, 1H), 1.32 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 161.3, 140.9, 140.4, 116.5, 115.8, 99.4, 84.3, 24.8. ¹¹B NMR (160 MHz, CDCl₃) δ 30.4. HRMS (ESI) m/z calcd for C₁₃H₁₅BNO₃ [M–H]⁻ 244.1145, found 244.0003. *Meta*:

¹H NMR (500 MHz, CDCl₃) δ 8.15-7.55 (bs, 1H), 7.48 (d, *J* = 7.6 Hz, 1H), 7.39 (d, *J* = 0.9 Hz, 1H), 7.34 (dd, *J* = 7.6, 0.9 Hz, 1H), 1.32 (s, 12H). Carbon peaks were indistinguishable due to the small amount of the meta isomer in the mixture. ¹¹B NMR (160 MHz, CDCl₃) δ 30.4. HRMS (ESI) m/z calcd for C₁₃H₁₅BNO₃ [M–H]⁻ 244.1145, found 244.0003.

Para borylation of tetrapropyl ammonium 2-trifluoromethylphenyl sulfate (2j)

crude reaction mixture isomer ratio (NMR) = 11:1 >99.9% conversion

In a glove box, a 5.0 mL Wheaton microreactor was charged with tetrapropyl ammonium 2-trifluoromethylphenyl sulfate (214 mg, 0.5 mmol), $[Ir(cod)(OMe)]_2$ (5 mg, 1.5 mol %), 4,4'-dimethoxy-2,2'-bipyridine (3.3 mg, 3.0 mol %), B₂pin₂ (159 mg, 0.625 mmol) and dioxane (1.5 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 40 °C. After 10 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio. HCl 12 M was added until pH = 1–2 and the resultant mixture was stirred for 1 h. The solution was concentrated and washed with hexanes (0.5 mL). The hexane layer was decanted, and the remaining solution subjected to chromatographic separation with silica gel (12% EtOAc in CHCl₃ as eluent) to give 116 mg of *para* borylated 2-trifluoromethylphenol with traces of the *meta* isomer (*para:meta* = 46:1) as a white solid (81% yield, mp 128.1–129.9 °C). The NMR data were consistent with previously reported NMR values.³

¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, J = 1.6 Hz, 1H), 7.80 (dd, J = 8.2, 1.6 Hz, 1H), 6.98 (bs, 1H), 6.87 (d, J = 8.2 Hz, 1H), 1.35 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 156.6 (q, J = 1.9 Hz), 139.9, 133.9 (q, J = 4.7 Hz), 124.0 (q, J = 272.3 Hz), 116.7, 116.5 (q, J = 30.3 Hz), 84.4, 24.7. ¹¹B NMR (160 MHz, CDCl₃) δ 30.3. ¹⁹F NMR (470 MHz, CDCl₃) δ -63.84. HRMS (ESI) m/z calcd for C₁₃H₁₅BF₃O₃ [M–H]⁻ 287.1066, found 286.9732.

Para borylation of tetrapropyl ammonium 2-trifluoromethoxyphenyl sulfate (2k)

crude reaction mixture isomer ratio (NMR) = 23:1 96% conversion

In a glove box, a 5.0 mL Wheaton microreactor was charged with tetrapropyl ammonium 2-trifluoromethoxyphenyl sulfate (198 mg, 0.5 mmol), $[Ir(cod)(OMe)]_2$ (5 mg, 1.5 mol %), 4,4'-dimethoxy-2,2'-bipyridine (3.3 mg, 3.0 mol %), B₂pin₂ (159 mg, 0.625 mmol) and dioxane (1.5 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 40 °C. After 16 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio. HCl 12 M was added until pH = 1–2 and the resultant mixture was stirred for 1 h. The solution was concentrated and passed through a plug of silica gel (4% EtOAc in CHCl₃ as eluent). The fractions containing product were collected, concentrated and washed with hexanes (0.5 mL). The hexane layer was decanted and the residue was evaporated to give 117 mg of a mixture of *para* borylated 2-trifluoromethoxyphenol with traces of the *meta* isomer (<2%) as a white solid (77% yield, mp 129.6–131.9 °C)

¹H NMR (500 MHz, CDCl₃) δ 7.65 (s, 1H), 7.63 (d, J = 8.08 Hz, 1H), 7.01 (d, J = 8.08 Hz, 1H), 5.97 (bs, 1H), 1.33 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 150.4, 136.2, 134.9, 127.7, 120.7 (q, J = 259.0 Hz), 116.8, 84.1, 24.7. ¹¹B NMR (160 MHz, CDCl₃) δ 30.5. ¹⁹F NMR (470 MHz, CDCl₃) δ -60.97. HRMS (ESI) m/z calcd for C₁₃H₁₅BF₃O₄ [M–H]⁻ 303.1015, found 303.1244.

Para borylation of tetrapropylammonium 2-bromo-6-fluorophenyl sulfate (2l)

crude reaction mixture isomer ratio (NMR) = 8:1 >99.9% conversion

In a glove box, a 5.0 mL Wheaton microreactor was charged with tetrapropyl ammonium 2-bromo-6-fluorophenyl sulfate (228 mg, 0.5 mmol), $[Ir(cod)(OMe)]_2$ (5 mg, 1.5 mol %), 4,4'-dimethoxy-2,2'-bipyridine (3.3 mg, 3.0 mol %), B₂pin₂ (128 mg, 0.5 mmol) and dioxane (1.5 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 40 °C. After 12 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio. HCl 12 M was added until pH = 1–2 and the resultant mixture was stirred for 1 h. The solution was concentrated and passed through a plug of silica gel (CHCl₃ as eluent). The fractions containing product were collected and concentrated to give 120 mg of a mixture of *para* borylated 2-bromo-6-fluorophenol with traces of the *meta* isomer (para:meta = 35:1) as a white solid (76% yield, mp 127.6–129.0 °C).

¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, *J* = 1.3 Hz, 1H), 7.44 (dd, *J* = 10.3, 1.3 Hz, 1H), 1.32 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 150.6 (d, *J* = 246.0 Hz), 143.9 (d, *J* = 14.6 Hz), 134.2 (d, *J* = 3.0 Hz), 121.0 (d, *J* = 16.6 Hz), 110.7 (d, *J* = 1.6 Hz), 84.3, 24.8. ¹¹B NMR (160 MHz, CDCl₃) δ 30.1. ¹⁹F NMR (470 MHz, CDCl₃) δ –137.97 (d, *J* = 10.3 Hz). HRMS (ESI) m/z calcd for C₁₂H₁₄BBrFO₃ [M–H]⁻ 315.0203, found 314.8771.

Para borylation of tetrapropylammonium 2-methoxyphenyl sulfate (2m)

crude reaction mixture isomer ratio (NMR) = 39:1 >99.9% conversion

In a glove box, a 5.0 mL Wheaton microreactor was charged with tetrapropyl ammonium 2-methoxyphenyl sulfate (195 mg, 0.5 mmol), $[Ir(cod)(OMe)]_2$ (10 mg, 3 mol %), 4,4'-dimethoxy-2,2'-bipyridine (6.6 mg, 6.0 mol %), B₂pin₂ (159 mg, 0.625 mmol) and dioxane (1.5 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 40 °C. After 12 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio. HCl 12 M was added until pH = 1–2 and the resultant mixture was stirred for 1 h. The solution was concentrated and passed through a plug of silica gel (CHCl₃ as eluent) to give 122 mg of a mixture of *para* borylated 2-methoxyphenol with the *meta* isomer (*para:meta* = 39:1) as a white solid (98% yield, mp 96.7–100.0 °C)

¹H NMR (500 MHz, C_6D_6) δ 7.71 (dd, J = 7.8, 1.3 Hz, 1H), 7.46 (d, J = 1.3 Hz, 1H), 7.02 (d, J = 7.8 Hz, 1H), 5.95 (bs, 1H), 3.11 (s, 3H), 1.10 (s, 12H). ¹³C NMR (126 MHz, C_6D_6) δ 149.2, 146.2, 129.5, 116.7, 114.4, 83.2, 54.7, 24.6. ¹¹B NMR (160 MHz, C_6D_6) δ 31.1. HRMS (ESI) m/z calcd for $C_{13}H_{18}BO_4$ [M–H]⁻ 249.1298, found 249.0159.

Para borylation of tetrapropylammonium 3-cyanophenyl sulfate (2n)

crude reaction mixture isomer ratio (NMR): para:meta = 1:7 >99.9% conversion

In a glove box, a 5.0 mL Wheaton microreactor was charged with tetrapropyl ammonium 3-cyanophenyl sulfate (192 mg, 0.5 mmol), $[Ir(cod)(OMe)]_2$ (5 mg, 1.5 mol %), 4,4'-dimethoxy-2,2'-bipyridine (3.3 mg, 3.0 mol %), B₂pin₂ (159 mg, 0.625 mmol) and dioxane (1.5 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 40 °C. After 24 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio. HCl 12 M was added until pH = 1–2 and the resultant mixture was stirred for 1 h. The solution was concentrated and passed through a plug of silica gel (2% EtOAc in CHCl₃ as eluent). The fractions containing product

were collected, concentrated and washed with water (0.5 mL). The water layer was decanted and the residue was dried to give 102 mg of a mixture of *para* borylated 3-cyanophenol with the *meta* isomer (*para:meta* = 1:9.3) as a white solid (83% yield, mp 131.8–146.0 °C)

¹H NMR (500 MHz, CDCl₃) δ 7.69 – 7.60 (m, 1H), 7.47 (dd, J = 2.7, 1.0 Hz, 1H), 7.20 (dd, J = 2.6, 1.5 Hz, 1H), 6.44 (s, 0H), 1.33 (s, 13H). ¹³C NMR (126 MHz, CDCl₃) δ 156.16, 130.23, 126.37, 121.15, 118.69, 112.44, 84.62, 24.80. ¹¹B NMR (160 MHz, CDCl₃) δ 30.52. HRMS (ESI) m/z calcd for C₁₃H₁₅BNO₃ [M–H]⁻ 244.1145, found 244.1147.

Para borylation of tetrapropylammonium 3-methoxyphenyl sulfate (20)

crude reaction mixture isomer ratio (NMR): para:meta = 1:12 80% conversion

In a glove box, a 3.0 mL Wheaton microreactor was charged with tetrapropyl ammonium 3-methoxyphenyl sulfate (39 mg, 0.1 mmol), $[Ir(cod)(OMe)]_2$ (0.3 mL of 0.01 M solution, 3 mol %), 4,4'-dimethoxy-2,2'-bipyridine (0.2 mL of 0.03 M solution, 6.0 mol %) and B₂pin₂ (32 mg, 0.125 mmol). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 40 °C. After 48 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio.

Para borylation of tetrapropyl ammonium 3-chlorophenyl sulfate (2p)

crude reaction mixture isomer ratio (NMR): para:meta < 1:20 87% conversion

In a glove box, a 3.0 mL Wheaton microreactor was charged with tetrapropyl ammonium 3-chlorophenyl sulfate (39 mg, 0.1 mmol), $[Ir(cod)(OMe)]_2$ (0.1 mL of 0.015 M solution, 1.5 mol %), 4,4'-dimethoxy-2,2'-bipyridine (0.1 mL of 0.03 M solution 3.0 mol %), B₂pin₂ (38 mg, 0.15 mmol) and dioxane (0.2 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 40 °C. After 34 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio.

Para borylation of tetrapropylammonium phenyl sulfate (2q)

crude reaction mixture isomer ratio (NMR): para:meta:dimeta = 4.4:1:1.8 >99.9% conversion

In a glove box, a 5.0 mL Wheaton microreactor was charged with tetrapropylammonium $[Ir(cod)(OMe)]_2$ (10 sulfate (180)0.5 mmol), mg, phenyl mg, 3 mol %), 4,4'-dimethoxy-2,2'-bipyridine (6.6 mg, 3.0 mol %), B2pin2 (159 mg, 0.625 mmol, 1.0 equiv) and dioxane (1.5 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 40 °C. After 48 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio. HCl 12 M was added until pH = 1-2 and the resultant mixture was stirred for 1 h. The solution was concentrated and passed through a plug of silica gel (2% EtOAc in CHCl₃ as eluent). The fractions containing product were collected, concentrated and washed with water (0.5 mL). The water layer was decanted and the residue was dried to give 123 mg of a mixture of para borylated phenol with the *meta* and *dimeta* isomer (*para:meta* = 1:0.22:0.44) as a colorless oil (98% yield). The NMR data of the borylated compounds in the mixture were in accordance with the literature reported data.10,11
Para:

¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, J = 8.5 Hz, 1H), 6.82 (d, J = 8.5 Hz, 1H), 5.73 (s, 1H), 1.33 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 158.5, 136.8, 114.8, 83.7, 24.8. ¹¹B NMR (160 MHz, CDCl₃) δ 30.9.

Meta:

¹H NMR (500 MHz, CDCl₃) δ 7.37 (1H), 7.26 (2H), 6.95 (ddd, J = 8.1, 2.7, 1.1 Hz, 1H), 5.29 (s, 1H), 1.34 (s, 12H). The peaks at 7.26 and 6.95 are overlap with the *para* isomer and the solvent peak. ³C NMR (126 MHz, CDCl₃) δ 155.1, 129.3, 127.0, 121.1, 118.4, 84.0, 24.8. ¹¹B NMR (160 MHz, CDCl₃) δ 30.9.

Dimeta:

¹H NMR (500 MHz, CDCl₃) δ 7.84 (t, *J* = 1.0 Hz, 1H), 7.36 (d, *J* = 1.0 Hz, 2H), 5.16 (s, 1H), 1.33 (s, 24H). ³C NMR (126 MHz, CDCl₃) δ 154.6, 133.5, 124.1, 83.9, 24.8. ¹¹B NMR (160 MHz, CDCl₃) 30.9.

Synthesis of tetrapropylammonium 2-chlorophenyl sulfamate (3a)

2-Chloroaniline (0.77 g, 6 mmol) and SO₃•pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (150 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrapropylammonium bromide (1.60 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated. To the concentrated oil, hexanes, and ether were added and the suspension was again evaporated. This hexane/ether process was repeated until following the evaporation of solvent the product was obtained as a white solid. After overnight drying under high vacuum (3a) was obtained as a light orange solid (0.72 g, 31% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.65 (dd, J = 8.3, 1.6 Hz, 1H), 7.08 (dd, J = 7.7, 1.5 Hz, 1H), 6.99 (ddd, J = 8.3, 7.7, 1.5 Hz, 1H), 6.61 (td, J = 7.7, 1.6 Hz, 1H), 6.50 (bs, 1H), 3.03 – 2.79 (m, 8H), 1.44 (m, 8H), 0.80 (t, J = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) 139.0, 128.5, 127.4, 120.1, 119.5, 117.3, 60.0, 15.3, 10.6. HRMS (ESI) m/z calcd for C₆H₅ClNO₃S [M–N*n*-Pr₄]⁻ 205.9679, found 205.8718

Synthesis of tetrabutylammonium 2-chlorophenyl sulfamate (3a')

2-Chloroaniline (1.63 g, 12.74 mmol) and SO₃•pyridine complex (2.19 g, 13.75 mmol) were placed in a 100 mL round bottom flask. Pyridine (17 mL) and dry dichloromethane (10 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (150 mL) was added and the mixture was washed once with dichloromethane (1 x 150 mL). The aqueous phase was treated with tetrabutylammonium hydrogen sulfate (4.24 g, 12.5 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 150 mL). The organic layer was dried over MgSO₄, filtered, and concentrated. To the concentrated oil, hexanes, and ether were added and the suspension was again evaporated. This hexane/ether process was repeated until following the evaporation of solvent the product was obtained as a white solid. After overnight drying under high vacuum (**3a'**) was obtained as a tannish white solid (3.821 g, 60% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, J = 7.8 Hz, 1H), 7.19 (d, J = 7.8, 1H), 7.11 (t, J - 7.8 Hz, 1H), 6.71 (t, J = 7.8 Hz, 1H), 6.65 (bs, 1H), 3.30 – 2.98 (m, 8H), 1.60 – 1.45 (m, 8H), 1.42 – 1.13 (m, 8H), 0.94 (t, J = 7.4 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 139.1, 128.5, 127.5, 119.9, 119.7, 117.5, 58.5, 23.9, 19.6, 13.7. HRMS (ESI) m/z calcd for C₆H₅ClNO₃S [M–N*n*-Bu₄]⁻ 205.9679, found 205.9897.

Synthesis of tetrabutylammonium 2-bromophenyl sulfamate (3b')

2-Bromoaniline (2.14 g, 12.5 mmol) and SO₃•pyridine complex (2.19 g, 13.75 mmol) were placed in a 100 mL round bottom flask. Pyridine (17 mL) and dry dichloromethane (10 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (150 mL) was added and the mixture was washed once with dichloromethane (1 x 150 mL). The aqueous phase was treated with tetrabutylammonium hydrogen sulfate (4.24 g, 12.5 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 150 mL). The organic layer was dried over MgSO₄, filtered, and concentrated, resulting in an oil. To the concentrated oil, hexanes, and ether were added and the suspension was again evaporated. This hexane/ether process was repeated until following the evaporation of solvent the product was obtained as a white solid. After overnight drying under high vacuum (**3b'**) was obtained as a white solid (3.84 g, 62% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.81 (dd, J = 8.3, 1.5 Hz, 1H), 7.37 (dd, J = 8.0, 1.5 Hz, 1H), 7.16 (ddd, J = 8.3, 7.3, 1.5 Hz, 1H), 6.67 (bs, 1H), 6.66 (ddd, J = 8.0, 7.3, 1.5 Hz, 1H), 3.22 – 3.15 (m, 8H), 1.62 – 1.52 (m, 8H), 1.37 (m, 8H), 0.96 (t, J = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 140.2, 131.7, 128.2, 120.4, 117.6, 110.4, 58.5, 23.9, 19.7, 13.7. HRMS (ESI) m/z calcd for C₆H₅BrNO₃S [M–N*n*-Bu₄]⁻ 249.9173, found 249.8044.

Synthesis of tetrabutylammonium 3-fluorophenyl sulfamate (3c')

3-Fluoroaniline (1.3872 g, 12.5 mmol) and SO₃•pyridine complex (2.19 g, 13.75 mmol) were placed in a 100 mL round bottom flask. Pyridine (17 mL) and dry dichloromethane (10 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (150 mL) was added and the mixture was washed once with dichloromethane (1 x 150 mL). The aqueous phase was treated with tetrabutylammonium hydrogen sulfate (4.25 g, 12.5 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 150 mL). The organic layer was dried over MgSO₄, filtered, and concentrated, resulting in an oil. To the concentrated oil, hexanes, and ether were added and the suspension was again evaporated. This hexane/ether process was repeated until following the evaporation of solvent the product was obtained as a white solid. After overnight drying under high vacuum (**3c'**) was obtained as a light orange solid (4.12 g, 71% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.20 – 6.88 (m, 3H), 6.78 (dd, *J* = 7.6, 1.9 Hz, 1H), 6.44 (td, *J* = 8.5, 2.5 Hz, 1H), 3.19 – 3.08 (m, 8H), 1.51 (m, 8H), 1.33 (m, 8H), 0.91 (t, *J* = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 163.3 (d, *J* = 241.3 Hz), 144.7 (d, *J* = 11.2 Hz), 129.4 (d, *J* = 9.8 Hz), 112.2 (d, *J* = 2.3 Hz), 105.6 (dd, *J* = 21.5, 2.0 Hz), 103.5 (d, *J* = 25.5 Hz), 58.1, 23.7, 19.5, 13.5. ¹⁹F NMR (470 MHz, CDCl₃) δ –116.67 (ddd, *J* = 11.7, 8.4, 6.7 Hz). HRMS (ESI) m/z calcd for C₆H₅FNO₃S [M–N*n*-Bu₄]⁻ 189.9974, found 189.9108.

Synthesis of tetrabutylammonium 2-methoxyphenyl sulfamate (3d')

o-Anisidine (1.34 g, 11 mmol) and SO₃•pyridine complex (2.19 g, 13.75 mmol) were placed in a 100 mL round bottom flask. Pyridine (17 mL) and dry dichloromethane (10 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (150 mL) was added and the mixture was washed once with dichloromethane (1 x 150 mL). The aqueous phase was treated with tetrabutylammonium hydrogen sulfate (4.24 g, 12.5 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 150 mL). The organic layer was dried over $MgSO_4$, filtered, and concentrated, resulting in an oil. To the concentrated oil, hexanes, and ether were added and the suspension was again evaporated. This hexane/ether process was repeated until following the evaporation of solvent the product was obtained as a white solid. After overnight drying under high vacuum (**3d'**) was obtained as a pinkish white solid (4.88 g, 91% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.67 (dd, J = 7.8, 1.4 Hz, 1H), 6.81 (ddd, J = 7.8, 6.4, 2.4 Hz, 1H), 6.74 (ddd, J = 7.1, 6.4, 1.4 Hz, 1H), 6.72 (dd, J = 7.1, 2.4 Hz, 1H), 6.64 (bs, 1H), 3.75 (s, 3H), 3.23 – 3.04 (m, 8H), 1.52 (m, 8H), 1.35 (m, 8H), 0.94 (t, J = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 147.0, 132.4, 121.1, 119.4, 116.6, 109.8, 58.5, 55.5, 23.9, 19.6, 13.7. HRMS (ESI) m/z calcd for C₇H₈NO₄S [M–N*n*-Bu₄]⁻ 202.0174, found 202.0198.

Synthesis of tetrapropylammonium 2-fluorophenyl sulfamate (3e)

2-Fluoroaniline (0.67 g, 6 mmol) and SO₃•pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrapropyl ammonium bromide (1.60 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated, resulting in an oil. To the concentrated oil, hexanes and ether were added and the suspension was again evaporated. This hexane/ether process was repeated until following the evaporation of solvent the product was obtained as a white solid. After overnight drying under high vacuum (**3e**) was obtained as a white solid (0.55 g, 24% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.68 (td, J = 8.4, 1.7 Hz, 1H), 6.92 (ddd, J = 8.4, 7.7, 1.5 Hz, 1H), 6.87 (ddd, J = 11.2, 8.1, 1.5 Hz, 1H), 6.68 (dddd, J = 8.1, 7.7, 5.0, 1.7 Hz, 1H), 6.24 (s, 1H), 3.09 – 3.01 (m, 8H), 1.61 – 1.49 (m, 8H), 0.89 (t, J = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃)

δ 151.3 (d, J = 238.6 Hz), 130.8 (d, J = 11.7 Hz), 124.3 (d, J = 3.6 Hz), 119.8 (d, J = 7.1 Hz), 118.5 (d, J = 2.2 Hz), 114.2 (d, J = 19.2 Hz), 60.2, 15.5, 10.7. ¹⁹F NMR (470 MHz, CDCl₃) δ -137.7 (ddd, J = 10.9, 8.4, 5.0 Hz). HRMS (ESI) m/z calcd for C₆H₅FNO₃S [M–N*n*-Pr₄]⁻ 189.9974, found 190.0019.

crude reaction mixture *para* to *meta* isomer ratio (NMR) = 40:1 86% conversion, 76% yield

In a glove box, a 5.0 mL Wheaton microreactor equipped with a stir bar was charged with tetrapropylammonium 2-chlorophenyl sulfamate (196 mg, 0.5 mmol, 1 equiv), $[Ir(cod)(OMe)]_2$ (10 mg, 3.0 mol %), 4,4'-dimethoxy-2,2'-bipyridine (6.6 mg, 3.0 mol %), B₂pin₂ (128 mg, 0.5 mmol, 1 equiv) and dioxane (1.5 mL). The microreactor was capped with a Supelco teflon pressure cap and placed into an aluminum block pre-heated to 60 °C. After 36 h, an aliquot of the reaction was removed and concentrated under vacuum. The residue was dissolved in CDCl₃ and a ¹H NMR spectrum showed 86% conversion with a ratio of 40:1 para to meta borylation. Crude para borylated 2-chlorosulfamate: ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, *J* = 8.2 Hz, 1H), 7.63 (d, *J* = 1.4 Hz, 1H), 7.52 (dd, *J* = 8.1, 1.5 Hz, 1H), 6.82 (s, 1H), 3.10 – 3.03 (m, 8H), 1.62 – 1.52 (m, 8H), 1.28 (s, 12H), 0.93 (t, *J* = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 135.1, 134.2, 116.4, 83.6, 82.9, 67.0, 60.1, 24.8, 24.5, 15.5, 10.7.

Concentrated HCl was added (2 drops, pH = 1–2) and the resultant mixture was stirred for 1 h. TLC eluting in CH_2Cl_2 showed the appearance of a new spot at $r_f = 0.5$, whereas the crude borylated sulfamate did not move off the baseline. The solution was concentrated and pumped down under vacuum. The crude material was dissolved in CH_2Cl_2 and applied to a 5 g silica plug packed in 1:99 hexane/ CH_2Cl_2 to yield 96 mg of *para* borylated 2-chloroaniline as a white solid. (76% yield, mp 100–102 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, J = 1.3 Hz, 1H), 7.49 (dd, J = 7.9, 1.4 Hz, 1H), 6.73 (d, J = 7.9 Hz, 1H), 4.24 (s, 2H), 1.32 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) 139.1, 128.5, 127.5, 119.97, 119.8, 117.5, 58.6, 23.9, 19.7, 13.7. ¹¹B NMR (160 MHz, CDCl₃) δ 30.3. HRMS (ESI) m/z calcd for C₁₂H₁₈BCINO₂ [M+H]⁺ 254.1119, found 254.1151.

Para borylation of tetrabutylammonium 2-chlorophenyl sulfamate (4a')

crude reaction mixture isomer ratio (NMR) = 43:1 98% conversion, 95% yield

In a glove box, a 5.0 mL Wheaton microreactor equipped with a stir bar was charged with tetrabutylammonium 2-chlorophenyl sulfamate (225 mg, 0.5 mmol, 1 equiv), $[Ir(cod)(OMe)]_2$ (10 mg, 3.0 mol %), 4,4'-dimethoxy-2,2'-bipyridine (6.6 mg, 6.0 mol %), B₂pin₂ (128 mg, 0.5 mmol, 1.0 equiv) and dioxane (1.5 mL). The microreactor was capped with a Supelco teflon pressure cap and placed into an aluminum block pre-heated to 60 °C. After 36 h, an aliquot of the reaction was removed and concentrated under vacuum. The residue was dissolved in CDCl₃ and a ¹H NMR spectrum showed 98% conversion with a ratio of 43:1 para to meta borylation. Concentrated HCl was added (2 drops, pH = 1–2) and the resultant mixture was stirred for 1 h. TLC eluting in CH₂Cl₂ showed the appearance of a new spot at $r_f = 0.5$, whereas the crude borylated sulfamate did not move off the baseline. The solution was concentrated and pumped down under vacuum. The crude material was dissolved in CH₂Cl₂ and applied to a 5 g silica plug packed in 1:99 hexane/CH₂Cl₂ to yield 120 mg of *para* borylated 2-chloroaniline as a white solid. (95% yield, mp 100–102 °C). The NMR data were consistent with previously reported values.¹²

¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, J = 1.3 Hz, 1H), 7.49 (dd, J = 7.9, 1.4 Hz, 1H), 6.73 (d, J = 7.9 Hz, 1H), 4.24 (s, 2H), 1.32 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) 139.1, 128.5, 127.5, 120.0, 119.8, 117.5, 58.6, 23.9, 19.7, 13.7. ¹¹B NMR (160 MHz, CDCl₃) δ 30.3. HRMS (ESI) m/z calcd for C₁₂H₁₈BClNO₂ [M+H]⁺ 254.1119, found 254.1310.

Para borylation of tetrabutylammonium 2-bromophenyl sulfamate (4b')

crude reaction mixture isomer ratio (NMR) = 66:1 89% conversion, 72% yield

In a glove box, a 5.0 mL Wheaton microreactor equipped with a stir bar was charged with tetrabutylammonium 2-bromophenyl sulfamate (247 mg, 0.5 mmol, 1 equiv), $[Ir(cod)(OMe)]_2$ (10 mg, 3.0 mol%), 4,4'-dimethoxy-2,2'-bipyridine (6.6 mg, 6.0 mol%), B₂pin₂ (128 mg, 0.5 mmol, 1.0 equiv) and dioxane (1.5 mL). The microreactor was capped with a Supelco teflon pressure cap and placed into an aluminum block pre-heated to 60 °C. After 36 h, an aliquot of the reaction was removed and concentrated under vacuum. The residue was dissolved in CDCl₃ and a ¹H NMR spectrum showed 89% conversion with a ratio of 66:1 para to meta borylation. Para borylated 2-bromosulfamate determined from the crude reaction mixture: ¹H NMR (500 MHz, CDCl₃) δ 7.83 – 7.79 (m, 1H), 7.75 (dd, *J* = 8.2, 0.8 Hz, 1H), 7.57 (dd, *J* = 8.1, 1.4 Hz, 1H), 6.86 (s, 1H), 3.25 – 3.09 (m, 8H), 1.56 (m, 8H), 1.37 (m, 8H), 1.29 (s, 12H), 0.97 – 0.93 (m, 12H).

Concentrated HCl was added (2 drops, pH = 1–2) and the resultant mixture was stirred for 1 h. TLC eluting in CH₂Cl₂ showed the appearance of a new spot at $r_f = 0.5$, whereas the crude borylated sulfamate did not move off the baseline. The solution was concentrated and pumped down under vacuum. The crude material was dissolved in CH₂Cl₂ and applied to a 5 g silica plug packed in 1:99 hexane/CH₂Cl₂ to yield 128 mg material. ¹H NMR showed B₂pin₂ contamination in the isolated product. The mass of B₂pin₂ was calculated from mol fraction based on NMR integrations and subtracted from the mass of the isolated material. The mass of *para* borylated 2-bromoaniline present in the material was 88 mg. (72% yield). The material was washed in cold hexane and dried under vacuum to yield 55 mg of the pure *para* borylated 2-bromoaniline. (37% yield, mp 101–102 °C). NMR data was consistent with previously reported NMR values.¹³ ¹H NMR (500 MHz, CDCl₃) δ 7.86 (s, 1H), 7.52 (d, *J* = 7.9 Hz, 1H), 6.72 (d, *J* = 8.0 Hz, 1H), 4.29 (s, 2H), 1.32 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 146.6, 139.3, 135.0, 114.8, 108.9, 83.6, 24.8. ¹¹B NMR (160 MHz, CDCl₃) δ 30.2. HRMS (ESI) m/z calcd for C₁₂H₁₈BBrNO₂ [M+H]⁺ 298.0614, found 298.0787.

Para borylation of tetrabutylammonium 3-fluorophenyl sulfamate (4c')

crude reaction mixture para to meta isomer ratio (19 F NMR) = 2.8:1 96% conversion to borylated sulfamate

In a glove box, a 5.0 mL Wheaton microreactor equipped with a stir bar was charged with tetrabutylammonium 3-fluorophenyl sulfamate (216 mg, 0.5 mmol, 1 equiv), $[Ir(cod)(OMe)]_2$ (10 mg, 3.0 mol %), 4,4'-dimethoxy-2,2'-bipyridine (6.6 mg, 6 mol %), B₂pin₂ (159 mg, 0.625 mmol, 1.25 equiv) and dioxane (1.5 mL). The microreactor was capped with a Supelco teflon pressure cap and placed into an aluminum block pre-heated to 60 °C. After 36 h, an aliquot of the reaction was removed and diluted with CDCl₃ and a ¹⁹F NMR spectrum showed 96% conversion with a ratio of 2.8:1 para to meta borylation.

Characterization data was determined from the crude mixture of borylated material and borate byproducts. Para borylated 3-fluorophenyl sulfamate: ¹H NMR (500 MHz, CDCl₃) δ 7.44 (dd, J = 8.1, 7.1 Hz, 1H), 6.93 (dd, J = 12.1, 1.9 Hz, 1H), 6.73 (dd, J = 8.2, 1.9 Hz, 1H), 5.91 (s, 1H), 3.16 – 3.07 (m, 8H), 1.48 (m, 8H), 1.33 – 1.28 (m, 8H), 1.27 (s, 12H), 0.88 (t, J = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 168.5 (d, J = 247.9 Hz), 147.7 (d, J = 12.1 Hz), 137.1 (d, J = 10.2 Hz), 111.9 (d, J = 2.1 Hz), 102.9 (d, J = 28.8 Hz), 83.8, 58.6, 50.7, 24.8, 24.0, 19.6, 13.6. ¹⁹F NMR (470 MHz, CDCl₃) δ –105.54. Meta borylated 3-fluorophenyl sulfamate: ¹H NMR (500 MHz, CDCl₃) δ 7.32 (dt, J = 11.6, 2.4 Hz, 1H), 6.96 (d, J = 2.1 Hz, 1H), 6.85 (dd, J = 8.6, 2.5 Hz, 1H), 6.75 (s, 1H), 3.17 – 3.06 (m, 8H), 1.48 (m, 8H), 1.30 (m, 8H), 1.25 (s, 12H), 0.88 (t, J = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 163.2 (d, J = 242.9 Hz), 144.0 (d, J = 10.2 Hz),

129.6 (d, J = 9.9 Hz), 112.2 (d, J = 20.0 Hz), 107.2 (d, J = 26.0 Hz), 83.7, 58.6, 24.8, 23.9, 19.6, 13.6. ¹⁹F NMR (470 MHz, CDCl₃) δ –117.5. HRMS (ESI) m/z calcd for C₁₂H₁₆BFNO₅S [M–N*n*-Bu₄]⁻ 316.0826, found 316.1525.

Borylation of tetrabutylammonium 3-fluorophenyl sulfamate - Acylation work-up (4c')

crude reaction mixture isomer ratio (NMR): para:meta = 2.4:1 96% conversion

In a glove box, a 5.0 mL Wheaton microreactor was charged with tetrabutyl ammonium 3-fluorophenyl sulfamate (216 mg, 0.5 mmol), $[Ir(cod)(OMe)]_2$ (10 mg, 3 mol %), 4,4'-dimethoxy-2,2'-bipyridine (6.6 mg, 6.0 mol %), B₂pin₂ (159 mg, 0.625 mmol) and dioxane (1.5 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 60 °C. After 36 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio. Acetyl chloride (0.08 mL, 1 mmol) was added and the resultant mixture was stirred for 4 h. The solution was concentrated and passed through a plug of silica gel (2% EtOAc in CHCl₃ as eluent). The fractions containing product were collected, concentrated and washed with water (2 mL). The water layer was decanted and the residue was dried to give 106 mg of a mixture of *para* borylated N-(3-fluorophenyl)acetamide with the *meta* isomer (*para:meta* = 2.1:1) as a white solid (76% yield, mp 147.1–146.7 °C) NMR data was consistent with previously reported NMR values.¹⁴ *Para:*

¹H NMR (500 MHz, CDCl₃) δ 7.78 (bs, 1H), 7.65 (dd, J = 8.1, 6.8 Hz, 1H), 7.47 (dd, J = 11.4, 1.9 Hz, 1H), 7.14 (dd, J = 8.1, 1.9 Hz, 1H), 2.17 (s, 3H), 1.33 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 168.6, 167.7 (d, J = 250.0 Hz), 142.5 (d, J = 11.7 Hz), 137.3 (d, J = 9.7 Hz), 114.2, 106.4 (d, J = 29.6 Hz), 83.8, 24.8, 24.7. ¹¹B NMR (160 MHz, CDCl₃) δ 30.05. ¹⁹F NMR (470 MHz, CDCl₃) δ -103.81 (dd, J = 11.4, 6.8 Hz).

Meta:

¹H NMR (500 MHz, CDCl₃) δ 7.76 (dt, *J* = 11.1, 2.3 Hz, 1H), 7.62 (bs, 1H), 7.35 (dd, *J* = 2.3, 0.8 Hz, 1H), 7.20 (dd, *J* = 8.3, 2.3 Hz, 1H), 2.16 (s, 3H), 1.31 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 168.5, 162.7 (d, *J* = 246.0 Hz), 139.0 (d, *J* = 10.2 Hz), 120.9 (d, *J* = 2.8 Hz), 116.5 (d, *J* = 19.7 Hz), 110.3 (d, *J* = 26.9 Hz), 84.23, 24.85, 24.53.. ¹¹B NMR (160 MHz, CDCl₃) δ 30.05. ¹⁹F NMR (470 MHz, CDCl₃) δ -115.34 (dd, *J* = 11.1, 8.3 Hz). HRMS (ESI) m/z calcd for C₁₄H₁₈BFNO₃ [M–H]⁻ 278.1364, found 278.1364.

Para borylation of tetrabutylammonium 2-methoxyphenyl sulfamate (4d')

crude reaction mixture isomer *para* to *meta* ratio (NMR) = 20:175% conversion, 59% isolated yield

In a glove box, a 5.0 mL Wheaton microreactor equipped with a stir bar was charged with tetrabutylammonium 2-methoxyphenyl sulfamate (222 mg, 0.5 mmol, 1 equiv), $[Ir(cod)(OMe)]_2$ (10 mg, 3.0 mol %), 4,4'-dimethoxy-2,2'-bipyridine (6.6 mg, 6 mol %), B₂pin₂ (128 mg, 0.5 mmol, 1.0 equiv) and dioxane (1.5 mL). The microreactor was capped with a Supelco teflon pressure cap and placed into an aluminum block pre-heated to 60 °C. After 48 h, an aliquot of the reaction was removed and concentrated under vacuum. The residue was dissolved in CDCl₃ and a ¹H NMR spectrum showed 75% conversion with a ratio of 20:1 para to meta borylation.

Para borylated 2-methoxyphenyl sulfamate determined from the crude material: ¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, J = 7.9 Hz, 1H), 7.26 (d, J = 7.9 Hz, 1H), 7.08 (s, 1H), 6.76 (s, 1H), 3.75 (s, 3H), 3.07 – 3.00 (m, 8H), 1.42 (p, J = 7.8 Hz, 8H), 1.31 – 1.23 (m, 8H), 1.26 (s, 12H), 0.87 (t, J = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 145.9, 135.3, 128.8, 115.3, 115.2, 83.3, 24.8, 24.5, 23.8, 19.5, 13.7. ¹¹B NMR (160 MHz, CDCl₃) δ 30.9.

Anhydrous methanol (1 mL) was added to the reaction with stirring. 1M HCl in ether (0.5 mmol, 0.5 mL, 1 equiv) was added dropwise by syringe, until the pH was 7. The mixture was

stirred 12 hours, then concentrated to a brown oil. The crude material was dissolved in CH_2Cl_2 and applied to a 7 g silica plug eluting in CH_2Cl_2 . After 100 mL CH_2Cl_2 was eluted, the elutant was changed to 1:1:98 ethyl acetate:triethylamine: CH_2Cl_2 . Fractions were combined and concentrated to 68 mg of a pale pink solid, 59% yield, m.p 116–117 °C.

Para borylated 2-methoxyaniline: ¹H NMR (500 MHz, CDCl₃) δ 7.29 (dd, J = 7.6, 1.3 Hz, 1H), 7.20 (d, J = 1.3 Hz, 1H), 6.70 (d, J = 7.6 Hz, 1H), 4.00 (s, 2H), 3.89 (s, 3H), 1.33 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 146.4, 139.5, 128.8, 115.8, 114.0, 83.3, 55.5, 24.9. ¹¹B NMR (160 MHz, CDCl₃) δ 30.9. HRMS (ESI) m/z calcd for C₁₃H₂₁BNO3 [M+H]⁺ 250.1614, found 250.1677.

Para borylation of tetrapropylammonium 2-fluorophenyl sulfamate (4e)

crude reaction mixture isomer *para* to *meta* ratio (NMR) = 2:1 94% conversion, 52% isolated yield (10:1)

In a glove box, a 5.0 mL Wheaton microreactor equipped with a stir bar was charged with tetrapropylammonium 2-fluorophenyl sulfamate (188 mg, 0.5 mmol, 1 equiv), $[Ir(cod)(OMe)]_2$ (10 mg, 3.0 mol %), 4,4'-dimethoxy-2,2'-bipyridine (6.6 mg, 6 mol %), B₂pin₂ (159 mg, 0.625 mmol, 1.25 equiv) and dioxane (1.5 mL). The microreactor was capped with a Supelco teflon pressure cap and placed into an aluminum block pre-heated to 60 °C. After 36 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio. HCl 12 M was added until pH = 1–2 and the resultant mixture was stirred for 1 h. The solution was concentrated and passed through a plug of silica gel (CHCl₃ as eluent) to give 62 mg of a mixture of *para* borylated 2-fluoroaniline with the *meta* isomer (*para:meta* = 10:1) as a white solid (52% yield, mp 90.6–96.2 °C).

Para:

¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.32 (m, 2H), 6.77 – 6.69 (m, 1H), 3.94 (br s, 2H), 1.32 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 151.1 (d, *J* = 239.2 Hz), 137.6 (d, *J* = 12.5 Hz), 131.5 (d, *J* = 3.2 Hz), 121.0 (d, *J* = 16.2 Hz), 115.9 (d, *J* = 3.0 Hz), 83.6, 24.8. ¹⁹F NMR (470 MHz, CDCl₃) δ –140.50 (dd, *J* = 11.7, 8.7 Hz). ¹¹B NMR (160 MHz, CDCl₃) δ 30.3 *Meta*:

¹H NMR (500 MHz, CDCl₃) δ 7.09 (ddd, J = 7.6, 5.1, 1.8 Hz, 1H), 6.93 (t, J = 7.6 Hz, 1H), 6.87 (ddd, J = 9.4, 7.6, 1.8 Hz, 1H), 3.78 (br s, 2H), 1.36 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 155.7 (d, J = 243.6 Hz), 134.3 (d, J = 14.8 Hz), 125.2 (d, J = 7.1 Hz), 124.0 (d, J = 3.6 Hz), 120.0 (d, J = 4.3 Hz), 83.8, 24.8. ¹⁹F NMR (470 MHz, CDCl₃) δ -128.76 (dt, J = 9.4, 5.1 Hz). ¹¹B NMR (160 MHz, CDCl₃) δ 30.3.

HRMS (ESI) m/z calcd for C₁₂H₁₈BFNO₂ [M+H]⁺ 238.1415, found 238.1488.

Synthesis of tetrapropylammonium 2-chlorobenzyl sulfate (5a)

2-Chlorobenzyl alcohol (0.86 g, 6 mmol) and SO_3 •pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrapropyl ammonium bromide (1.60 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated. Diethyl ether and hexanes were added to evaporate the solvent to dryness and the product was obtained as a white solid (2.02 g, 83% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.63 (dd, J = 7.5, 1.8Hz, 1H), 7.26 (dd, J = 7.5, 1.5 Hz, 1H), 7.19 (td, J = 7.5, 1.5 Hz, 1H), 7.15 (td, J = 7.5, 1.8 Hz, 1H), 5.14 (s, 2H), 3.26 – 2.93 (m, 8H),

1.74 – 1.46 (m, 8H), 0.96 (t, J = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 135.5, 132.1, 129.1, 128.8, 128.4, 126.6, 65.6, 60.1, 15.4, 10.7. HRMS (ESI) m/z calcd for C₇H₆ClO₄S [M–N*n*-Pr₄]⁻ 220.9675, found 220.9680.

Synthesis of tetrabutylammonium 2-chlorobenzyl sulfate (5a')

2-Chlorobenzyl alcohol (0.86 g, 6 mmol) and SO_3 •pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrabutyl ammonium hydrogen sulfate (2.13 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated. Diethyl ether and hexanes were added to evaporate the solvent to dryness and the product was obtained as a white solid (2.28 g, 83% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.63 (dd, J = 7.5, 1.8Hz, 1H), 7.26 (dd, J = 7.5, 1.5 Hz, 1H), 7.19 (td, J = 7.5, 1.5 Hz, 1H), 7.15 (td, J = 7.5, 1.8 Hz, 1H), 5.13 (s, 2H), 3.34 – 3.04 (m, 8H), 1.56 (dq, J = 11.9, 8.0, 7.5 Hz, 8H), 1.35 (h, J = 7.4 Hz, 8H), 0.92 (t, J = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 135.7, 132.0, 129.0, 128.7, 128.3, 126.5, 65.6, 58.3, 23.7, 19.5, 13.6. HRMS (ESI) m/z calcd for C₇H₆ClO₄S [M–N*n*-Bu₄]⁻ 220.9675, found 220.9689.

Synthesis of tetrapropylammonium 2-bromobenzyl sulfate (5b)

2-Bromobenzyl alcohol (1.12 g, 6 mmol) and SO_3 •pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrapropyl ammonium bromide (1.60 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated, resulting in an oil. To the concentrated oil, hexanes and ether were added and the suspension was again evaporate. This hexane/ether process was repeated until following the evaporation of solvent the product was obtained as a white solid. After overnight drying under high vacuum (**5b**) was obtained as a white solid (1.93 g, 71% yield)

¹H NMR (500 MHz, CDCl₃) δ 7.63 – 7.55 (dd, J = 7.7, 1.7 Hz, 1H), 7.44 (dd, J = 7.7, 1.2 Hz, 1H), 7.23 (td, J = 7.7, 1.2 Hz, 1H), 7.07 (td, J = 7.7, 1.7 Hz, 1H), 5.06 (s, 2H), 3.21 – 3.04 (m, 8H), 1.68 – 1.50 (m, 8H), 0.92 (t, J = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 137.2, 132.0, 129.2, 128.7, 127.2, 121.9, 67.9, 60.2, 15.5, 10.8. HRMS (ESI) m/z calcd for C₇H₆BrO₄S [M–N*n*-Pr₄]⁻ 264.91702, found 264.7968.

Synthesis of tetrabutylammonium 2-bromobenzyl sulfate (5b')

2-Bromobenzyl alcohol (1.12 g, 6 mmol) and SO_3 •pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrabutyl ammonium hydrogen sulfate (2.13 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated. To the concentrated oil, hexanes and ether were added and the suspension was again evaporate. This hexane/ether process was repeated until following the evaporation of solvent the product was obtained as a white solid. After overnight drying under high vacuum (**5b**') was obtained as a white solid (1.321 g, 43% yield)

¹H NMR (500 MHz, CDCl₃) δ 7.51 (dd, J = 7.8, 1.6 Hz, 1H), 7.37 (dd, J = 8.0, 1.1 Hz, 1H), 7.18 – 7.13 (m, 1H), 7.01 (td, J = 8.0, 1.6 Hz, 1H), 4.98 (s, 2H), 3.18 – 2.88 (m, 8H), 1.62 – 1.40 (m, 8H), 0.84 (t, J = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 137.2, 132.0, 129.04, 128.7, 127.2, 121.8, 67.8, 60.1, 15.4, 10.7. HRMS (ESI) m/z calcd for C₇H₆BrO₄S [M–N*n*-Bu₄]⁻ 264.9170, found 264.9280.

Synthesis of tetrapropylammonium 2-trifluoromethylbenzyl sulfate (5c)

2-Trifluoromethylbenzyl alcohol (1.06 g, 6 mmol) and SO_3 •pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrapropyl ammonium bromide (1.60 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated. To the concentrated oil, hexanes and ether were added and the suspension was again evaporate. This hexane/ether process was repeated until following the evaporation of solvent the product was obtained as a white solid. After overnight drying under high vacuum (**5c**) was obtained as a white solid (1.34 g, 51% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, J = 7.8 Hz, 1H), 7.52 (d, J = 7.8 Hz, 1H), 7.45 (t, J = 7.8 Hz, 1H), 7.28 (t, J = 7.8 Hz, 1H), 5.18 (s, 2H), 3.28–2.91 (m, 8H), 1.69–1.42 (m, 8H), 0.90 (t, J = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 136.5, 131.8, 129.1, 127.1, 126.8 (q, J = 31

Hz), 125.2 (q, J = 5.67 Hz), 124.3 (q, J = 275 Hz), 64.5 (q, J = 3.3 Hz), 60.2, 15.46, 10.6. ¹⁹F NMR (470 MHz, CDCl₃) δ -63.16. HRMS (ESI) m/z calcd for C₈H₆F₃O₄S [M–N*n*-Pr₄]⁻ 254.9939, found 254.8768.

Synthesis of tetrabutylammonium 2-trifluoromethylbenzyl sulfate (5c')

2-Trifluoromethylbenzyl alcohol (1.06 g, 6 mmol) and SO_3 •pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrabutylammonium hydrogensulfate (2.04 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated. To the concentrated oil, hexanes and ether were added and the suspension was again evaporate. This hexane/ether process was repeated until following the evaporation of solvent the product was obtained as a white solid. After overnight drying under high vacuum (**5c**') was obtained as a white solid (1.20 g, 40% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 7.7 Hz, 1H), 7.55 (dd, J = 7.7, 1.2 Hz, 1H), 7.47 (td, J = 7.7, 1.2 Hz, 1H), 7.30 (t, J = 7.7 Hz, 1H), 5.22 (s, 2H), 3.36 – 3.09 (m, 8H), 1.61–1.50 (m, 8H), 1.39–1.29 (m, 8H), 0.91 (t, J = 7.4 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 136.7 (q, J = 1.9 Hz), 131.7, 129.1, 126.9, 126.7 (q, J = 30.6 Hz), 125.1 (q, J = 5.8 Hz), 124.3 (q, J = 273.7 Hz), 64.5 (q, J = 3.1 Hz), 58.5, 23.8, 19.6, 13.6. ¹⁹F NMR (470 MHz, CDCl₃) δ -63.3. HRMS (ESI) m/z calcd for C₈H₆F₃O₄S [M–N*n*-Bu₄]⁻ 254.9939, found 255.0028.

Synthesis of tetrapropylammonium 2-methylbenzyl sulfate (5d)

o-Tolylmethanol (0.73 g, 6 mmol) and SO₃•pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrapropyl ammonium bromide (1.60 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated. To the concentrated oil, hexanes and ether were added and the suspension was again evaporate. This hexane/ether process was repeated until following the evaporation of solvent the product was obtained as a white solid. After overnight drying under high vacuum (**5d**) was obtained as a white solid (1.41 g, 71% yield).

¹H NMR (500 MHz, CDCl₃) δ δ 7.31 (dd, J = 7.8, 1.5 Hz, 1H), 7.13 – 7.01 (m, 3H), 4.96 (s, 2H), 3.11 – 2.84 (m, 8H), 2.29 (s, 3H), 1.60–1.44 (m, 8H), 0.88 (t, J = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 136.9, 135.5, 129.9, 128.8, 127.7, 125.5, 67.0, 60.1, 18.8, 15.4, 10.7. HRMS (ESI) m/z calcd for C₈H₉O₄S [M–N*n*-Pr₄]⁻ 201.0222, found 201.0271.

Synthesis of tetrapropylammonium 2-(trifluoromethoxy)benzyl sulfate (5e)

(2-(Trifluoromethoxy)phenyl)methanol (1.15 g, 6 mmol) and SO₃•pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at rt for 18 h. After this time,

the reaction was heated to 40 °C for 1 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrapropyl ammonium bromide (1.60 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated. To the concentrated oil, hexanes and ether were added and the suspension was again evaporate. This hexane/ether process was repeated until following the evaporation of solvent the product was obtained as a white solid. After overnight drying under high vacuum (**5e**) was obtained as a white solid (1.72 g, 63% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.65 (dd, J = 7.2, 2.2 Hz, 1H), 7.25 – 7.18 (m, 2H), 7.13 (dp, J = 7.5, 1.7 Hz, 1H), 5.09 (s, 2H), 3.20 – 2.95 (m, 8H), 1.70 – 1.43 (m, 8H), 0.91 (t, J = 7.3 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 146.2 (q, J = 1.9 Hz), 130.8, 129.7, 128.4, 126.7, 120.5 (q, J = 257.3 Hz), 120.0, 62.7, 60.3, 15.5, 10.6. ¹⁹F NMR (470 MHz, CDCl₃) δ -60.42. HRMS (ESI) m/z calcd for C₈H₆F₃O₅S [M–N*n*-Pr₄]⁻ 270.9888, found 270.9895.

Synthesis of tetrapropylammonium 1-(2-bromophenyl)ethyl sulfate (5f)

1-(2-Bromophenyl)ethan-1-ol (0.80 g, 4 mmol) and SO_3 •pyridine complex (0.70 g, 4.4 mmol) were placed in a 100 mL round bottom flask. Pyridine (5.3 mL) and dry dichloromethane (3.3 mL) were added and the mixture was stirred at rt for 18 h. After this time, the reaction was heated to 40 °C for 1 h. Water (50 mL) was added and the mixture was washed once with dichloromethane (1 x 50 mL). The aqueous phase was treated with tetrapropyl ammonium bromide (1.06 g, 4 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 50 mL). The organic layer was dried over MgSO₄, filtered, and concentrated. To the concentrated oil, hexanes and ether were added and the suspension was again evaporate. This hexane/ether process was repeated until following the evaporation of solvent the product was

obtained as a white solid. After overnight drying under high vacuum (5f) was obtained as a white solid (1.30 g, 70% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.66 (dd, J = 7.7, 1.7 Hz, 1H), 7.41 (dd, J = 7.7, 1.2 Hz, 1H), 7.24 (td, J = 7.7, 1.2 Hz, 1H), 7.03 (td, J = 7.7, 1.7 Hz, 1H), 5.71 (q, J = 6.4 Hz, 1H), 3.17 – 2.88 (m, 8H), 1.66 – 1.54 (m, 8H), 1.51 (d, J = 6.4 Hz, 3H), 0.93 (t, J = 7.3 Hz, 13H). ¹³C NMR (126 MHz, CDCl₃) δ 144.0, 132.1, 128.1, 127.9, 127.4, 120.8, 74.2, 60.2, 23.2, 15.5, 10.8. HRMS (ESI) m/z calcd for C₈H₈BrO₄S [M–N*n*-Pr₄]⁻ 278.9327, found 278.9380.

Synthesis of tetrapropylammonium 2-fluorobenzyl sulfate (5g)

(2-Fluorophenyl)methanol (0.76, 6 mmol) and SO_3 •pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at 40 °C for 8 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrapropyl ammonium bromide (1.60 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated. To the concentrated oil, hexanes and ether were added and the suspension was again evaporate. This hexane/ether process was repeated until following the evaporation of solvent the product was obtained as a white solid. After overnight drying under high vacuum (**5g**) was obtained as a white solid (0.94 g, 40% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.48 (td, J = 7.5, 1.8 Hz, 0H), 7.18 (tdd, J = 7.6, 5.2, 1.8 Hz, 0H), 7.02 (td, J = 7.5, 1.2 Hz, 0H), 6.92 (ddd, J = 9.7, 8.2, 1.2 Hz, 0H), 5.03 (d, J = 1.4 Hz, 0H), 3.58 – 2.62 (m, 1H), 1.89 – 1.24 (m, 1H), 0.89 (t, J = 7.4 Hz, 1H).¹³C NMR (126 MHz, CDCl₃) δ 160.41 (d, J = 246.9 Hz), 130.52 (d, J = 4.0 Hz), 129.21 (d, J = 7.9 Hz), 124.83 (d, J = 14.4 Hz), 123.88 (d, J = 3.7 Hz), 114.81 (d, J = 21.4 Hz), 62.26 (d, J = 4.4 Hz), 60.18 (d, J = 2.3 Hz),

15.45, 10.67.¹⁹F NMR (470 MHz, CDCl₃) δ –122.02 (d, J = 8.4 Hz), –164.90. HRMS (ESI) m/z calcd for C₇H₆FO₄S [M–N*n*-Pr₄]⁻ 204.9971, found 205.0033.

Synthesis of tetrapropylammonium 3-fluorobenzyl sulfate (5h)

(3-Fluorophenyl)methanol (0.76 g, 6 mmol) and SO_3 •pyridine complex (1.05 g, 6.6 mmol) were placed in a 100 mL round bottom flask. Pyridine (8 mL) and dry dichloromethane (5 mL) were added and the mixture was stirred at 40 °C for 8 h. Water (70 mL) was added and the mixture was washed once with dichloromethane (1 x 70 mL). The aqueous phase was treated with tetrapropyl ammonium bromide (1.60 g, 6 mmol) and stirred for 1 h. The solution was extracted with dichloromethane (3 x 70 mL). The organic layer was dried over MgSO₄, filtered, and concentrated. To the concentrated oil, hexanes and ether were added and the suspension was again evaporate. This hexane/ether process was repeated until following the evaporation of solvent the product was obtained as a white solid. After overnight drying under high vacuum (**5c**) was obtained as a white solid (1.75 g, 75% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.17 (td, J = 8.1, 6.0 Hz, 1H), 7.14 – 6.94 (m, 2H), 6.94 – 6.76 (m, 1H), 4.92 (s, 1H), 3.58 – 2.54 (m, 7H), 1.93 – 1.25 (m, 8H), 0.87 (t, J = 7.3 Hz, 11H). ¹³C NMR (126 MHz, CDCl₃) δ 162.62 (d, J = 244.9 Hz), 140.46 (d, J = 7.5 Hz), 129.62 (d, J = 8.1 Hz), 123.18 (d, J = 2.8 Hz), 114.53 (dd, J = 21.8, 1.5 Hz), 114.15 (d, J = 21.2 Hz), 67.84 (d, J = 1.9 Hz), 60.20, 15.43, 10.66. ¹⁹F NMR (470 MHz, CDCl₃) δ –116.13 – –118.06 (m), –164.90. HRMS (ESI) m/z calcd for C₇H₆FO₄S [M–N*n*-Pr₄]⁻ 204.9971, found 205.0026.

Para borylation of tetrapropyl ammonium 2-chlorobenzyl sulfate (6a)

crude reaction mixture isomer ratio (NMR) = 18:1 >99.9% conversion

In a glove box, a 5.0 mL Wheaton microreactor was charged with tetrapropyl ammonium 2-chlorobenzyl sulfate (204 mg, 0.5 mmol), $[Ir(cod)(OMe)]_2$ (5 mg, 1.5 mol %), 4,4'-dimethoxy-2,2'-bipyridine (3.3 mg, 3.0 mol %), B₂pin₂ (159 mg, 0.625 mmol) and dioxane (1.5 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 40 °C. After 12 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio. HCl 12 M was added until pH = 1–2 and the resultant mixture was stirred for 1 h. The solution was concentrated and washed with hexanes (0.5 mL). The hexane layer was decanted, and the remaining solution subjected to chromatographic separation with silica gel (6% EtOAc in CHCl₃ as eluent) to give 93 mg of para-borylated 2-chlorobenzyl alcohol as an oil (69% yield)

¹H NMR (500 MHz, CDCl₃) δ 7.76 (s, 1H), 7.68 (d, *J* = 7.5 Hz, 1H), 7.48 (d, *J* = 7.5 Hz, 1H), 4.76 (s, 2H), 2.36 (s, 1H), 1.33 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 141.1, 135.3, 133.2, 132.2, 127.8, 84.2, 62.7, 24.8. ¹¹B NMR (160 MHz, CDCl₃) 30.6. HRMS (APCI+) m/z calcd for C₁₃H₁₇BClO₂ [M–OH⁻] 251.1010, found 251.1057.

Para borylation of tetrabutyl ammonium 2-chlorobenzyl sulfate (6a')

crude reaction mixture isomer ratio (NMR): para:meta = 15:1 >99.9% conversion In a glove box, a 3.0 mL Wheaton microreactor was charged with tetrabutyl ammonium 2-chlorobenzyl sulfate (46 mg, 0.1 mmol), $[Ir(cod)(OMe)]_2$ (0.1 mL of 0.015 M solution, 1.5 mol %), 4,4'-dimethoxy-2,2'-bipyridine (0.1 mL of 0.03 M solution 3.0 mol %), B₂pin₂ (38 mg, 0.15 mmol) and dioxane (0.2 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 40 °C. After 14 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio.

Para borylation of tetrapropyl ammonium 2-bromobenzyl sulfate (6b)

82% conversion

In a glove box, a 5.0 mL Wheaton microreactor was charged with tetrapropyl ammonium 2-bromo benzyl sulfate (226 mg, 0.5 mmol), $[Ir(cod)(OMe)]_2$ (5 mg, 1.5 mol %), 4,4'-dimethoxy-2,2'-bipyridine (3.3 mg, 3.0 mol %), B₂pin₂ (159 mg, 0.625 mmol) and dioxane (1.5 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 40 °C. After 12 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio. HCl 12 M was added until pH = 1–2 and the resultant mixture was stirred for 1 h. The solution was concentrated and subjected directly to chromatographic separation with silica gel (10% EtOAc in CHCl₃ as eluent) to give 64 mg of *para* borylated 2-bromobenzyl alcohol with traces of the *meta* (para:meta = 35:1) isomer as an oil (41% yield)

¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, J = 1.1 Hz, 1H), 7.73 (dd, J = 7.5, 1.1 Hz, 1H), 7.48 (d, J = 7.5 Hz, 1H), 4.74 (s, 2H), 1.34 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 142.6, 138.5, 133.9, 127.9, 122.2, 84.2, 65.0, 24.8. ¹¹B NMR (160 MHz, CDCl₃) 30.3. HRMS (APCI+) m/z calcd for C₁₃H₁₇BBrO₂ [M–OH–] 295.0505, found 295.0595.

Para borylation of tetrabutyl ammonium 2-bromobenzyl sulfate (6b')

crude reaction mixture isomer ratio (NMR): para:meta = 23:1 >99.9% conversion

In a glove box, a 3.0 mL Wheaton microreactor was charged with tetrabutyl ammonium 2-bromobenzyl sulfate (51 mg, 0.1 mmol), $[Ir(cod)(OMe)]_2$ (0.1 mL of 0.015 M solution, 1.5 mol %), 4,4'-dimethoxy-2,2'-bipyridine (0.1 mL of 0.03 M solution 3.0 mol %), B₂pin₂ (32 mg, 0.125 mmol) and dioxane (0.2 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 40 °C. After 14 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio.

Para borylation of tetrapropyl ammonium 2-trifluoromethylbenzyl sulfate (6c)

crude reaction mixture isomer ratio (NMR) = 9:1 >99.9% conversion

In a glove box, a 5.0 mL Wheaton microreactor was charged with tetrapropyl ammonium 2-trifluoromethyl benzyl sulfate (221 mg, 0.5 mmol), $[Ir(cod)(OMe)]_2$ (5 mg, 1.5 mol %), 4,4'-dimethoxy-2,2'-bipyridine (3.3 mg, 3.0 mol %), B₂pin₂ (128 mg, 0.5 mmol) and dioxane (1.5 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 40 °C. After 20 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio. HCl 12 M was added until pH = 1–2 and the resultant mixture was stirred for 1 h. The solution was concentrated and passed through a plug of silica gel (4% EtOAc in CHCl₃ as eluent) to give 117 mg of a mixture of *para* borylated 2-trifluorobenzyl alcohol with the *meta* isomer (*para:meta* = 9:1) as an oil (77% yield).

Table of Contents

¹H NMR (500 MHz, CDCl₃) δ 8.03 (s, 1H), 7.95 (d, J = 7.7 Hz, 1H), 7.69 (d, J = 7.7 Hz, 1H), 4.84 (s, 2H), 2.80 (bs, 1H), 1.34 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 142.3 (q, J = 1.6 Hz), 138.4 (q, J = 1.4 Hz), 131.8 (q, J = 5.6 Hz), 127.5, 126.3 (q, J = 30.7 Hz), 124.5 (q, J = 275.0 Hz), 84.3, 61.1 (q, J = 5.5 Hz), 24.8. ¹¹B NMR (160 MHz, CDCl₃) 30.8. ¹⁹F NMR (470 MHz, CDCl₃) -63.2. HRMS (APCI+) m/z calcd for C₁₄H₁₇BF₃O₂ [M–OH–] 285.1274, found 285.1302.

Para borylation of tetrabutyl ammonium 2-trifluoromethylbenzyl sulfate (6c')

crude reaction mixture isomer ratio (NMR): para:meta = 8:1 >99.9% conversion

In a glove box, a 3.0 mL Wheaton microreactor was charged with tetrabutylammonium 2-trifluoromethylbenzyl sulfate (50 mg, 0.1 mmol), $[Ir(cod)(OMe)]_2$ (0.1 mL of 0.015 M solution, 1.5 mol %), 4,4'-dimethoxy-2,2'-bipyridine (0.1 mL of 0.03 M solution 3.0 mol %), B_2pin_2 (25 mg, 0.10 mmol) and dioxane (0.2 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 40 °C. After 20 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio.

Para borylation of tetrapropyl ammonium 2-methylbenzyl sulfate (6d)

crude reaction mixture isomer ratio (NMR) = 5:1 78% conversion

In a glove box, a 5.0 mL Wheaton microreactor was charged with tetrapropylammonium 2-methyl benzyl sulfate (194 mg, 0.5 mmol), $[Ir(cod)(OMe)]_2$ (10 mg, 3 mol %), 4,4'-dimethoxy-2,2'-bipyridine (6.6 mg, 6.0 mol %), B₂pin₂ (159 mg, 0.625 mmol) and dioxane (1.5 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 60 °C. After 36 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio. HCl 12 M was added until pH = 1–2 and the resultant mixture was stirred for 1 h. The solution was concentrated and subjected directly to chromatographic separation with silica gel (1.5% EtOAc in CHCl₃ as eluent) to give 33 mg of *para* borylated 2-methylbenzyl alcohol with traces of the *meta* (para:meta = 35:1) isomer as a colorless oil (26% yield)

¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, J = 7.5 Hz, 1H), 7.40 (d, J = 7.5 Hz, 1H), 4.73 (d, J = 4.6 Hz, 2H), 2.36 (s, 3H), 1.58 (bs, 1H) 1.36 (s, 13H). ¹³C NMR (126 MHz, CDCl₃) δ 141.84, 136.57, 135.10, 132.64, 126.50, 83.77, 63.48, 24.85, 18.41. ¹¹B NMR (160 MHz, CDCl₃) δ 31.01. HRMS (APCI+) m/z calcd for C₁₄H₂₀BO₂ [M–OH–] 231.1556, found 231.1573.

Para borylation of tetrapropyl ammonium 2-trifluoromethoxybenzyl sulfate (6e)

crude reaction mixture isomer ratio (NMR) = 22:1 >99.9% conversion

In a glove box, a 5.0 mL Wheaton microreactor was charged with tetrapropyl ammonium 2-trifluoromethoxy benzyl sulfate (229 mg, 0.5 mmol), $[Ir(cod)(OMe)]_2$ (10 mg, 3 mol %), 4,4'-dimethoxy-2,2'-bipyridine (6.6 mg, 6.0 mol %), B₂pin₂ (159 mg, 0.625 mmol) and dioxane (1.5 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 40 °C. After 36 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio. HCl 12 M was added until pH = 1–2 and the resultant mixture was stirred for 1 h. The solution was concentrated and passed

through a plug of silica gel (2% EtOAc in $CHCl_3$ as eluent) to give 126 mg of a mixture of *para* borylated 2-trifluoromethoxyphenol with the *meta* isomer (*para:meta* = 24:1) as an oil (79% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.71 (dd, J = 7.5, 1.0 Hz, 1H), 7.61 (d, J = 1.0 Hz, 1H), 7.53 (d, J = 7.5 Hz, 1H), 4.75 (s, 2H), 2.69 (bs, 1H), 1.33 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 146.1, 136.4, 133.3, 128.0, 126.1, 120.4 (q, J = 257.5 Hz), 84.1, 59.4, 24.7. ¹¹B NMR (160 MHz, CDCl₃) δ 30.20. ¹⁹F NMR (470 MHz, CDCl₃) δ -60.26. HRMS (APCI+) m/z calcd for C₁₄H₁₇BF₃O₃ [M–OH–] 301.1223, found 301.1248.

Para borylation of tetrapropyl ammonium 1-(2-bromophenyl)ethyl sulfate (6f)

crude reaction mixture isomer ratio (NMR) = 11:1 >99.9% conversion

In a glove box, a 5.0 mL Wheaton microreactor was charged with tetrapropyl ammonium 1-(2-bromophenyl)ethyl sulfate (233 mg, 0.5 mmol), $[Ir(cod)(OMe)]_2$ (5 mg, 1.5 mol %), 4,4'-dimethoxy-2,2'-bipyridine (3.3 mg, 3.0 mol %), B₂pin₂ (128 mg, 0.5 mmol) and dioxane (1.5 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 40 °C. After 24 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio. HCl 12 M was added until pH = 1–2 and the resultant mixture was stirred for 1 h. The solution was concentrated and passed through a plug of silica gel (CHCl₃ as eluent) to give 129 mg of a mixture of *para* borylated 1-(2-bromophenyl)ethan-1-ol with the *meta* isomer (*para:meta* = 13:1) as an oil (79% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, J = 1.1 Hz, 1H), 7.75 (dd, J = 7.6, 1.1 Hz, 1H), 7.59 (d, J = 7.6 Hz, 1H), 5.23 (q, J = 6.4 Hz, 1H), 2.24 (bs, 1H), 1.47 (d, J = 6.4 Hz, 3H), 1.34 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 147.6, 138.8, 134.1, 126.1, 121.6, 84.1, 69.3, 24.8, 23.5.

¹¹B NMR (160 MHz, CDCl₃) δ 30.4. HRMS (APCI+) m/z calcd for C₁₄H₁₉BBrO₂ [M–OH–] 309.0661, found 309.0687.

Para borylation of tetrapropyl ammonium 2-fluorobenzyl sulfate (6g)

crude reaction mixture isomer ratio (NMR): para:meta:dimeta = 7:1:4 97% conversion

In a glove box, a 5.0 mL Wheaton microreactor was charged with tetrapropyl ammonium 2-fluorobenzyl sulfate (196 mg, 0.5 mmol), $[Ir(cod)(OMe)]_2$ (5 mg, 1.5 mol %), 4,4'-dimethoxy-2,2'-bipyridine (3.3 mg, 3.0 mol %), B₂pin₂ (159 mg, 0.626 mmol) and dioxane (1.5 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 60 °C. After 36 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio. HCl 12 M was added until pH = 1–2 and the resultant mixture was stirred for 1 h. The solution was concentrated and passed through a plug of silica gel (5% EtOAc in CHCl₃ as eluent) to give 91.2 mg of a mixture of *para* borylated (2-fluorophenyl)methanol with the *meta* isomer and diborylated product (*para:meta:di* = 10.6:1:1.2) as an oil (69% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.61 – 7.52 (m, 1H), 7.48 – 7.37 (m, 2H), 4.75 (d, *J* = 12.7 Hz, 3H), 2.17 (bs, 1H), 1.34 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 160.1 (d, *J* = 246.6 Hz), 130.9 (d, *J* = 14.7 Hz), 130.6 (d, *J* = 3.4 Hz), 128.5 (d, *J* = 3.9 Hz), 120.8 (d, *J* = 19.5 Hz), 84.1, 59.2 (d, *J* = 4.6 Hz), 24.8. ¹¹B NMR (160 MHz, CDCl₃) δ 30.47.¹⁹F NMR (470 MHz, CDCl₃) δ -108.48, -112.94 (d, *J* = 6.6 Hz), -124.36, -164.90 (t, *J* = 0.9 Hz). HRMS (APCI+) m/z calcd for C₁₃H₁₇BFO₂ [M–OH–] 235.1306, found 235.1337.

Para borylation of tetrapropyl ammonium 3-fluorobenzyl sulfate (6h)

crude reaction mixture isomer ratio (NMR) = 2:1 >99.9% conversion

In a glove box, a 5.0 mL Wheaton microreactor was charged with tetrapropyl ammonium 3-fluorobenzyl sulfate (196 mg, 0.5 mmol), $[Ir(cod)(OMe)]_2$ (5 mg, 1.5 mol %), 4,4'-dimethoxy-2,2'-bipyridine (3.3 mg, 3.0 mol %), B₂pin₂ (159 mg, 0.626 mmol) and dioxane (1.5 mL). The microreactor was capped with a teflon pressure cap and placed into an aluminum block pre-heated to 60 °C. After 36 h, an aliquot of the reaction mixture was taken and analyzed directly by ¹H NMR to find the conversion and *para:meta* ratio. HCl 12 M was added until pH = 1–2 and the resultant mixture was stirred for 1 h. The solution was concentrated and passed through a plug of silica gel (4% EtOAc in CHCl₃ as eluent) to give 79.1 mg of a mixture of *para* borylated (3-fluorophenyl)methanol with the *meta* isomer (*para:meta* = 1:1.9) as an oil (63% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.67 (dd, J = 7.6, 6.2 Hz, 1H), 7.08 (d, J = 7.6 Hz, 1H), 7.01 (dd, J = 10.1, 1.4 Hz, 1H), 4.65 (s, 2H), 2.71 (bs, 1H), 2.62 (bs, 1H), 1.35 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 167.4 (d, J = 250.9 Hz), 162.7 (d, J = 246.8 Hz), 147.3 (d, J = 8.0 Hz), 143.1 (d, J = 6.3 Hz), 136.9 (d, J = 8.2 Hz), 128.4 (d, J = 2.8 Hz), 121.5 (d, J = 3.0 Hz), 119.9 (d, J = 19.5 Hz), 116.5 (d, J = 21.9 Hz), 113.2 (d, J = 24.6 Hz), 84.2, 83.9, 75.1, 64.3 (d, J = 1.7 Hz), 64.2 (d, J = 1.8 Hz), 24.8, 24.8. ¹¹B NMR (160 MHz, CDCl₃) δ 30.6. ¹⁹F NMR (470 MHz, CDCl₃) δ -103.79 – -107.40 (m), -117.31, -164.90. HRMS (APCI+) m/z calcd for C₁₃H₁₇BFO₂ [M–OH–] 235.1306, found 235.1387.

References

(1) Uson, R.; Oro, L. A.; Cabeza, J. A.; Bryndza, H. E.; Stepro, M. P. Dinuclear Methoxy,

Table of Contents

Cyclooctadiene, and Barrelene Complexes of Rhodium(I) and Iridium(I): Kirschner/Inorganic. In *Inorganic Syntheses*; Kirschner, S., Ed.; Inorganic Syntheses; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1985; Vol. 231, pp 126–130.

- (2) Duval, F.; van Beek, T. A.; Zuilhof, H. Sensitive Thin-Layer Chromatography Detection of Boronic Acids Using Alizarin. *Synlett* 2012, 23 (12), 1751–1754.
- (3) Choi, E. S.; Joo, H. W.; Kim, Y. K.; Park, S. Y. Biaryl Derivatives as GPR120 Agonists. AU:2014299457:B2, June 8, 2017.
- (4) Lee, C.-Y.; Ahn, S.-J.; Cheon, C.-H. Protodeboronation of Ortho- and Para-Phenol Boronic Acids and Application to Ortho and Meta Functionalization of Phenols Using Boronic Acids as Blocking and Directing Groups. J. Org. Chem. 2013, 78 (23), 12154–12160.
- (5) Williams, A. B.; Hanson, R. N. Synthesis of Substituted Asymmetrical Biphenyl Amino Esters as Alpha Helix Mimetics. *Tetrahedron* 2012, 68 (27), 5406–5414.
- (6) Gràcia, J.; Buil, M. A.; Castro, J.; Eichhorn, P.; Ferrer, M.; Gavaldà, A.; Hernández, B.; Segarra, V.; Lehner, M. D.; Moreno, I.; et al. Biphenyl Pyridazinone Derivatives as Inhaled PDE4 Inhibitors: Structural Biology and Structure-Activity Relationships. *J. Med. Chem.* 2016, *59* (23), 10479–10497.
- (7) Ishikawa, S.; Manabe, K. Synthetic Method for Multifunctionalized Oligoarenes Using Pinacol Esters of Hydroxyphenylboronic Acids. *Chem. Commun.* 2006, No. 24, 2589–2591.
- (8) Williams, A. B.; Weiser, P. T.; Hanson, R. N.; Gunther, J. R.; Katzenellenbogen, J. A. Synthesis of Biphenyl Proteomimetics as Estrogen Receptor-Alpha Coactivator Binding Inhibitors. *Org. Lett.* **2009**, *11* (23), 5370–5373.
- (9) Schulz, M. J.; Coats, S. J.; Hlasta, D. J. Microwave-Assisted Preparation of Aryltetrazoleboronate Esters. Org. Lett. 2004, 6 (19), 3265–3268.
- (10) Ono, K.; Aizawa, R.; Yamano, T.; Ito, S.; Yasuda, N.; Johmoto, K.; Uekusa, H.; Iwasawa, N. Procedure-Dependent Construction of Two Isomers of Trimeric Self-Assembled Boronic Esters. *Chem. Commun.* 2014, *50* (89), 13683–13686.
- (11) Clausen, J.; Hartvig, M.; Bondebjurg, J.; Abildgaard, H. C. Prodrugs Activated by Reactive Oxygen Species for Use in the Treatment of Inflammatory Diseases and Cancer.

Table of Contents

2018/37120, 2018, A1, March 1, 2018.

- (12) Johnson, A. T.; Kaneko, S.; Mohan, R.; Oda, K.; Schweiger, E. J. Isoquinolinone Derivatives and Their Use as Therapeutic Agents. 7265131, September 4, 2007.
- (13) Chuang, K. V.; Kieffer, M. E.; Reisman, S. E. A Mild and General Larock Indolization Protocol for the Preparation of Unnatural Tryptophans. *Org. Lett.* 2016, *18* (18), 4750–4753.
- (14) Qiu, D.; Wang, S.; Tang, S.; Meng, H.; Jin, L.; Mo, F.; Zhang, Y.; Wang, J. Synthesis of Trimethylstannyl Arylboronate Compounds by Sandmeyer-Type Transformations and Their Applications in Chemoselective Cross-Coupling Reactions. J. Org. Chem. 2014, 79 (5), 1979–1988.

Link to NMR spectra

NMR Table of Contents

NMR Table of Contents		
1H NMR of commercial 4-chloro-3-hydroxyphenylBpin (meta borylated 2-chlorophenol, 2a)	78	
1H NMR of commercial 3-chloro-4-hydroxyphenylBpin (para borylated 2-chlorophenol, 2a)	79	
1H NMR control spectrum of 7.0 x 10-7 mols meta-2a	80	
1H NMR spectrum of 14:1 mixture of para-2a to meta-2a	81	
1H NMR spectrum of 28:1 mixture of para-2a to meta-2a	82	
1H NMR spectrum of 42:1 mixture of para-2a to meta-2a	83	
1H NMR spectrum of 56:1 mixture of para-2a to meta-2a	84	
1H NMR spectrum of tetrabutylammonium 2-chlorophenylsulfate (1a')	85	
13C NMR spectrum of tetrabutylammonium 2-chlorophenylsulfate (1a')	86	
1H NMR spectrum of tetrapropylammonium 2-chlorophenylsulfate (1a)	87	
13C NMR spectrum of tetrapropylammonium 2-chlorophenylsulfate (1a)	88	
1H NMR spectrum of tetraethylammonium 2-chlorophenylsulfate (1a'')	89	
13C NMR spectrum of tetraethylammonium 2-chlorophenylsulfate (1a'')	90	
1H NMR spectrum of tetrapropylammonium 2-bromophenylsulfate (1b)	91	
13C NMR spectrum of tetrapropylammonium 2-bromophenylsulfate (1b)	92	
1H NMR spectrum of tetrapropylammonium 2-methylphenylsulfate (1c)	93	
13C NMR spectrum of tetrapropylammonium 2-methylphenylsulfate (1c)	94	
1H NMR spectrum of tetrapropylammonium 3-fluorophenylsulfate (1d)	95	
13C NMR spectrum of tetrapropylammonium 3-fluorophenylsulfate (1d)	96	
19F NMR spectrum of tetrapropylammonium 3-fluorophenylsulfate (1d)	97	

1H NMR spectrum of tetrapropylammonium 2-fluorophenylsulfate (1e)	98
13C NMR spectrum of tetrapropylammonium 2-fluorophenylsulfate (1e)	99
19F NMR spectrum of tetrapropylammonium 2-fluorophenylsulfate (1e)	100
1H NMR spectrum of tetrapropylammonium 2,3-difluorophenylsulfate (1f)	101
13C NMR spectrum of tetrapropylammonium 2,3-difluorophenylsulfate (1f)	102
19F NMR spectrum of tetrapropylammonium 2,3-difluorophenylsulfate (1f)	103
1H NMR spectrum of tetrapropylammonium 2-iodophenylsulfate (1g)	104
13C NMR spectrum of tetrapropylammonium 2-iodophenylsulfate (1g)	105
1H NMR spectrum of tetrapropylammonium 2-isopropylphenylsulfate (1h)	106
13C NMR spectrum of tetrapropylammonium 2-isopropylphenylsulfate (1h)	107
1H NMR spectrum of tetrapropylammonium 2-cyanophenylsulfate (1i)	108
13C NMR spectrum of tetrapropylammonium 2-cyanophenylsulfate (1i)	109
1H NMR spectrum of tetrapropylammonium 2-(trifluoromethyl)phenylsulfate (1j)	110
13C NMR spectrum of tetrapropylammonium 2-(trifluoromethyl)phenylsulfate (1j)	111
19F NMR spectrum of tetrapropylammonium 2-(trifluoromethyl)phenylsulfate (1j)	112
1H NMR spectrum of tetrapropylammonium 2-(trifluoromethoxy)phenylsulfate (1k)	113
13C NMR spectrum of tetrapropylammonium 2-(trifluoromethoxy)phenylsulfate (1k)	114
19F NMR spectrum of tetrapropylammonium 2-(trifluoromethoxy)phenylsulfate (1k)	115
1H NMR spectrum of tetrapropylammonium 2-bromo-6-fluorophenylsulfate (11)	116
13C NMR spectrum of tetrapropylammonium 2-bromo-6-fluorophenylsulfate (11)	117
19F NMR spectrum of tetrapropylammonium 2-bromo-6-fluorophenylsulfate (11)	118
1H NMR spectrum of tetrapropylammonium 2-methoxyphenylsulfate (1m)	119
13C NMR spectrum of tetrapropylammonium 2-methoxyphenylsulfate (1m) go to Table of Contents	120

S68

	1H NMR spectrum of tetrapropylammonium 3-cyanophenylsulfate (1n)	121
	13C NMR spectrum of tetrapropylammonium 3-cyanophenylsulfate (1n)	122
	1H NMR spectrum of tetrapropylammonium 3-methoxyphenylsulfate (10)	123
	13C NMR spectrum of tetrapropylammonium 3-methoxyphenylsulfate (10)	124
	1H NMR spectrum of tetrapropylammonium 3-chlorophenylsulfate (1p)	125
	13C NMR spectrum of tetrapropylammonium 3-chlorophenylsulfate (1p)	126
	1H NMR spectrum of tetrapropylammonium 2-phenylsulfate (1q)	127
	13C NMR spectrum of tetrapropylammonium 2-phenylsulfate (1q)	128
	1H NMR spectrum of reaction mixture for the para borylation of tetrapropylammonium 2-chlorophenylsulfate (2a)	129
	1H NMR spectrum of reaction mixture for the para borylation of tetrabutylammonium 2-chlorophenylsulfate (2a')	130
	1H NMR spectrum of reaction mixture for the para borylation of tetraethylammonium 2-chlorophenylsulfate (2a'')	131
	1H NMR spectrum of para borylated 2-chlorophenol (2a)	132
	13C NMR spectrum of para borylated 2-chlorophenol (2a)	133
	11B NMR spectrum of para borylated 2-chlorophenol (2a)	134
	1H NMR spectrum of reaction mixture for the para borylation of tetrapropyl ammonium 2-bromophenylsulfate (2b)	135
	1H NMR spectrum of para borylated 2-bromophenol (2b)	136
	13C NMR spectrum of para borylated 2-bromophenol (2b)	137
	11B NMR spectrum of para borylated 2-bromophenol (2b)	138
	1H NMR spectrum of reaction mixture for the para borylation of tetrapropyl ammonium 2-methylphenylsulfate (2c)	139
	1H NMR spectrum of para borylated 2-methylphenol (2c)	140
	13C NMR spectrum of para borylated 2-methylphenol (2c)	141
	11B NMR spectrum of para borylated 2-methylphenol (2c)	142
<u>go to ⁻</u>	1H NMR spectrum of reaction mixture for the para borylation of tetrapropylammonium 3-fluorophenylsulfate (2d) Table of Contents	143

	1H NMR spectrum of para borylated 3-fluorophenol (2d)	144
	13C NMR spectrum of para borylated 3-fluorophenol (2d)	145
	11B NMR spectrum of para borylated 3-fluorophenol (2d)	146
	19F NMR spectrum of para borylated 3-fluorophenol (2d)	147
	1H NMR spectrum of reaction mixture for the para borylation of tetrapropylammonium 2-fluorophenylsulfate (2e)	148
	1H NMR spectrum of borylated 2-fluorophenol regioisomers (2e)	149
	13C NMR spectrum of borylated 2-fluorophenol regioisomers (2e)	150
	11B NMR spectrum of borylated 2-fluorophenol regioisomers (2e)	151
	19F NMR spectrum of borylated 2-fluorophenol regioisomers (2e)	152
	1H NMR spectrum of reaction mixture for para borylation of tetrapropylammonium 2,3-difluorophenylsulfate (2f)	153
	1H NMR spectrum of para borylated 2,3-difluorophenol (2f)	154
	13C NMR spectrum of para borylated 2,3-difluorophenol (2f)	155
	11B NMR spectrum of para borylated 2,3-difluorophenol (2f)	156
	19F NMR spectrum of para borylated 2,3-difluorophenol (2f)	157
	1H NMR spectrum of reaction mixture for para borylation of tetrapropyl ammonium 2-iodophenylsulfate (crude 2g)	158
	1H NMR spectrum of para borylated 2-iodophenol (2g)	159
	13C NMR spectrum of para borylated 2-iodophenol (2g)	160
	11B NMR spectrum of para borylated 2-iodophenol (2g)	161
	1H NMR spectrum of reaction mixture of para borylation of tetrapropylammonium 2-isopropylphenylsulfate (2h)	162
	1H NMR spectrum of para borylated 2-isopropylphenol (2h)	163
	13C NMR spectrum of para borylated 2-isopropylphenol (2h)	164
	11B NMR spectrum of para borylated 2-isopropylphenol (2h)	165
	1H NMR spectrum of reaction mixture of para borylation of tetrapropylammonium 2-cyanophenylsulfate (2i)	166
<u>go to '</u>	Table of Contents	\$70
		570

	1H NMR spectrum of mixture of borylated 2-cyanolphenol regioisomers (2i)	167
	13C NMR spectrum of mixture of borylated 2-cyanolphenol regioisomers (2i)	168
	11B NMR spectrum of borylated mixture 2-cyanophenol regioisomers (2i)	169
	1H NMR reaction mixture of para-borylated tetrapropylammonium 2-trifluoromethylphenylsulfate (2j)	170
	1H NMR spectrum of para borylated 2-trifluoromethylphenol (2j)	171
	13C NMR spectrum of para borylated 2-trifluoromethylphenol (2j)	172
	11B NMR of para borylated 2-trifluoromethylphenol (2j)	173
	19F NMR spectrum of 2-trifluoromethylphenol (2j)	174
	1H NMR reaction mixture of para-borylated tetrapropylammonium 2-(trifluoromethoxy)phenylsulfate (2k)	175
	1H NMR spectrum of para borylated 2(trifluoromethoxy)phenol (2k)	176
	13C NMR spectrum of para borylated 2-(trifluoromethoxy)phenol (2k)	177
	11B NMR spectrum of para borylated 2-(trifluoromethoxy)phenol (2k)	178
	19F NMR spectrum of para borylated 2-(trifluoromethoxy)phenol (2k)	179
	1H NMR spectrum of reaction mixture of para borylated tetrapropylammonium 2-bromo-6-fluorophenylsulfate (2l)	180
	1H NMR spectrum of para borylated 2-bromo-6-fluorophenol (2l)	181
	13C NMR spectrum of para borylated 2-bromo-6-fluorophenol (21)	182
	11B NMR spectrum of para borylated 2-bromo-6-fluorophenol (2l)	183
	19F NMR spectrum of para borylated 2-bromo-6-fluorophenol (21)	184
	1H NMR spectrum of reaction mixture of para-borylated tetrapropylammonium 2-methoxyphenylsulfate (2m)	185
	1H NMR spectrum of para borylated 2-methoxyphenol (2m)	186
	13C NMR spectrum of para borylated 2-methoxyphenol (2m)	187
	11B NMR spectrum of para borylated 2-methoxyphenol (2m)	188
	1H NMR spectrum of reaction mixture of para-borylated tetrapropylammonium 3-cyanophenylsulfate (2n)	189
<u>go to</u>	Table of Contents	۲ 71
		J /T
	1H NMR spectrum of para-borylated 3-cyanophenylsulfate (2n)	190
-------	---	-----
	13C NMR spectrum of para borylated 3-hydroxybenzonitrile (2n)	191
	11B NMR spectrum of para borylated 3-hydroxybenzonitrile (2n)	192
	1H NMR spectrum of reaction mixture of para borylated tetrapropylammonium 3-methoxyphenylsulfate (20)	193
	1H NMR spectrum of reaction mixture of para borylated tetrapropylammonium 3-chlorophenylsulfate (2p)	194
	1H NMR expanded spectrum of reaction mixture of borylation of tetrapropylammonium phenylsulfate (2q)	195
	1H NMR spectrum of borylated phenol regioisomers (2q)	196
	13C NMR spectrum of borylated phenol regioisomers (2q)	197
	11B NMR spectrum of borylated phenol regioisomers (2q)	198
	1H NMR spectrum of tetrapropylammonium 2-chlorophenylsulfamate (3a)	199
	13C NMR spectrum of tetrapropylammonium 2-chlorophenylsulfamate (3a)	200
	1H NMR spectrum of tetrabutylammonium 2-chlorophenylsulfamate (3a')	201
	13C NMR spectrum of tetrabutylammonium 2-chlorophenylsulfamate (3a')	202
	1H NMR spectrum of tetrabutylammonium 2-bromophenylsulfamate (3b')	203
	13C NMR spectrum of tetrabutylammonium 2-bromophenylsulfamate (3b')	204
	1H NMR spectrum of tetrabutylammonium 3-fluorophenylsulfamate (3c')	205
	13C NMR spectrum of tetrabutylammonium 3-fluorophenylsulfamate (3c')	206
	19F NMR spectrum of tetrabutylammonium 3-fluorophenylsulfamate (3c')	207
	1H NMR spectrum of tetrabutylammonium 2-(methoxy)phenylsulfamate (3d')	208
	13C NMR spectrum of tetrabutylammonium 2-(methoxy)phenylsulfamate (3d')	209
	1H NMR spectrum of tetrapropylammonium 2-fluorophenylsulfamate (3e)	210
	13C NMR spectrum of tetrapropylammonium 2-fluorophenylsulfamate (3e)	211
	19F NMR spectrum of tetrapropylammonium 2-fluorophenylsulfamate (3e)	212
go to	Table of Contents	

1H NMR spectrum of reaction mixture of para borylation of tetrapropylammonium 2-chlorophenylsulfamate (4a)	213
1H NMR spectrum of para borylated 2-chloroaniline (4a)	214
13C NMR spectrum of para borylated 2-chloroaniline (4a)	215
11B NMR spectrum of para borylated 2-chloroaniline (4a)	216
1H NMR spectrum of reaction mixture of para borylation of tetrabutylammonium 2-chlorophenylsulfamate (4a')	217
1H NMR spectrum of para borylated 2-chloroaniline (4a')	218
13C NMR spectrum of para borylated 2-chloroaniline (4a')	219
11B NMR spectrum of para borylated 2-chloroaniline (4a')	220
1H NMR spectrum of reaction mixture of para borylation of tetrabutylammonium 2-bromophenylsulfamate (4b')	221
1H NMR spectrum of para-borylated 2-bromoaniline (4b')	222
13C NMR spectrum of para-borylated 2-bromoaniline (4b')	223
11B NMR spectrum of para borylated 2-bromoaniline (4b')	224
19F NMR spectrum of reaction mixture of para borylation of tetrabutylammonium 3-fluorophenylsulfamate (4c')	225
1H NMR spectrum of reaction mixture of para borylation of tetrabutylammonium 3-fluorophenylsulfamate (4c')	226
13C NMR spectrum of reaction mixture of para borylation of tetrabutylammonium 3-fluorophenylsulfamate (4c')	227
1H NMR spectrum of reaction mixture of para borylation of tetrabutylammonium 3-fluorophenylsulfamate previous acetylation (4c')	; 228
1H NMR spectrum of para borylated N-(3-fluorophenyl)acetamide (4c')	229
13C NMR spectrum of para borylated N-(3-fluorophenyl)acetamide (4c')	230
11B NMR spectrum of para borylated N-(3-fluorophenyl)acetamide (4c')	231
19F NMR spectrum of para borylated N-(3-fluorophenyl)acetamide (4c')	232
1H NMR spectrum of reaction mixture of para borylation of tetrabutylammonium 2-methoxyphenylsulfamate (4d')	233
1H NMR spectrum para borylated 2-methoxyaniline (4d')	234

1	I3C NMR spectrum para borylated 2-methoxyaniline (4d')	235
1	1B NMR spectrum para borylated 2-methoxyaniline (4d')	236
1	H NMR spectrum of reaction mixture of para borylation of tetrapropylammonium 2-fluorophenylsulfamate (4e)	237
1	H NMR spectrum para borylated 2-fluoroaniline (4e)	238
1	3C NMR spectrum para borylated 2-fluoroaniline (4e)	239
1	1B NMR spectrum para borylated 2-fluoroaniline (4e)	240
1	19F NMR spectrum para borylated 2-fluoroaniline (4e)	241
1	H NMR spectrum of tetrapropylammonium 2-chlorobenzylsulfate (5a)	242
1	3C NMR spectrum of tetrapropylammonium 2-chlorobenzylsulfate (5a)	243
1	H NMR spectrum of tetrabutylammonium 2-chlorobenzylsulfate (5a')	244
1	3C NMR spectrum of tetrabutylammonium 2-chlorobenzylsulfate (5a')	245
1	H NMR spectrum of tetrapropylammonium 2-bromobenzylsulfate (5b)	246
1	3C NMR spectrum of tetrapropylammonium 2-bromobenzylsulfate (5b)	247
1	H NMR spectrum of tetrabutylammonium 2-bromobenzylsulfate (5b')	248
1	3C NMR spectrum of tetrabutylammonium 2-bromobenzylsulfate (5b')	249
1	H NMR spectrum of tetrapropylammonium 2-trifluoromethylbenzylsulfate (5c)	250
1	3C NMR spectrum of tetrapropylammonium 2-trifluoromethylbenzylsulfate (5c)	251
1	9F NMR spectrum of tetrapropylammonium 2-trifluoromethylbenzylsulfate (5c)	252
1	H NMR spectrum of tetbutylammonium 2-trifluoromethylbenzylsulfate (5c')	253
1	3C NMR spectrum of tetrabutylammonium 2-trifluoromethylbenzylsulfate (5c')	254
1	9F NMR spectrum of tetrabutylammonium 2-trifluoromethylbenzylsulfate (5c')	255
1	H NMR spectrum of tetrapropylammonium 2-methylbenzylsulfate (5d)	256
1. go to Tab	3C NMR spectrum of tetrapropylammonium 2-methylbenzylsulfate (5d)	257

1H NMR spectrum of tetrapropylammonium 2-(trifluoromethoxy)benzylsulfate (5e)	258	
13C NMR spectrum of tetrapropylammonium 2-(trifluoromethoxy)benzylsulfate (5e)	259	
19F NMR spectrum of tetrapropylammonium 2-(trifluoromethoxy)benzylsulfate (5e)	260	
1H NMR spectrum of tetrapropylammonium 1-(2-bromophenyl)ethylsulfate (5f)		
13C NMR spectrum of tetrapropylammonium 1-(2-bromophenyl)ethylsulfate (5f)		
1H NMR spectrum of tetrapropylammonium 2-fluorobenzylsulfate (5g)	263	
13C NMR spectrum of tetrapropylammonium 2-fluorobenzylsulfate (5g)	264	
19F NMR spectrum of tetrapropylammonium 2-fluorobenzylsulfate (5g)	265	
1H NMR spectrum of tetrapropylammonium 3-fluorobenzylsulfate (5h)	266	
13C NMR spectrum of tetrapropylammonium 3-fluorobenzylsulfate (5h)	267	
19F NMR spectrum of tetrapropylammonium 3-fluorobenzylsulfate (5h)	268	
1H NMR spectrum of reaction mixture of para borylation of tetrapropylammonium 2-chlorobenzylsulfate (6a)		
1H NMR spectrum of para borylated 2-chlorobenzylalcohol (6a)		
13C NMR spectrum of para borylated 2-chlorobenzylalcohol (6a)		
11B NMR spectrum of para borylated 2-chlorobenzylalcohol (6a)	272	
1H NMR spectrum of reaction mixture of para borylation of tetrabutylammonium 2-chlorobenzylsulfate (6a')	273	
1H NMR spectrum of reaction mixture of para borylation of tetrapropylammonium 2-bromobenzylsulfate (6b)	274	
1H NMR spectrum of para borylated of 2-bromobenzylalcohol (6b)	275	
13C NMR spectrum of para borylated 2-bromobenzylalcohol (6b)	276	
11B NMR spectrum of para borylated 2-bromobenzylalcohol (6b)	277	
1H NMR spectrum of reaction mixture of para borylation of tetrabutylammonium 2-bromobenzylsulfate (6b')	278	
1H NMR spectrum of the reaction mixture of para borylation of 2-(trifluoromethyl)benzylsulfate (6c)	279	
1H NMR spectrum of para borylated 2-(trifluoromethyl)benzylalcohol (6c)	280	

	13C NMR spectrum of para borylated 2-(trifluoromethyl)benzylalcohol (6c)	281
	11B NMR spectrum of para borylated 2-(trifluoromethyl)benzylalcohol (6c)	282
	19F NMR spectrum of para borylated 2-(trifluoromethyl)benzylalcohol (6c)	283
	1H NMR spectrum of the reaction mixture of para borylation of 2-(trifluoromethyl)benzylsulfate (6c')	284
	1H NMR spectrum of the reaction mixture of para borylation of 2-methylbenzylsulfate (6d)	285
	1H NMR spectrum of para borylated 2-(methyl)benzylalcohol (6d)	286
	13C NMR spectrum of para borylated 2-(methyl)benzylalcohol (6d)	287
	11B NMR spectrum of para borylated 2-(methyl)benzylalcohol (6d)	288
	1H NMR spectrum of the reaction mixture of para borylation of 2-(trifluoromethoxy)benzylsulfate (6e)	289
	1H NMR spectrum of para borylated 2-(trifluoromethoxy)benzyl alcohol (6e)	290
	13C NMR spectrum of para borylated 2-(trifluoromethoxy)benzyl alcohol (6e)	291
	11B NMR spectrum of para borylated 2-(trifluoromethoxy)benzyl alcohol (6e)	292
	19F NMR spectrum of para borylated 2-(trifluoromethoxy)benzyl alcohol (6e)	293
	1H NMR spectrum of the reaction mixture of para borylation of 1-(2-bromophenyl)ethyl sulfate (6f)	294
	1H NMR spectrum of para borylated 1-(2-bromophenyl)ethanol (6f)	295
	13C NMR spectrum of para borylated 1-(2-bromophenyl)ethanol (6f)	296
	11B NMR spectrum of para borylated 1-(2-bromophenyl)ethanol (6f)	297
	1H NMR spectrum of the reaction mixture of para borylation of 2-fluorobenzylsulfate (6g)	298
	1H NMR spectrum of para borylated (2-fluorophenyl)methanol (6g)	299
	13C NMR spectrum of para borylated (2-fluorophenyl)methanol (6g)	300
	11B NMR spectrum of para borylated (2-fluorophenyl)methanol (6g)	301
	19F NMR spectrum of para borylated (2-fluorophenyl)methanol (6g)	302
	1H NMR spectrum of reaction mixture of para borylation of 3-fluorobenzylsulfate (6h)	303
go to	Table of Contents	

1H NMR spectrum of para borylated (3-fluorophenyl)methanol (6h)	304
13C NMR spectrum of para borylated (3-fluorophenyl)methanol (6h)	305
11B NMR spectrum of para borylated (3-fluorophenyl)methanol (6h)	306
19F NMR spectrum of para borylated (3-fluorophenyl)methanol (6h)	307

Conditions: 25 °C, 500 MHz, CDCl₃

Conditions: 25 °C, 500 MHz, CDCl₃

.5

¹H NMR control spectrum of 7.0 x 10⁻⁷ mols meta-2a

Conditions: 25 °C, 500 MHz, CDCl₃

.5

¹H NMR spectrum of 14:1 mixture of para-2a to meta-2a

Conditions: 25 °C, 500 MHz, CDCl₃

¹H NMR spectrum of 28:1 mixture of para-2a to meta-2a

Conditions: 25 °C, 500 MHz, CDCl₃

¹H NMR spectrum of 42:1 mixture of para-2a to meta-2a

Conditions: 25 °C, 500 MHz, CDCl₃

¹H NMR spectrum of 56:1 mixture of para-2a to meta-2a

Conditions: 25 °C, 500 MHz, CDCl₃

¹H NMR spectrum of tetrapropylammonium 2-chlorophenylsulfate (1a)

¹³C NMR spectrum of tetrapropylammonium 2-chlorophenylsulfate (1a)

¹³C NMR spectrum of tetraethylammonium 2-chlorophenylsulfate (1a")

¹H NMR spectrum of tetrapropylammonium 2-bromophenylsulfate (1b)

¹H NMR spectrum of tetrapropylammonium 3-fluorophenylsulfate (1d)

¹H NMR spectrum of tetrapropylammonium 2-fluorophenylsulfate (1e)

¹H NMR spectrum of tetrapropylammonium 2,3-difluorophenylsulfate (1f)

¹³C NMR spectrum of tetrapropylammonium 2,3-difluorophenylsulfate (1f)

230

¹⁹F NMR spectrum of tetrapropylammonium 2,3-difluorophenylsulfate (1f)

¹H NMR spectrum of tetrapropylammonium 2-iodophenylsulfate (1g)

¹³C NMR spectrum of tetrapropylammonium 2-isopropylphenylsulfate (1h)

¹³C NMR spectrum of tetrapropylammonium 2-cyanophenylsulfate (1i)

¹³C NMR spectrum of tetrapropylammonium 2-(trifluoromethoxy)phenylsulfate (1k)

go to Table of Contents

230

Conditions: 25 °C, 500 MHz, CDCl₃

¹H NMR spectrum of tetrapropylammonium 2-methoxyphenylsulfate (1m)

¹³C NMR spectrum of tetrapropylammonium 3-chlorophenylsulfate (1p)

Conditions: 25 °C, 500 MHz, CDCl₃

¹H NMR spectrum of the reaction mixture for the para borylation of tetrabutylammonium 2-chlorophenylsulfate (2a')

¹H NMR spectrum of the reaction mixture for the para borylation of tetrapropyl ammonium 2-bromophenylsulfate (2b)

Conditions: 25 °C, 160 MHz, CDCl₃

¹H NMR spectrum of the reaction mixture for the para borylation of tetrapropylammonium 3-fluorophenylsulfate (2d)

¹¹B NMR spectrum of para borylated 3-fluorophenol (2d)

¹H NMR spectrum of the reaction mixture for the para borylation of tetrapropylammonium 2-fluorophenylsulfate (2e)

¹H NMR spectrum of reaction mixture for the para borylation of tetrapropylammonium 2,3-difluorophenylsulfate (crude 2f)

¹⁹F NMR spectrum of para borylated 2,3-difluorophenol (2f)

¹H NMR spectrum of reaction mixture for para borylation of tetrapropyl ammonium 2-iodophenylsulfate (crude 2g)

¹H NMR spectrum of reaction mixture of para borylation of tetrapropylammonium 2-isopropylphenylsulfate (crude 2h)

¹H NMR spectrum of reaction mixture of para borylation of tetrapropylammonium 2-cyanophenylsulfate (crude 2i)

Conditions: 25 °C, 500 MHz, CDCl₃

S170

S172

¹H NMR reaction mixture of para-borylated tetrapropylammonium 2-(trifluoromethoxy)phenylsulfate (crude 2k)

S182

¹H NMR spectrum of reaction mixture of para-borylated tetrapropylammonium 2-methoxyphenylsulfate (crude 2m)

¹H NMR spectrum of reaction mixture of para-borylated tetrapropylammonium 3-cyanophenylsulfate (crude 2n)

¹H NMR spectrum of para-borylated 3-cyanophenylsulfate (2n)

Conditions: 25 °C, 500 MHz, CDCl₃

¹H NMR spectrum of reaction mixture of para borylated tetrapropylammonium 3-methoxyphenylsulfate (crude 20)

Conditions: 25 °C, 500 MHz, CDCl₃

¹H NMR spectrum of reaction mixture of para borylated tetrapropylammonium 3-chlorophenylsulfate (crude 2p)

¹H NMR expanded spectrum of reaction mixture of borylation of tetrapropylammonium phenylsulfate (crude 2q)

Reaction Mixture

Conditions: 25 °C, 500 MHz, CDCl₃

¹³C NMR spectrum of tetrapropylammonium 2-chlorophenylsulfamate (3a)

-10

S201

¹H NMR spectrum of tetrabutylammonium 2-bromophenylsulfamate (3b')

Conditions: 25 °C, 500 MHz, CDCl₃

Conditions: 25 °C, 126 MHz, CDCl₃

¹H NMR spectrum of tetrabutylammonium 3-fluorophenylsulfamate (3c')

Conditions: 25 °C, 500 MHz, CDCl₃

¹³C NMR spectrum of tetrabutylammonium 3-fluorophenylsulfamate (3c')

Conditions: 25 °C, 126 MHz, CDCl₃

200

¹⁹F NMR spectrum of tetrabutylammonium 3-fluorophenylsulfamate (3c')

¹H NMR spectrum of tetrabutylammonium 2-(methoxy)phenylsulfamate (3d')

Conditions: 25 °C, 500 MHz, CDCl₃

Conditions: 25 °C, 500 MHz, CDCl₃

¹H NMR spectrum of tetrapropylammonium 2-fluorophenylsulfamate (3e)

Conditions: 25 °C, 500 MHz, CDCl₃

Conditions: 25 °C, 126 MHz, CDCl₃

¹³C NMR spectrum of tetrapropylammonium 2-fluorophenylsulfamate (3e)

¹⁹F NMR spectrum of tetrapropylammonium 2-fluorophenylsulfamate (3e)

Conditions: 25 °C, 470 MHz, CDCl₃

¹H NMR spectrum of reaction mixture of para borylation of tetrapropylammonium 2-chlorophenylsulfamate (crude 4a)

S214

¹H NMR spectrum of reaction mixture of para borylation of tetrabutylammonium 2-chlorophenylsulfamate (crude 4a')

Conditions: 25 °C, 500 MHz, CDCl₃

S218

Conditions: 25 °C, 160 MHz, CDCl₃

¹H NMR spectrum of reaction mixture of para borylation of tetrabutylammonium 2-bromophenylsulfamate (crude 4b')

S222

¹³C NMR spectrum of para-borylated 2-bromoaniline (4b')

Conditions: 25 °C, 126 MHz, CDCl₃

¹⁹F NMR spectrum of reaction mixture of para borylation of tetrabutylammonium 3-fluorophenylsulfamate (crude 4c')

Conditions: 25 °C, 470 MHz, CDCl₃

¹H NMR spectrum of reaction mixture of para borylation of tetrabutylammonium 3-fluorophenylsulfamate (crude 4c')

Conditions: 25 °C, 500 MHz, CDCl₃

¹³C NMR spectrum of reaction mixture of para borylation of tetrabutylammonium 3-fluorophenylsulfamate (crude 4c')

Conditions: 25 °C, 500 MHz, CDCl₃

¹H NMR spectrum of reaction mixture of para borylation of tetrabutylammonium 3-fluorophenylsulfamate previous acetylation (crude 4c')

¹³C NMR spectrum of para borylated N-(3-fluorophenyl)acetamide (4c')

Conditions: 25 °C, 470 MHz, CDCl₃

Conditions: 25 °C, 500 MHz, CDCl₃

¹H NMR spectrum para borylated 2-methoxyaniline (4d')

Conditions: 25 °C, 500 MHz, CDCl₃

4

¹³C NMR spectrum para borylated 2-methoxyaniline (4d')

Conditions: 25 °C, 126 MHz, CDCl₃

Conditions: 25 °C, 500 MHz, CDCl₃

¹H NMR spectrum para borylated 2-fluoroaniline (4e)

Conditions: 25 °C, 500 MHz, CDCl₃

¹³C NMR spectrum para borylated 2-fluoroaniline (4e)

Conditions: 25 °C, 126 MHz, CDCl₃

¹³C NMR spectrum of tetrapropylammonium 2-bromobenzylsulfate (5b)

S250

¹³C NMR spectrum of tetrapropylammonium 2-trifluoromethylbenzylsulfate (5c)

¹³C NMR spectrum of tetrabutylammonium 2-trifluoromethylbenzylsulfate (5c')

Conditions: 25 °C, 470 MHz, CDCl₃

S256

¹³C NMR spectrum of tetrapropylammonium 2-methylbenzylsulfate (5d)

Conditions: 25 °C, 500 MHz, CDCl₃

¹³C NMR spectrum of tetrapropylammonium 2-(trifluoromethoxy)benzylsulfate (5e)

go to Table of Contents

230

Conditions: 25 °C, 500 MHz, CDCl₃

S264

¹H NMR spectrum of reaction mixture of para borylation of tetrapropylammonium 2-chlorobenzylsulfate (crude 6a)

¹³C NMR spectrum of para borylated 2-chlorobenzylalcohol (6a)

¹H NMR spectrum of reaction mixture of para borylation of tetrabutylammonium 2-chlorobenzylsulfate (crude 6a')

Conditions: 25 °C, 500 MHz, CDCl₃

¹H NMR spectrum of reaction mixture of para borylation of tetrapropylammonium 2-bromobenzylsulfate (crude 6b)

¹H NMR spectrum of reaction mixture of para borylation of tetrabutylammonium 2-bromobenzylsulfate (crude 6b')

¹³C NMR spectrum of para borylated 2-(trifluoromethyl)benzylalcohol (6c)

¹H NMR spectrum of the reaction mixture of para borylation of 2-methylbenzylsulfate (crude 6d)

¹³C NMR spectrum of para borylated 2-(trifluoromethoxy)benzyl alcohol (6e)

230

¹H NMR spectrum of the reaction mixture of para borylation of 1-(2-bromophenyl)ethyl sulfate (6f)

22	61 61 61 62 63 65 61 61 61 61 61 61 61 61 61 61 61 61 61	33 33
ထဲထဲ		~~~
\checkmark		\searrow

Conditions: 25 °C, 500 MHz, CDCl₃

S295

S302

¹H NMR spectrum of reaction mixture of para borylation of 3-fluorobenzylsulfate (6h)

