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Supplemental Note

Spectral clustering of Hi-C data

Here we describe a spectral clustering algorithm to identify loci with common long-range
contact frequency profiles in Hi-C data. As in previous work, we focus on interchromosomal
(trans) contact frequencies. Because trans contacts are experimentally sampled less frequently
than intrachromosomal (cis) contacts, this strategy works best on deeply sequenced contact
maps with strong pattern contrast in trans. However, it provides the advantages of not having
to detrend intra-arm and inter-arm polymer scaling relationships and of working on more
than one chromosomal arm at a time. For example, [1] used contact frequencies between two
sets of disjoint chromosomes (odd and even-numbered) and clustered trans Hi-C data along
each axis (rows and columns) separately at 100-kb resolution, followed by harmonizing cluster
identities between the two axes.

Clustering the leading eigenvectors of a suitably normalized contact matrix (i.e., spectral
clustering) provides a scalable alternative to clustering the complete matrix directly that also
dampens noise and highlights cluster structure in the data [2]. In [3], this was done separately
on each chromosome using cis data, followed by a recursive clustering step using trans data
to harmonize cluster identities between chromosomes. In this study we apply dimension-
ality reduction using global eigendecomposition on trans contact frequencies from genome-
wide balanced 50kb-resolution Hi-C maps. This provides a single collection of eigenvectors
for clustering, requiring no harmonization between chromosome arms or sets thereof. As an
additional benefit, it also facilitates further dimensionality reduction (embedding) and visual-
ization.

Before eigendecomposition, because trans translocations contaminate interaction profiles
and will exert an influence on higher order eigenvectors, we excluded such regions from
analysis. We manually identified and excluded three large translocated segments in HCT116
(chr8: 67.35 Mb – end; chr16: 78.93 Mb – end; chr17: 43.40 Mb – end) based on published kary-
otype analysis [4] narrowed down by visual inspection of Hi-C data in HiGlass [5]. Unfortu-
nately, structural variations in DKO were too widespread to systematically exclude, so DKO
clustering results were omitted from this study.

To mask the influence of cis data, we followed the same procedure described in [6], where
cis pixels in the contact matrix are replaced with randomly sampled trans pixels from the same
row or column. The resulting matrix was then re-balanced. In order to standardize the spec-
trum of eigenvalues, the matrix was scaled such that rows and columns sum to 1 and eigende-
composition was done without the prior mean-centering step used in [6]. The decomposition
of this n× n normalized affinity matrix A (interpreted as a weighted graph) can be expressed
as a sum of rank-1 outer products:
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The largest eigenvalue λ0 is 1 and its multiplicity depends on the number of connected
components of the graph whose edge weights are given by A. Because a Hi-C matrix of suffi-
cient coverage represents a single connected component (ignoring filtered bins), λ0 is uniquely
equal to 1 and is associated with a constant-valued eigenvector ~e0 that may be discarded for
clustering purposes [7, 8]. The remaining eigenvalues lie in the range (−1, 1) and those with
relatively large modulus are most informative for clustering [2, 9]. Interestingly, the next lead-
ing eigenvector (~e1) is identical to the usual A/B compartment eigenvector (from the centered
version of the same balanced matrix) and also happens to be the well-known “Fiedler vec-
tor” in spectral clustering [8]. Therefore, when A is balanced, the classical bipartitioning of
genomic loci based on the first eigenvector of centered A (or equivalently, the first principal
component from performing PCA on A) happens to be a special case of spectral clustering.
Even when A is not balanced, these procedures are closely related.

To extend this approach in order to obtain a finer and more informative partition, we se-
lected them leading eigenvectors after ~e0 (m < n−1). The leading eigenvalues and associated
eigenvectors of A were calculated using the eigsh routine from numpy [10], in descending
order of eigenvalue modulus (i.e. not respecting algebraic sign). The approximation can be
written as
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Motivated by equation (2), the individual unit-normed eigenvectors (excluding ~e0) were
weighted as shown (

√
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√
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clustering was applied to the rows using scikit-learn’s KMeans estimator [11]. The estimator
was run with 100 centroid initializations using the kmeans++ initializer, which returned the
best run in terms of inertia. As a heuristic, mwas chosen to be the maximum number of eigen-
values before the first negative eigenvalue appeared (i.e., before succeeding eigenvalues began
oscillating around 0), though empirically for a given k, clustering was observed to be stable
beyond that number as long as genomic regions undergoing translocations were excluded
from analysis. We produced cluster assignments for a range of k for GM12878 [1] and both
unsynchronized untreated and 6h Auxin-treated Rad21-AID HCT116 maps [12], calculated
silhouette scores and visually compared cluster profiles to a large number of independent ge-
nomic tracks. The final number of clusters for HCT116 (k = 8) was chosen based on a balance
of clustering metrics and interpretability.

Finally, we note that readers familiar with spectral partitioning of graphs may be more
accustomed to discussions of the eigenvectors of the graph Laplacian matrix L rather than
the affinity matrix A. The Laplacian is L = D − A, where D is a diagonal matrix with the
node degrees d1, . . . , dn on the diagonal. The most common normalized transformations of
the Laplacian used for spectral clustering are Lsym = D−1/2LD−1/2 and Lrw = D−1L [8].
Note that in our case, A is a stochastic matrix (i.e. a graph with constant degree 1) and its
(normalized) Laplacian is simply I−A, which has the exact same eigenvectors asA and shifted
eigenvalues λ′i = 1− λi.
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Supplementary Figure 1

FACS sorting for Repli-seq based on propidium iodide staining.
Early vs late fraction gating strategy indicated.




