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2019nCoV-301 Study Group (Pubmed listed, in alphabetical order of institution affiliation) 
 

Affiliation/Funding* Study Group Location 
México 
Centro de Atención e Investigación 
Médica (CAIMED) 

Jorge F. Méndez Galván, MD, Monica B. Carrascal, Adriana Sordo Duran, Laura Ruy 
Sanchez Guerrero, Martha Cecilia Gómora Madrid 

Mexico City, Mexico 

FAICIC Clinical Research Alejandro Quintín Barrat Hernández, MD, Sharzhaad Molina Guizar, Denisse 
Alejandra González Estrada, Silvano Omar Martínez Pérez, MD, Zindy Yazmín Zárate 
Hinojosa, MD 

Veracruz, Mexico 

Instituto Nacional de Ciencias Médicas 
y Nutrición Salvador Zubirán 

Guillermo Miguel Ruiz-Palacios, MD Mexico City, Mexico 

Instituto Nacional de Salud Pública Aurelio Cruz-Valdez, PhD, Janeth, Pacheco-Flores, MD, Anyela Lara, MD, Secia 
Díaz-Miralrio 

Cuernavaca, Mexico 

PanAmerican Clinical Research México María José Reyes Fentanes, MD, Jocelyn Zuleica Olmos Vega, MD, Daniela Pineda 
Méndez, MD, Karina Cano Martínez, MD, Winniberg Stephany Alvarez León 

Querétaro, Mexico 

PanAmerican Clinical Research México Vida Veronica Ruiz Herrera, MD, Eduardo Gabriel Vázquez Saldaña, Laura Julia 
Camacho Choza, Karen Sofia Vega Orozco, Sandra Janeth Ortega Domínguez 

Guadalajara, Mexico 

Unidad de Atención Médica e 
Investigación en Salud (UNAMIS) 

Jorge A. Chacón, MD, Juan J. Rivera, MD, Erika A. Cutz, MD, Maricruz E. Ortegón, 
MD, María I. Rivera, MD 

Mérida, Mexico 

United States and Puerto Rico 
Accellacare David Browder, MD, Cortney Burch, Terri Moye, Paul Bondy, MD, Lesley Browder, 

MD 
Rocky Mount, NC 

Accellacare Rickey D. Manning, MD, James Wilson Hurst, MD, Rodney E. Sturgeon, MD, Paul H. 
Wakefield, MD, John A. Kirby, MD 

Knoxville, TN 

Accel Research Sites James Andersen, MD, Szheckera Fearon, MSN, FNP-C, Rosa Negron, MD, Amy 
Medina, ADN, BS 

Lakeland, FL 

Accel Research Sites Bruce Rankin, DO, John M. Hill, MD, Steven Shinn, MD, Vivek Rajasekhar, DO, 
Marshall Nash, MD 

DeLand, FL 

Achieve Clinical Research Hayes Williams, MD, PhD, LaShondra Cade, Rhodna Fouts, Connie Moya Birmingham, AL 
Alliance for Multispecialty Research Corey G. Anderson, MD, Naomi Devine, NP-C, James Ramsey, NP-C, Ashley Perez, 

David Tatelbaum 
Tempe, AZ 

Alliance for Multispecialty Research Michael Jacobs, MD, Kathleen Menasche, LPN, Vincent Mirkil, MD Las Vegas, NV 
Anaheim Clinical Trials Peter J. Winkle, MD, Amina Z. Haggag, MD, Michelle Haynes, Marysol Villegas, 

Sabina Raja 
Anaheim, CA 

Atlanta Center for Medical Research Robert Riesenberg, MD, Stanford Plavin, MD, Mark Lerman, MD, Leana Woodside, 
DNP, NP-C, Maria Johnson, MD 

Atlanta, GA 

Baylor College of Medicine / NIAID 
(UM1AI148575) 

C. Mary Healy, MD, Jennifer A. Whitaker, MD, Hana El Sahly, MD, Christine 
Akamine, MD, Wendy A. Keitel, MD, Robert L. Atmar, MD 

Houston, TX 

Biomedical Advanced Research and 
Development Authority (BARDA) 

Richard Gorman, MD, Gary Horwith, MD, Robin Mason, MS, MBA Washington, DC 

Benchmark Research Laurence Chu, MD, Michelle Chouteau, MD, Lisa Johnson, FNP, Tambra Dora Austin, TX 
Benchmark Research Greg Hachigian, MD, Deborah Murray, FNP, Michael Cancilla, PA, Logan Ledbetter, 

PA, Masaru Oshita, MD 
Sacramento, CA 

Benchmark Research William Seger, MD, Beverly Ewing, APRN, DNP, FNP-BC Fort Worth, TX 
Beth Israel Deaconess Medical Center / 
NIAID (UM1AI068614) 

Kathryn E. Stephenson, MD, MPH, Chen Sabrina Tan, MD, Rebecca Zash, MD, 
Jessica L. Ansel, MSN, Kate Jaegle, MSN, Caitlin J. Guiney, MSN 

Boston, MA 

Black Hills Center for American Indian 
Health / Missouri Breaks Industries 
Research Inc / NIAID (UM1AI068614) 

Jeffrey A. Henderson, MD, MPH, Marcia O'Leary, RN, Kendra Enright, RN, Jill 
Kessler, MS, Pete Ducheneaux, LPN, Asha Inniss, MS, APRN 

Eagle Butte, SD 

California Research Foundation Donald M. Brandon, MD, William B. Davis, MD, Daniel T. Lawler, MD San Diego, CA 
Carolina Institute for Clinical Research Yaa D. Oppong, MD, Ryan P. Starr, DO, Scott N. Syndergaard, DO, Rozeli Shelly, 

MD, Mashrur Islam Majumder 
Fayetteville, NC 

Cedar Crosse Research Center Danny Sugimoto, MD, Jeffrey Dugas Sr., MD, Dolores Rijos, Sandra Shelton, Stephan 
Hong, MD 

Chicago, IL 

Cenexel RCA Howard Schwartz, MD, Nelia Sanchez-Crespo, MD, Jennifer Schwartz, APRN, Terry 
Piedra, BS, Barbara Corral, APRN 

Hollywood, FL 

Centex Studies Joel Solis, MD, Carmen Medina, PA, Westley Keating, PA McAllen, TX 
Clinical Neuroscience Solutions Michael E. Dever, MD, Mitul Shah, MD, Michael Delgado, MD, Tameika Scott, DrPH Orlando, FL 
Clinical Neuroscience Solutions Lisa S. Usdan, MD, Lora J. McGill, MD, Valerie K. Arnold, MD, Carolyn 

Scatamacchia, MSN, NP-C, Codi M. Anthony, DNP, APRN, PMHNP-BC 
Memphis, TN 

CommonSpirit Health Research Institute Rajan Merchant, MD, Anelgine Crans Yoon, MD, Janet Hill, PA-C, Lucy Ng-Price, 
MA, Teri Thompson-Seim 

Woodland, CA 

Comprehensive Clinical Research Ronald Ackerman, MD, Jamie Ackerman, Florida Aristy, APRN West Palm Beach, FL 
Covid-19 Prevention Network (CoVPN) Lawrence Corey, MD, Kathleen M Neuzil, MD, MPH, Huub G Gelderblom, MD, PhD, 

Nzeera Ketter, Carrie Sopher 
Seattle, WA 

CRA Headlands Jon Finley, MD, Nathan Segall, MD, Mildred Stull, APRN, FNP-C Stockbridge, GA 
DM Clinical Research Vicki E. Miller, MD, MPH, Monica Murray, Blanca Gomez, Zainab Rizvi, Sonia 

Guerrero 
Tomball, TX 

Empire Clinical Research Yogesh K. Paliwal, MD, Amit Paliwal, MD, Sarah Gordon, MS, Bryan Gordon, 
Cynthia Montano-Pereira 

Pomona, CA 

Headlands Research Christopher Galloway, MD, Candice Montros, Lily Aleman, Samira Shairi, RN, 
Wesley Van Ever 

Orlando, FL 

Health Research of Hampton Roads George H. Freeman, MD, Esther Laverne Harmon, ANP, Marshall A. Cross, MD, 
Kacie Sales, BSN, RN, Catherine Q. Gular, PharmD 

Newport News, VA 

HHS-DoD Countermeasures 
Acceleration Group 

Matthew Hepburn, MD Washington, DC 
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HOPE Research Institute Matthew Doust, MD, Nathan Alderson, PhD, Shana Harshell Phoenix, AZ 
Howard University Hospital / Howard 
University College of Medicine / NIAID 
(UM1AI068614) 

Siham Mahgoub, MD, Celia Maxwell, MD, Thomas Mellman, MD, Karl M 
Thompson, PhD, Glenn Wortman, MD 

Washington, DC 

IACT Health Jeff Kingsley, DO, April Pixler, LaKondria Curry, Sarah Afework, Austin Swanson Columbus, GA 
Jacksonville Center for Clinical 
Research 

Jeffry Jacqmein, MD, Maggie Bowers, PA-C, Dawn Robison, APRN-C, Victoria 
Mosteller, MD, Janet Garvey, DNP 

Jacksonville, FL 

Johnson County Clin-Trials Carlos Fierro, MD, Mary Easley, BSN, RN Lenexa, KS 
Joint Program Executive Office for 
Chemical, Biological, Radiological and 
Nuclear Defense’s, US Department of 
Defense 

Rebecca J. Kurnat Washington, DC 

Lynn Health Science Institute Carl P. Griffin, MD, Raymond Cornelison, MD, Shanda Gower, APRN, CNP, William 
Schnitz, MD, Destiny S. Heinzig-Cartwright, BA 

Oklahoma City, OK 

Lynn Institute of the Ozarks Derek Lewis, MD, Fred E. Newton, MD, Aeiress Duhart, Breana Watkins, Brandy Ball Little Rock, AR 
Lynn Institute of the Rockies Ripley Hollister, MD, Jeremy Brown, DO, Melody Ronk, PA-C, Jill York, Shelby 

Pickle 
Colorado Springs, CO 

M3-Emerging Medical Research David B. Musante, MD, William P. Silver, MD, Linda R. Belhorn, MD, Nicholas A. 
Viens, MD, David Dellaero, MD 

Durham, NC 

M3-Wake Research Matthew Hong, MD, Wayne Harper, MD, Lisa Cohen, DO, Priti Patel, NP, Kendra 
Lisec, PA 

Raleigh, NC 

MD Clinical Beth Safirstein, MD, Luz Zapata, MD, Lazaro Gonzalez, APRN, Evelyn Quevedo, 
APRN, Farah Irani, PhD 

Hallandale Beach, FL 

Medical Research International Joseph Grillo, MD, Amy Potts, PA-C, MPH, Julie White, MBA Oklahoma City, OK 
Medical University of South Carolina Patrick Flume, MD, Gary Headden, MD, Brandie Taylor, NP, Ashley Warden, Amy 

Chamberlain 
Charleston, SC 

MedPharmics Robert Jeanfreau MD, Susan Jeanfreau MD Metairie, LA 
MedPharmics Paul G. Matherne, MD, Amy Caldwell, RN, Jessica Stahl, Mandy Vowell, Lauren 

Newhouse 
Gulfport, MS 

Meharry Medical College / NIAID 
(UM1AI068614) 

Vladimir Berthaud MD, MPH, Zudi-Mwak Takizala MD, MPH, MBA, Genevieve 
Beninati, FNP, Kimberly Snell, PharmD, Sherrie Baker, BS, James Walker, RN 

Nashville, TN 

Meridian Clinical Research David Ensz, MD, Tavane Harrison, CNP, Meagan Miller, Janet Otto Sioux City, IA 
Meridian Clinical Research Brandon Essink, MD, Roni Gray, APRN, Christine Wilson, Tiffany Nemecek, Hannah 

Harrington, MPH 
Omaha, NE 

Meridian Clinical Research Charles Harper, MD, Keith Vrbicky, MD, Chelsie Nutsch, NP, Sally Eppenbach, NP, 
Wendell Lewis, NP 

Norfolk, NE 

Meridian Clinical Research Jordan Whatley, MD, Christopher Dedon, APRN, FNP-C, Tana Bourgeois, RN, 
Lyndsea Folsom, Crystal Rowell, APRN, FNP-C 

Baton Rouge, LA 

Miami Veterans Affairs Medical Center 
/ NIAID (UM1AI068614) 

Gregory Holt, MD, Mehdi Mirsaeidi, MD, Rafael Calderon, MD, Paola Lichtenberger, 
MD, Jalima Quintero, RN, Becky Martinez, RN 

Miami, FL 

Morehouse School of Medicine / NIAID 
(UM1AI068614) 

Lilly Immergluck, MD, Erica Johnson, PhD, Austin Chan, MD, Norberto Fas, MD, 
LaTeshia Thomas-Seaton, MS, APRN, Saadia Khizer, MD, MPH 

Atlanta, GA 

MultiCare Institute for Research and 
Innovation 

Jonathan Staben, MD Cheney, WA 

National Institute of Allergy and 
Infectious Diseases (NIAID) / National 
Institutes of Health (NIH) 

Tatiana Beresnev, MD, Maryam Jahromi, MD, Mary A. Marovich, MD, Julia Hutter, 
MD, Martha Nason, PhD, Julie Ledgerwood, DO, John Mascola, MD 

Bethesda, MD 

National Research Institute Mark Leibowitz, MD, Fernanda Morales, Mike Delgado, Rosario Sanchez, Norma 
Vega 

Los Angeles, CA 

Novavax, Inc. Lisa M. Dunkle, MD, Germán Áñez, MD, Gary Albert, Erin Coston, Chinar Desai, 
Haoua Dunbar, Mark Eickhoff, Jenina Garcia, Margaret Kautz, Angela Lee, Maggie 
Lewis, Alice McGarry, Irene McKnight, Joy Nelson, Patrick Newingham, Patty Price- 
Abbott, Patty Reed, Diana Vegas, Bethanie Wilkinson, PhD, Katherine Smith, MD, 
Wayne Woo, MS, Iksung Cho, MS, Gregory M. Glenn, MD, Filip Dubovsky, MD, 
MPH 

Gaithersburg, MD 

Omega Medical Research David L. Fried, MD, Lynne A. Haughey, MSN, FNP, Ariana C. Stanton, PA-C, Lisa 
Stevens Rameaka, MD 

Warwick, RI 

Pharmacology Research Institute David Rosenberg, MD, Lee Tomatsu, Viviana Gonzalez, Millie Manalo Los Alamitos, CA 
PMG Research of Bristol Bernard Grunstra, MD, Donald Quinn, MD, Phillip Claybrook, MD, Shelby Olds, MD, 

Amy Dye 
Bristol, TN 

PMG Research of Wilmington Kevin D. Cannon, MD, Mesha M. Chadwick, MD, Bailey Jordan, Morgan Hussey, 
Hannah Nevarez 

Wilmington, NC 

Ponce de Leon Center / NIAID 
(UM1AI068614) 

Colleen F. Kelley, MD, MPH, Valeria D. Cantos MD, Michael Chung MD, Caitlin 
Moran, MD, MSc, Paulina Rebolledo, MD, Christina Bacher, PAC 

Atlanta, GA 

Ponce School of Medicine / NIAID 
(UM1AI148685) 

Elizabeth Barranco-Santana, MD, Jessica Rodriguez, MD, Rafael Mendoza, MD, 
Karen Ruperto, MD, Odette Olivieri, MD, Enrique Ocaña, MD 

Ponce, Puerto Rico 

Preferred Research Partners Paul E. Wylie, MD, Renea Henderson, DO, Natasa Jenson, MD, Fan Yang, MD, Amy 
Kelley, BSN, RN 

Little Rock, AR 

Providea Health Partners Elligo Health 
Research 

Kenneth Finkelstein, DO, David Beckmann, MD, Tanya Hutchins, FNP, Sebastian 
Garcia Escallon, BA, Kristen Johnson 

Evergreen Park, IL 

Providence Clinical Research Teresa S. Sligh, MD, Parul Desai, NP, Vincent Huynh, BSc, Carlos Lopez, MD, Erika 
Mendoza, BA 

North Hollywood, CA 

Research Your Health Jeffrey Adelglass, MD, Jerome (Jerry) G. Naifeh, MD, Kristine Jane Kucera, PA-C, 
MPAS, DHS, Waseem Chughtai, BS, MBBS, Shireen Hasham Jaffer 

Plano, TX 

Rochester Clinical Research Matthew G. Davis, MD, Jennifer Foley, Michelle Lyn Burgett, RN, Tammi Louise 
Shlotzhauer, MD, Sarah Michelle Ingalsbe-Geno, RPA-C 

Rochester, NY 

SIMEDHealth / SIMEDResearch Daniel Duncanson, MD, Kelly Kush, Lori Nesbitt, Cora Sonnier, Jennifer McCarter Gainesville, FL 
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Sterling Research Group Michael B. Butcher, MD, James Fry, PA-C, Donna Percy, RN, BSN, Karen 
Freudemann 

Cincinnati, OH 

Sterling Research Group Bruce C. Gebhardt, MD, Padma N. Mangu, MD, Debra Beck Schroeck, MS, PA-C, 
Rajesh Kumar Davit, MD, Gayle D. Hennekes, PA-C, MPAS 

Cincinnati, OH 

Stony Brook University - Stony Brook 
Medicine / NIAID (UM1AI068614) 

Benjamin J. Luft, MD, Melissa Carr, BA, Sharon Nachman, MD, Alison Pellecchia, 
BA, Candace Smith, PharmD, Bruno Valenti, NP 

Commack, NY 

Suncoast Research Associates Maria I. Bermudez, MD, Noris Peraita, ARNP, Ernesto Delgado, ARNP, Alicia 
Arrazcaeta, Natalie Ramirez 

Miami, FL 

Suncoast Research Group Mark E. Kutner, MD, Jorge Caso, MD, Janet Mendez, ARNP, Marianela Carvajal, 
ARNP, Carmen Amador, ARNP 

Miami, FL 

Sundance Clinical Research Larkin Tyler Wadsworth III, MD, Horacio Marafioti, MD, Lyly Dang, DNP-BC, 
Lauren Clement, NP-C, Jennifer Berry, FNP-BC 

St. Louis, MO 

Synexus Clinical Research Mohammed Allaw, MD, Georgettea Geuss, Chelsea Miles, NP, Zachary Bittner, 
Melody Werne 

Evansville, IN 

Synexus Clinical Research Cornell Calinescu, MD, Shannon Rodman, Joshua Rindt Henderson, NV 
Synexus Clinical Research Erin Cooksey, MD, Kristina Harrison, Deanna Cooper, Manisha Horton 

Amanda Philyaw 
Anderson, SC 

Synexus Clinical Research William Jennings, MD, Hilario Alvarado, MD, Michele Baka, MD, Malina Regalado, 
NP 

San Antonio, TX 

Synexus Clinical Research Linda Murray, DO Pinellas Park, FL 
Synexus Clinical Research Sherif Naguib, MD, Justin Singletary, Sha-Wanda Richmond, Sarah Omodele, Emily 

Oppenheim 
Atlanta, GA 

Synexus Clinical Research Joseph Newberg, MD, Laura Pearlman, MD, Reuben Martinez, Victoria Andriulis Chicago, IL 
Synexus Clinical Research Paul J. Nugent, DO, Leonard Singer, MD, Jeanne Blevins, Meagan Thomas, Christine 

Hull 
Cincinnati, OH 

Synexus Clinical Research Isabel Pereira, MD, Gina Rivero, Tracy Okonya, Frances Downing, Paulina Miller Vista, CA 
Synexus Clinical Research Margaret Rhee, MD, Katherine Stapleton, Jeffrey Klein, Rosamond Hong, MD Akron, OH 
Synexus Clinical Research Suzanne Swan, MD, Tami Wahlin, MD, Elizabeth Bennett, PA, Amy Salzl 

Sharine Phan 
Richfield, MN 

Synexus Clinical Research Jewel Johnny White, MD, Amanda Occhino, Ruth Paiano APRN, Morgan McLaughlin 
APRN, Elisa Swieboda APRN 

The Villages, FL 

Texas Center for Drug Development Veronica Garcia-Fragoso, MD, Maria Gabriela Becerra, MD, Cecilia Mckeown, Lisa 
Holloway, Toni White 

Houston, TX 

The Charlotte-Mecklenburg Hospital 
Authority d/b/a Atrium Health / NIAID 
(UM1AI068614) 

Christine B. Turley, MD, Andrew McWilliams, MD, Tiffany Esinhart, PA-C, Natasha 
Montoya, APRN, Shamika Huskey, FNP, Leena Paul, FNP 

Charlotte, NC 

The Miriam Hospital / NIAID 
(UM1AI068636) 

Karen Tashima, MD, Jennie Johnson, MD, Marguerite Neill, MD, Martha Sanchez, 
MD, Natasha Rybak, MD, Maria Mileno, MD 

Providence, RI 

UC Davis Health / NIAID 
(UM1AI068614) 

Stuart H. Cohen, MD, Monica Ruiz, Dean M. Boswell, BS, Elizabeth E. Robison, BS, 
Trina L. Reynolds, BS, Sonja Neumeister, MPH 

Sacramento, CA 

Universidad de Puerto Rico - Recinto de 
Ciencias Médicas - Maternal Infant 
Studies Center (CEMI) / NIAID 
(UM1AI068636) 

Carmen D. Zorrilla, MD, Juana Rivera, MD, MPH, Jessica Ibarra, MD, Iris García, 
BSN, RN, Dianca Sierra, BA, Wanda Ramon, BSPh 

San Juan, Puerto Rico 

University of Colorado Hospital CRS / 
NIAID (UM1AI068636) / NCATS 
(UL1TR002535, UM1AI069432) 

Thomas B. Campbell, MD, Suzanne Fiorillo, MSPH, Rebecca Pitotti, RNP, Victoria 
Riedel Anderson, MS, Jose Castillo Mancilla, MD, Nga Le, PharmD 

Aurora, CO 

University of Iowa Medical Center / 
NIAID (UM1AI068614) / NCATS 
(UL1TR002537) 

Patricia L. Winokur, MD, Dilek Ince, MD, Theresa Hegmann, PA, Jeffrey Meier, MD, 
Jack Stapleton, MD, Laura Stulken, PA 

Iowa City, IA 

University of Maryland School of 
Medicine / NIAID (UM1AI148689) 

Monica McArthur, MD, PhD, Karen L. Kotloff, MD, Kathleen Neuzil, MD, Andrea 
Berry, MD, Milagritos Tapia, MD, Elizabeth Hammershaimb, MD, MS, Toni 
Robinson, RN, Rosa MacBryde, RN 

Baltimore, MD 

University of Minnesota / NIAID 
(UM1AI068614) 

Susan Kline, MD, MPH, Joanne L. Billings, MD, MPH, Winston Cavert, MD, 
Les B. Forgosh. MD, Timothy W. Schacker, MD, Tyler D. Bold, MD, PhD 

Minneapolis, MN 

University of Missouri Health Care / 
NIAID (UM1AI148685) 

Dima Dandachi, MD, MPH, Taylor Nelson, DO, Andres Bran, MD, 
Grant Geiger, S. Hasan Naqvi, MD 

Columbia, MO 

University of Nebraska Medical Center / 
NIAID (UM1AI068614) 

Diana F Florescu, MD, Richard Starlin, MD, David Kline, MD, Andrea Zimmer, MD, 
Anum Abbas, MD, Natasha Wilson, APRN 

Omaha, NE 

University of North Carolina / NIAID 
(UM1AI068619) / University of North 
Carolina at Chapel Hill Center for AIDS 
Research (P30AI050410) / NC TraCS 
Institute (UL1TR002489) 

Cynthia L. Gay, MD, MPH, Joseph J Eron, MD, Michael Sciaudone, MD, MPH, A. 
Lina Rosengren, MD, MPH, MS, John S Kizer, MD, Sarah E Rutstein, MD, PhD 

Chapel Hill, NC 

University of South Florida, Morsani 
College of Medine / NIAID 
(UM1AI068614) 

Carina A. Rodriguez, MD, Elizabeth Bruce, MD, Claudia Espinosa, MD, Lisa J 
Sanders, MD, Kami Kim, MD, Denise Casey, RN 

Tampa, FL 

University of Texas Health Science 
Center San Antonio / NIAID 
(UM1AI068614) 

Barbara S. Taylor, MD, MS, Thomas Patterson, MD, Ruth Serrano Pinilla, MD, Delia 
Bullock, MD, Philip Ponce, MD, Jan Patterson, MD 

San Antonio, TX 

University of Washington / Lummi 
Tribal Health Center / NIAID 
(UM1AI148573) 

R. Scott McClelland, MD, MPH, Dakotah C. Lane, MD, Anna Wald, MD, MPH, Frank 
James, MD, Elizabeth Duke, MD, Kirsten Hauge, MPH, Jessica Heimonen, MPH 

Seattle, WA 

University of Washington Robert W. Coombs, MD, PhD, Alex Greninger, MD, PhD, MS, MPhil, Pavitra 
Roychoudhury, PhD, Erin A. Goecker, MS, Yunda Huang, PhD, Youyi Fong, PhD 

Seattle, WA 

VA Ann Arbor Healthcare System / 
NIAID (UM1AI068614) 

Carol Kauffman, MD, Kathleen Linder, MD, Kimberly Nofz, BSN, Andrew 
McConnell, BS 

Ann Arbor, MI 
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Velocity Clinical Research Robert J. Buynak, MD, Angella Webb, APRN, Taryn Petty, FNP, Stephanie Andree, 
FNP 

Valparaiso, IN 

Velocity Clinical Research Judith Kirstein, MD, Marcia Bernard, Erica Sanchez, Nolan Mackey, Clarisse 
Baudelaire 

Banning, CA 

Velocity Clinical Research Gregg Lucksinger, MD, Jaleh Ostovar, NP Medford, OR 
Velocity Clinical Research Mary Beth Manning, MD, Joan Rothenberg, MD, Toby Briskin, MD, Denise 

Roadman, PAC, Sarah Dzigiel 
Cleveland, OH 

Velocity Clinical Research J. Scott Overcash, MD, Adrienna Marquez, Hanh Chu, Kia Lee, Kim Quillin La Mesa, CA 
Velocity Clinical Research Barbara Rizzardi, MD, Michelle King, NP, Vanessa Abad, NP, Jennifer Knowles, BS West Jordan, UT 
Velocity Clinical Research Michael Waters, MD, Karla Zepeda, NP, Scott Overcash, MD, Jordan Coslet, NP, 

Dalia Tovar, MA 
Chula Vista, CA 

Velocity Clinical Research Marian E. Shaw, MD, Mark A. Turner, MD, Cory J. Huffine, FNP-C, Esther S. 
Huffine, FNP-C 

Meridian, ID 

Walter Reed Army Institute of Research Julie A. Ake, MD, MSc Silver Spring, MD 
Wayne State University / NIAID 
(UM1AI068614) 

Elizabeth Secord, MD, Eric McGrath, MD, Phillip Levy, MD, Brittany Stewart, RD, 
PharmD, Charnell Cromer, RN, MSN, Ayanna Walters, RN, BSN 

Detroit, MI 

Weill Cornell Chelsea CRS / NIAID 
(UM1AI068619) 

Kristen Marks, MS, MD, Grant Ellsworth, MD, MS, Caroline Greene, ANP-BC, Sarah 
Galloway, BA, Shashi Kapadia, MD, MS, Elliot DeHaan, MD 

New York, NY 

Willis-Knighton Health System / WKB 
Family Medicine Associates 

Clint Wilson, MD, Jason Milligan, MD, Danielle Raley, MD, Joseph Bocchini, MD Bossier City, LA 

Womack Army Medical Center Bruce McClenathan, MD, Mary Hussain, BS, Evelyn Lomasney, MD, Evelyn Hall, 
MMS, PA-C, Sherry Lamberth, PharmD 

Fort Bragg, NC 

WR Clinsearch Mark McKenzie, MD, Teresa Deese, Christy Schmeck, Vickie Leathers, Christy Sweet Chattanooga, TN 
 

* Funding of institutions by the National Institute of Allergy and Infectious Diseases (NIAID) and/or research support by the National Center 
for Advancing Translational Science (NCATS), as indicated. All other institutions were funded by Office of the Assistant Secretary for 
Preparedness and Response, Biomedical Advanced Research and Development Authority. The content of this publication is solely the 
responsibility of the authors and does not necessarily represent the official views of the funding sources. 
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2019nCoV-301 Principal Investigators and Study Team (in alphabetical order) 
 

Principal Investigator Study Team Institution Location 
Ronald Ackerman, MD Jamie Ackerman, Florida Aristy, Tomeko Heard, Diana Mann, Maureen Stewart, Cheryl 

Demczyk, Rohan Barron, Ashley Torres, Jennifer Gomez, Tiffany Potter 
Comprehensive 
Clinical Research 

West Palm 
Beach, FL 

Jeffrey Adelglass, MD Jerome (Jerry) G. Naifeh, Kristine Jane Kucera, Waseem Chughtai, Shireen Hasham Jaffer, 
Anuja Sathe, Cameron Galownia, Cheryl Hill, Ramiro Lopez, Erica Parker-Martinez, 
Helene Harrison, Chiedza Mutindori, Sabrina Flowers, Tamara Betters, Carolyn Ackley, 
Pamela Fox, Noelia Tejada James, Dorothy Saylor, Hallen Dao, Jon Etta Randolph, Jason 
Tentativa, Malaika Chughtai, Shanzae Chughtai, Maheen Shah, Hayyan Chughtai, Tyler 
Love, Ti'arah Love 

Research Your 
Health 

Plano, TX 

Mohammed Allaw, MD Georgettea Geuss, Chelsea Miles, Zachary Bittner, Melody Werne, Lyndsey Morrison, 
Stephanie Albin, Linda Frazier, Jacque Nalley, Christie Borin, Jacque Nalley 

Synexus Clinical 
Research 

Evansville, IN 

James Andersen, MD Szheckera Fearon, Rosa Negron, Amy Medina, Diana Holmes, Colleen Figueroa, Cristal 
Ruiz, Nancy Masseus Tare Floyd, Kenta Oliver, Candice Gerber, Mae Ann Francisco, 
Gilbert de la Cruz, Ginny McClanahan, Veronica Walker, David Irwin, Gloria Adejobi 

Accel Research 
Sites 

Lakeland, FL 

Corey G. Anderson, MD Naomi Devine, James Ramsey, Tyanna Montijo, Ashley Perez, David Tatelbaum, Lisa M. 
Dean, Angela D. Ledezma, Anthony Padilla, Cecilia M. Tanori, Georgina Lopez-Wood, 
Tasha C. Marriott, Ronald Hawkins, Hannah Spinks 

Alliance for 
Multispecialty 
Research 

Tempe, AZ 

Elizabeth Barranco-Santana, MD Michele Irizarry, Alice Grace Rodriguez, Irmaris Arroyo, Sara Cancel, Alejandra Román, 
Juan D. Lugo, Armando X. Torres, Marianne Hernandez, Brenda Garcia, Nancy Jiménez, 
Orlando Torres 

Ponce School of 
Medicine 

Ponce, Puerto 
Rico 

Alejandro Quintín Barrat 
Hernández, MD 

Sharzhaad Molina Guizar, Denisse Alejandra González Estrada, Silvano Omar Martínez 
Pérez, Zindy Yazmín Zárate Hinojosa, Norberto Daniel Vázquez Tinajero, Yessica Olivo 
Domínguez, Daniel Hernández León, Gloria Norma Ambrosio Lara, José Carlos Mateos 
Castro, Irving Nerí Leyva Ferrer, María Fernanda Hernández García, Heidy Jazmín 
Maldonado Pavón, Evelyn Monserrat Bravo Serralta, Edgar Iván Muñoz López, Karina 
Esmeralda García Mateo, Lorena Cruz Cruz, José Javier Zárate Hinojosa, Javier Torres 
Cole, Yareth Jiménez Barcenas, Andrea Anaid Rangel Huerta, Erika Guillén González, 
María de la Luz Rufina Martínez Lugo, Angélica Liliana Muñoz Solano, David Sena 
Gómez, Berenice Valera Montalvo, Moisés Miguel Ruíz Nogueira, Yoshira Montero Díaz, 
Francisco Javier Martínez Osorio, Alejandra Morales Arias, Sandra Itzel Solis Rivera, 
Alejandro Esteban Cortina, Aldo Miguel López Domínguez, María Fernanda Cortés Ruíz, 
Marilyn Yulissa Ramírez Domínguez, Lucero Moctezuma Juan, Francisco Barrales Arcos 

FAICIC Clinical 
Research 

Veracruz, 
Mexico 

Maria I. Bermudez, MD Noris Peraita, Ernesto Delgado, Alicia Arrazcaeta, Natalie Ramirez, Giovanna Salcedo, 
Aliana Amador, Elizabeth Martinez, Arleen Aspuru, Gabriella Gonzalez, Gabriella Alabaci, 
Livan Sanchez, Raul Tejeda, Adriana Bello, Barbara Vega-Aguera, Kassandra Martinez, 
Grettel Obregon, Oscar Alejandro Gutierrez Luna, Magela C. Dominguez, Lauren Pena 

Suncoast Research 
Associates 

Miami, FL 

Vladimir Berthaud, MD, MPH Toni Hall, Livette Johnson, Sylvia Eluhu, Ana Tomescu, Katharina Whitbeck, Rajbir Singh Meharry Medical 
College 

Nashville, TN 

Donald M. Brandon, MD William B. Davis, Daniel T. Lawler, Maria Aceves, Kathleen B. Anderson, Hana Berry, 
Janice E. Brandon, Jeffrey C. Brandon, Patricia A. Brandon, Lorraine Boggs, Charlene 
Cruz, Mairead Hawkins, Clarice Hranicky, Andrew J. McCrea, Karen G. McCrea, Kimberly 
Najera, Tierney J. O'Connor, Michelle L. Rios, Cindy F. Stevens, Hannah J. Zapata 

California 
Research 
Foundation 

San Diego, CA 

David Browder, MD Cortney Burch, Terri Moye, Michael Wright, Paul Bondy, Lesley Browder Accellacare Rocky Mount, 
NC 

Michael B. Butcher, MD James Fry, Julia Froschauer, Allison Deuel, Jeanne Piccola, Donna Percy, Karen 
Freudemann, Lois Rawe, Megan Bryant, Kurt Percy, Jon Marvin, Luann Corcoran 

Sterling Research 
Group 

Cincinnati, OH 

Robert J. Buynak, MD Mark Yarosz, Rachel McNeal, Megan Smith, Patricia Volom, Nicholas Hanna, Erica Lewis, 
Miranda Lee, Goldie Luna, Marilyn Idowu, Destiny Williams, Jessica Johnson, Consuelita 
Perez, Priscilla Dodson 

Velocity Clinical 
Research 

Valparaiso, IN 

Cornell Calinescu, MD Shannon Rodman, Joshua Rindt, Krystal Tyner, Lovelyn Vincente, Alejandro Osuna-Meda, 
Charmaine Brown, Matthew Derrick, Melodee Morrison, Marissa Washington 

Synexus Henderson, NV 

Thomas B. Campbell, MD Donna McGregor, Laurel Ware, Myron Levin, Steven Johnson, Sophia Quesada, Martin 
Krsak, Kristine Erlandson, Nicholas Sarchet, Vanessa Sutton, Lawrence Moran, Tracey 
Stevenson, Alaina Dougherty, Julianne Randlemon 

University of 
Colorado Hospital 
CRS 

Aurora, CO 

Kevin D. Cannon, MD Mesha M. Chadwick, Bailey Jordan, Taylor Fedorcha, Kathryn Zweier, Brettany Holt, 
Emily Johnson, Karen Ruggiero, Olivia Houghton, Courtney Christie, Allison Dunn, 
Courtney Boyce, Sasha Saint-Lot, Ashley Andrades, Ashley Miller, LaShaya Dunston, 
Russell Larkins, Brittany Savoca, Hannah Nevarez, Hannah Nevarez, Larkin Collins, 
Morgan Cyrus, Morgan Hussey, Christina 
MacNaughton, Heidi Kaufman, Sheila Gard, Alyssa Gaylor, Bethany Donelan-Wilson, 
Taylor Bayless, Anna McManus, Tracie Marlowe Bryant, Ben Manuel, Laura McMillan, 
Nicole Stigers, Prerana Zanke 

PMG Research of 
Wilmington 

Wilmington, NC 

Jorge A. Chacon, MD Juan J. Rivera, Erika A. Cutz, Maricruz E. Ortegon, María I. Rivera, Ricardo Cervera, Felipe 
Rivera, Daniela Pat, Daniela Cruz, Alberto Chacon, Kattia Borges, Aldo Borraz, Rebeca 
Ortegon, Karla Ic, Carmen Ojeda, Irvin Ortega, Mayra Jimenez, Cindy Novelo, Pharmacist, 
Mónica Pérez, Adriana Hernandez, Laura Martinez 

Unidad de 
Atención Medica e 
Investigación en 
Salud (UNAMIS) 

Merida, Mexico 

Laurence Chu, MD Michelle Chouteau, Lisa Johnson, Tambra Dora, Lamar Box, Michelle Listz, Katherine 
Davis, Jennifer Montes, Jessica Ruff, Jennifer Leyva, Pamela Fidler, Ruth Fitch, Sean 
Turnbow, Francesca Vigil, Maria Barrientes, Isaiah Knight, Cindy Duran, Lauren Christal, 
Breana Wade Liaison, Brooke Harris, Dean Skiles, Marisol Ramos, Brandon Newsom, 
Candace Gaitan, David Pereira 

Benchmark 
Research 

Austin, TX 
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Stuart H. Cohen, MD Curtis Blankenship, Katelyn Trigg, Courtney Lymuel, Gursimran Mann, Zayan Musa, Hana 
Minsky, Eliseo Vasquez, Nicole Garza, Kaitlyn Low, Mehrab Hussain, William Li, Rahul 
Araza, Monique Conover, George Thompson, Hien Nguyen, Scott Crabtree, Bennett Penn, 
Minh-Vu Nguyen, Archana Reddy, Derek Bays, Kaitlyn Hardin, Matthew Boutros, Alan 
Koff, Natascha Tuznik, Angel Desai, Naomi Hauser, Sarah Waldman, Gauri Barlingay, 
Dean Blumberg 

UC Davis Health Sacramento, CA 

Erin Cooksey, MD Kristina Harrison, Deanna Cooper, Manisha Horton, Amanda Philyaw Synexus Clinical 
Research 

Anderson, SC 

Aurelio Cruz-Valdez, PhD Janeth, Pacheco-Flores, Anyela Lara, Secia Diaz-Miralrio Instituto Nacional 
de Salud Pública 

Cuernavaca, 
México 

Dima Dandachi, MD, MPH Tami Day, Britlyn Brown, Taylor Mathews University of 
Missouri Health 
Care 

Columbia, MO 

Matthew G. Davis, MD Therese Dayton, Joseph I. Mann, Patricia S. Larrabee, Jean C. Kelly, Tia. L Albro, Zerina 
Zornic, Susan J. Willer, Donna M. Willome, Kathleen K. Ebeling, Jaclyn P. Zona, Julie A. 
Mooney, Katherine A. Pagenkemper, Victoria F. Fink, Christine N. Hall, Chelsea Bork, 
Abigail Miller, Mackay Kanaley, Chelsey LoMonaco, Marie Musolino, Jessica Fisher, 
Katilyn Bergen, Rachel Bordonaro, Cassidy Glod, Liam Sullivan, Brandi Douglass, Ann 
Casey, Philip LaSpino, Maurice Holmes 

Rochester Clinical 
Research 

Rochester, NY 

Michael E. Dever, MD Michael Delgado, Tameika Scott, Laverne Denise Davila, Nelisa Frias, Anissa Hilton, 
Patricia Brown, Shana Caldwell, Martha Hendrix, Edmund Delgado, Mitul Shah, 
Gracemarie Rosario, Kaneitra Williamson, Taylor Lucier, Jaime Hawat, Matthew Stephens, 
Monica Cooper, Dante Canidate, Denise Pagan, Sierra Robinson, Pascal Nelson-Quiles, 
Anthony Perez, Chanel Adams, Keisha Foster, Scott Salmon, Andrew Lockwood, Priya 
Moorhouse, Paul Yi 

Clinical 
Neuroscience 
Solutions 

Orlando, FL 

Matthew Doust, MD Stephanie Catanzaro, Shana Harshell, Madison Mikulak, Bettie, D'Nise Corcoran, Susan 
DeCraene, Jasmin Redden, Brian DeCraene, Karen Wakefield, Adrian Aljeo, Denise 
Sample, Clarissa Lara, Stephanie Junker, Nathan Alderson, Kimberly Joshlin, Mia Munoz, 
Michele Aguirre, Dina Reyes Cordova, Neil Pearson 

HOPE Research 
Institute 

Phoenix, AZ 

Daniel Duncanson, MD Kelly Kush, Lori Nesbitt, Cora Sonnier, Jennifer McCarter, Thomas Buschbacher, Evie 
Zavala, Brittany Cooper, Abbey Mannings, Melissa Berrio, Erin Juhl, William Douglas, 
Timothy Elder, Linda Grover, Colleen Crabbe, Rachel Francis, Jesse Lipnick, Seldon 
Longley, Michael Rozboril, Madison Duncanson, Jakob Vaes, Michael Costa, Dhruv 
Panchal, Michelle Hendricks, Sergio Montalvo, Angel Dubois 

SIMEDHealth / 
SIMEDResearch 

Gainesville, FL 

David Ensz, MD Bruce Rankin, Tavane Harrison, Meagan Miller, Kayla Sturgeon, Jessica Knight, Janet Otto, 
Monica Salazar, Megan Howard, Carly Deges, Joseph Harris, Rylea Gulick, Melissa 
Wiseman, Sue Doty 

Meridian Clinical 
Research 

Sioux City, IA 

Brandon Essink, MD Roni Gray, Christine Wilson, Fritz Raiser, Akossiwa "Essi" Yovogan, Jessica Satorie 
Tiffany Nemecek, Hannah Harrington, Amy Lett-Brown,Chelsea Steinmetz, Tabitha 
Campbell, Carrie Essink, Jamie Meyer, Riley Brockman, Melissa Monarrez, Troy 
Humphries, Wynter Huffman, Brooke Dworak, Raquel Davis, Samantha Nocita, Heidi 
Smith, Carissa Schejbal, Kayla Flege, Joe Genoways, Jessa Swanson, Avery Dunn, Kevin 
Grimes, Phillip Astorino, Ashtynn Jarosz, Hailey Harper, Amy Nichols, Azra Bauman, 
Jessica Fellows, Courtney Heisey, Ginny McNew 

Meridian Clinical 
Research 

Omaha, NE 

Carlos Fierro, MD Natalia Leistner, Amy Thompson, Celia Gonzalez, Nathan Arthur, Mazen Zari, Mary 
Easley, Heather Barker, Manyvohn Rinehart, Monica Atwood, Natalya Amrine, Kelly 
Moen, Kaley Miller, Angela Eichler, Ann Geier, Christa Estrada, Amber Wolf, Denise 
Essix, Latoria Rios, Kasie Hickert, Kenny Nguyen, Karol Moore, Stefanie Uwah, Kaelyn 
Howell, Miranda Dean 

Johnson County 
Clin-Trials 

Lenexa, KS 

Kenneth Finkelstein, DO David Beckmann, Tanya Hutchins, Sebastian Garcia Escallon, Kristen Johnson, Athena 
Rivera, David Otuada, Jessica Bartlett, Lauren Wade, Tyler Will, Gina Nielsen-Grewe, 
Anita Suri 

Providea Health 
Partners Elligo 
Health Research 

Evergreen Park, 
IL 

Jon Finley, MD Nathan Segall, Mildred Stull, Michelle Sowell, Michelle Binns, Kiara Tyner, Karen 
Yangapatty, Elizabeth West, Cynthia Steele, Kwannda Whatley, Hannah Smith, Pamela 
Talbott, Kimberly Cobb, Donna Toepfer, Jennifer LeBrun, Susan Jones, Patrizia Greene, 
Cynthia Pinckney, Kim Banaski, Karen Hickson 

CRA Headlands Stockbridge, GA 

Diana F Florescu, MD Mark Rupp, Daniel Brailita, Adia Sikyta, Erica Stohs, Sara Hurtado Bares, Nada Fadul, 
Matthew Lunning, Elizabeth Schnaubelt, Molly Ferris, Andrew Buettner, Matthew Palmer, 
Bailee Lichter, Alison Lewis, Chase Kimberling, Jonathan Beck, Erin Iselin, Kimmai 
McClain, Andrew Schnaubelt 

University of 
Nebraska Medical 
Center 

Omaha, NE 

Patrick Flume, MD Gary Headden, Brandie Taylor, Ashley Warden, Amy Chamberlain, Kim Spencer, April 
Rasberry, Angela Millare, Angel Darrow, Abbey Grady, Max Lento, Allison Patterson, 
Caitlan LeMatty, Jhonatan Diaz, Andrew Stephens, Emalee Wood, Destri Eichman, Annie 
Cribb, Annelise Kauffman 
Charnele Handy, Elizabeth Poindexter, Moira Chance, Anna Miller, Elizabeth Dickinson, 
Andrea Boan, Erin Klintworth 

Medical University 
of South Carolina 

Charleston, SC 

Veronica Garcia-Fragoso, MD Maria Gabriela Becerra, Cecilia Mckeown, Lisa Holloway, Toni White, Bonnie Colville, 
Frederic Santiago, Teresa Becker, Shakira Barr, Chen Ho Yang, Tracy Kowalski, Danitra 
Glasper, Diana Chehab Nazanin Zarinkamar, Joanna Quezon, Maryam Rabbani, Sadaf 
Batla, Ayla Perez, Berenice Ferrero, Dean Jang, Biman Goswami, Dustin McFadden, Elton 
Oliveira, Enya Rentas-Sherman, Julian Edmonson, Laura Plaza-Grisanty, Olga Konshina, 
Rachely Araujo-Gutierrez, Scott Ward, Teodoro Seminario, Patricia Matute, Sauleha 
Husain, Akram Assaf, Elisa Moralez, Frances Saubon, Jenny Torres, William Fernandez, 
Ashraf Jafri, Amy Anderson, Saji Mathew Perinjelil, Waheeda Sureshbabu, Kara Sikes, Joel 
Cano, Kendra Rogers, Quiana Wilson, Karina Sainz, Abdeali Dalal, Leena Mir, Misbah 
Baloch, Shammarrian Hampton, Crystal Reese, Lucia Almaguer, 
Felicia Ardoin, Deep Patel, Bernardo Martinez Leal, Faryal Mahmood, Ana Rueda, Norma 
Gonzalez, Stacey Montero, Chandra Tobin, Abyssinia Moges, Ari Amirkhosravi, Herman 

Texas Center for 
Drug Development 

Houston, TX 
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 Ortiz, Matthew Joseph, Parul Mehta, Zain Rizvi, Diego Carrington, Blessing Feliz-Okoroji, 
Moez Talpur, Robert Krbashyan, Simeen Khan, Mary Rogers 

  

George H. Freeman, MD Esther Laverne Harmon, Marshall A. Cross, Kacie Sales, Catherine Q. Gular, Amanda 
Fronzaglio, Timothy O’Malley, Zaahin Huq, Jenna Johnson, Jessica Fuggett, Danielle 
Merian, Rita Quinn 

Health Research of 
Hampton Roads 

Newport News, 
VA 

David L. Fried, MD Lynne A. Haughey, Ariana C. Stanton, Lisa Stevens Rameaka Omega Medical 
Research 

Warwick, RI 

Christopher Galloway, MD Candice Montros, Lily Aleman, Samira Shairi, Robert Duran, Wesley Van Ever, Wasilah 
Suid, Sandra Torres, Taylor Rice, Wanda Estrada, Julie Castillo,Stephanie Cassidy, 
Ashleigh Ford, Thai Marie, Colon Maldonado, Amedaris Cordero, Zahra Somji, Rachel 
Morris 

Headlands 
Research 

Orlando, FL 

Cynthia L. Gay, MD, MPH David Wohl, Michelle Floris-Moore, Michael Herce, Danielle Clement, Arianna Morrison, 
Jan Busby-Whitehead, Michelle Hernandez, Zachary Willis, Allison, Burbank, Peyton 
Thompson, Chris Evans, Susan Pedersen, Becky Straub, Samantha Earnhardt, Erin 
Hoffman, Jonathan Oakes, Tevnan Keller, Victoria Rucinski, Camille O’Reilly, Kelsey 
Vollmer, Jennifer Rees, April Welch, Patti Vasquez, Joy Wannamaker, Tanailly Giralt 
Smith, India Pitts, Amanda Beaten, Ebony Harrington, Alex Bradley, Chidinma Okafor, 
Miriam Chicurel-Bayard, Kristina Shoffner, Polly Tsai, Chelsea Taylor, Susanne Hendersen, 
Emily Padgett, Debbie Pence, Jane Salm, Matt Campbell, Kirsten Haigler, Ekatherina 
Diadiuk, Mariam Ramzan, Pamela Miller, Julie Nelson, Nicole Maponga, Carmen Garcia, 
Charlie McGehee, Gloria Oyediran, Paul Alabanza, William Wolf, Hannah Munro, Rachael 
Turner, Dana Lapple, Grace Tillotson, Andrew Powell, Mandy Tipton, Catherine Kronk, 
Oesa Vinesette, Arti Malik, Kirby Caraballo, Maria Stetson, Charles West, Erin Cardot, 
Andy Thorne, Maria Bullis, William Zhao, Jennifer Thompson, Kristen Gray, Sarah Law, 
Holly Milner, Frederick Asamoah, Daniel Galeana, Marcia Gibson, Caressa Goss, Pamela 
Jones, Joshua Lee, Cheryl Hendrickson, Rachel Cook, Erin Daniel, Centhla Washington, 
Carolina Pastrana-Medina, Dayo Nylander-Thompson, William Johnson, Eliza Debose, 
Chloe Twomey, Rachel White, Grace Bailey, Hayley Meier, Jennifer Te Vazquez, Ascary 
Arias, Allison Castillo, Dynesha Perry, Gwen McKnight, Lucie Mangala, Jessica Gingles, 
Maggie Harman, Marie Oriol, Sean McMurray, Christy Litel, Noshima Darden-Tabb, 
Yerson Padilla, Danna Frederick 

University of North 
Carolina 

Chapel Hill, NC 

Bruce C. Gebhardt, MD Padma N. Mangu, Debra Beck Schroeck, Rajesh Kumar Davit, Gayle D. Hennekes, Donna 
Percy 

Sterling Research 
Group 

Cincinnati, OH 

Carl P. Griffin, MD Raymond Cornelison, Shanda Gower,William Schnitz, Angela Genovese, Ryan Morgan, 
Destiny S. Heinzig-Cartwright, April Green, Kim Hamilton, Chalimar Rojo, Lacey Dietz, 
Sharee Wright, Aja George, Karen Hames, Sharla Lister, Brandy Ball, Andrea Romero, 
Krystal Hightower, Dalia Tovar, Kim Calloway, Samelia Farni, Chris Hyatt, Linda Lopez, 
Kathi Shaw, Natacha Tull, Katelyn Hughes, Selwyn Oruh, Lauren Schwab, Samantha Ting 

Lynn Health 
Science Institute 

Oklahoma City, 
OK 

Joseph Grillo, MD Amy Potts, Julie White, Carla Bender, Debra Daugomah, Caitlin Harris, Brian White, 
Alannah Hill, Chelsea Lairson, Karen Blevins 

Medical Research 
International 

Oklahoma City, 
OK 

Bernard Grunstra, MD Donald Quinn, Shelby Olds, Phillip Claybrook, Amy Dye, Shai Perry, Joshua Bullen, Jennie 
Eller, Sandy Daggs, Nicole Everhart, Dennis Lee, Farrah Fuston 

PMG Research of 
Bristol 

Bristol, TN 

Greg Hachigian, MD Deborah Murray, Michael Cancilla, Logan Ledbetter, Masaru Oshita Benchmark 
Research 

Sacramento, CA 

Charles Harper MD Keith Vrbicky, Chelsie Nutsch, Sally Eppenbach, Wendell Lewis, Alisha Kiepke, Misty 
Appeldorn, Cyla Rohde, Catherine King, Kayla Andal, Ashley Frisch, Courtney Green, 
Kelsey Kelley, Katlyn Mace, Jordan Suckstorf, Torie Johnson, Linden DeBoer, Christy Lee, 
Eric Graber, Jeni Hoppe, Jill Smith, Heather Ebel, Taysha Hingst, Samantha Wieseler, 
Diahn Pekny, Elijah Schantz 

Meridian Clinical 
Research 

Norfolk, NE 

C. Mary Healy, MD Chianti Wade Bowers, Chanei Henry, Sheri Ordonez, Janet Brown, Cathy Faw, Shetel 
Anassi, Trent Davis, Kim Taylor 

Baylor College of 
Medicine 

Houston, TX 

Jeffrey A. Henderson, MD, MPH Jeffrey A. Henderson, MD, MPH, Marcia O'Leary, RN, Kendra Enright, RN, Jill Kessler, 
MS, Pete Ducheneaux, LPN, Asha Inniss, MS, APRN 

Black Hills Center 
for American 
Indian Health / 
Missouri Breaks 
Industries Research 
Inc 

Rapid City, SD 

Ripley Hollister, MD Jeremy Brown, Melody Ronk, Jill York, Shelby Pickle, Jami Wagner, Lisa Jackson, Felipa 
Ramdeholl, Angelica Romero 

Lynn Institute of 
the Rockies 

Colorado 
Springs, CO 

Matthew Hong, MD Wayne Harper, Lisa Cohen, Priti Patel, Kendra Lisec, Makayla Dutton, Lynn Eckert, 
Aubrey Farray, Jenee Jiggetts, Emily Reilly, Jill Holmes, Aaron Deaver, Christine Grissom, 
Judith Shand, Brianca Farmer, Eric Henderson, Kristen Shireman, Brad Muskelley, 
Franziska Gassaway, Darian Lawrance, Sabine Ucik, Toni Bland, Katedra Dixon, Reginald 
Santiago, Caroline Zhu, Kathleen Sander, Brian Joseph, Marsha Peery, Lori Bridges, Sadia 
Khan, Adnan Nasir, Sofia Sequiera, Raquell Messick, Kyra Brown, James Hull 

M3-Wake 
Research 

Raleigh, NC 

Gregory Holt, MD Jennifer Denizard, Juanita Johnson, Sehrish Sikandar, Gisel Urdaneta, Silvana Cobain, 
Melyssa Sueiro, Precious Leaks, Evelyn Guadalupe, Rochelle Thompson, Dexter Peart, 
Leidi Paez, Krystal Hosang, Runxia Tian, Ali Vaeli Zadeh 

Miami Veterans 
Affairs Medical 
Center 

Miami, FL 

Lilly Immergluck, MD LaKesha Tables, Harold Gene Stringer, Jacquelyn Ali, Cristina Wilson, Noor Mohamed, 
Kay Woodson, Tiffany White 

Morehouse School 
of Medicine 

Atlanta, GA 

Michael Jacobs, MD Kathleen Menasche, Vincent Mirkil,Yazil Ramirez, Michael Yee, Laura Elio, Candice 
Garcia, Azucena Valdovino, Cristina Garcia, Sharla Peahi-Ching, Kristina Arcos 

Alliance for 
Multispecialty 
Research 

Las Vegas, NV 

Jeffry Jacqmein, MD Maggie Bowers, Dawn Robison,Victoria Mosteller, Janet Garvey, Alpa Patel, Darlene 
Bartilucci, Kenneth Aung-Din, Margaret Gannaway, Carolyn Tran, Michael Koren, Mitchell 
Rothstein, Sonia Gerardo, Cassie Lawler, Yvonne Douglas, Chris Ganzhorn, Emery Noles, 

Jacksonville Center 
for Clinical 
Research 

Jacksonville, FL 
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 Angela Morris, Lisa Carl, Andrea West, Laura Little, Ramil Castillo, Abbey Ras, Nalini 
Jones, Annan Nurrenbern, Deirdre Arrington, Jacob Wolfer, Brenda Anderson, Amanda 
Elwood, Amber DeVries, Cara Seifart, Jimmy Knowles, Vy Dang, Mary Strickland, Pam 
Garmon, Caron Whitelaw, Sharon Smith, Ivy Guillermo, Nate Grant, Khatija Hussein, 
Caron Whitelaw RN, Bernadette Moineau, Robert Nix 

  

Robert Jeanfreau, MD Susan Jeanfreau, Katelyn Jackson, Kynisha “Nicki” Johnson, RaeShanta McKendall, 
Shonna James, Calisha Sadiq, Susan Tortorich, Lori Goins, Steven Darden, Melissa Spedale, 
Kristen Robinson, Joseph Favret, Yordanka Koleva, April Spears, David Conroy 

MedPharmics Metairie, LA 

William Jennings, MD Hilario Alvarado, Michele Baka, Malina Regalado Synexus Clinical 
Research 

San Antonio, 
TX 

Carol Kauffman, MD Andrea Starnes, Andrea Woods, Karen Brudzinski VA Ann Arbor 
Healthcare System 

Ann Arbor, MI 

Colleen F. Kelley, MD, MPH Carlos del Rio, Sheetal Kandiah, Catherine Abrams, Erin Andrew, Felicia Atkinson, Erica 
Baker, Juliet Brown, Tucker Colvin, Natasha Renee Cook, Meena Dhir, Christopher Foster, 
Ronald Gaston, Gabriela Gerogial, John Gharbin, Betsy Hall, Valarie Hunter, Aastha KC, 
Kelly Likos, Bezuayehu Mandefro, Myles Mason, Humberto Orozco, Isaac Perez, Philip 
Powers, Christin Root, Brittany Spiegel, Pamela Weizel, Sarah Wiatrek, Felicia Wright 

Ponce de Leon 
Center 

Atlanta, GA 

Jeff Kingsley, DO April Pixler, LaKondria Curry, Sarah Afework, Austin Swanson, Alyssa Middlebrook, 
Christine Senn, Keyrhea Ritter, Katlin Salewski, Sierra Holmes, Jean Niles, Taylor 
Hernandez, Lacey Shaw, Kaila Maddox, Klarissa Bohnstedt, Emily Gilder, Cassandra 
Motley, Alyssa Middlebrook, Hephzibah Udo, Mattison Sherer, Wayman Petty, Joseph 
Surber 

IACT Health Columbus, GA 

Judith Kirstein, MD Marcia Bernard, Erica Sanchez, Nolan Mackey, Clarisse Baudelaire, Hanna He, Brenda 
Delgado, Brandon Steppe, Bonnie Goodale, Nicole Abels, Carol Remigio, Dipal Patel, 
Emily Zacarias, Nuvia Espinoza, Esmeralda Machado, Katia Talamante, Lizeth Romero 

Velocity Clinical 
Research 

Banning, CA 

Susan Kline, MD, MPH Sara Eischen, Rebecca Cote, Diondra Howard, Editha Jordan, Joyce Bolea, Annie 
McFarland, Asfaw Mesfin, Andrew Snyder, Darlette Luke, Derek LaBar, Theresa 
Christiansen, Beth Jorgenson, Christina Glasgow, Melissa Schedler 

University of 
Minnesota 

Minneapolis, 
MN 

Mark E. Kutner, MD Mark E. Kutner, Jorge Caso, Janet Mendez, Maria Hernandez, Carmen Amador, Amanda G. 
Colina, Alain Chang, Alondra Diaz, Arael Ayala, Carmen Ballester, Claudia Rodriguez, 
Dalila Del Valle, Eduardo Rodriguez, Gloria Moreno, Jennifer Ortega, Jhobana Vargas, 
Jonathan Fernandez, Juan Carlos Delgado, Laura Gonzalez, Leidy Montoya, Marianela 
Carvajal, Mariete Rendon, Maury Santos, Michelle Browne Mirnaya, Mujica, Neiner 
Enriquez, Noelio Hernandez, Paola Garcia 
Raydel Valdes, Saray Carvajal, Susel M. Figueredo, Vanessa Hechevarria, Yanelis 
Dominguez, Yusleidy Diaz 

Suncoast Research 
Group 

Miami, FL 

Mark Leibowitz, MD Fernanda Morales, Rosario Sanchez, Mike Delgado, Norma Vega, Nelly Ayala, Iliana 
Gallaga, Cassandra Celis, Jennifer Muniz, Mariela Quiroz, Juan Frias, Rea Abaniel, John 
Nelson, Maricor Grio, Alejandro Moreno, Coralia Soto, Jose Espino, Daniel Vargas, 
Stephanie Lopez 

National Research 
Institute 

Los Angeles, 
CA 

Derek Lewis, MD Fred Newton, Aeiress Duhart, Breana Watkins, April Green, Chala Simpson, Briana Dean, 
Brandy Ball, Shakita Stevenson, Lashonda Stephenson 

Lynn Institute of 
the Ozarks 

Little Rock, AR 

Gregg Lucksinger, MD Jaleh Ostovar, Audrey Kuehl, Viviana Juncal, Avery Kerwin Velocity Clinical 
Research 

Medford, OR 

Benjamin J. Luft, MD Jorge Alves, Melissa Carr, Ryan Chacon, Barsha Chakraborhy, Aymon Faizi, Laurel 
Gumpert, Andrew Handel, Kayla Henkel, Erin Infanzon, Andrew Kanner, Lily Limsuvanrot, 
Michelle Miroddi, Jeanine Morelli, Sharon Nachman, Rena Nanan, Alexander Newman, 
Alison Pellecchia, Trisha Rush, Jennifer Russell, Stephanie Santiago-Michels, Jonathan 
Sicoli, Candace Smith, Michael Truhlar, Bruno Valenti, Jennifer Valentine, Kathy Vivas, 
Yasmine Brown-Williams 

Stony Brook 
University - Stony 
Brook Medicine 

Commack, NY 

Siham Mahgoub, MD Alice Ukaegbu, Immaculate Okonkwo, Shannon Gopaul, Tara Gibbons, Yuanxiu Chen, 
Debra Ordor, Linda Fletcher, Megan Ware, Florencia Gonzalez, Michael Perini, Carla 
Williams, Mulu Mengistab, Robert Postell, Yejide Obisesan, Adetokunbo Adedokun, 
Reyneir Magee, Jeremy Smith, Edward Bauer, Lora Collins, Urelda Allman, Deborah 
Clements, Sarah Shami, Nathaniel Blaboe, Pedro Lima, Michael Crawford 

Howard University 
Hospital / Howard 
University College 
of Medicine 

Washington, DC 

Mary Beth Manning, MD Toby Briskin, Denise Roadman, Sarah Dzigiel, Jennifer Gaston, Brooke Glivar, Brianna 
Arman, Briana Jackson, Brian Sharpe, Naqib Ahmad, Nicole Baitt 

Velocity Clinical 
Cleveland 

Cleveland, OH 

Rickey D. Manning, MD James Wilson Hurst, Rodney E. Sturgeon, Paul H. Wakefield, John A. Kirby Accellacare Knoxville, TN 

Kristen Marks, MS, MD Marshall Glesby, Roy Gulick, Timothy Wilkin, Ole Vielemeyer, Mary Vogler, Carrie 
Johnston, Rebecca Fry, Daniel Finn, Caitlin Rhoades, Noah Goss, Shaun Barcavage, Valery 
Hughes, Jonathan Berardi, Ashley Machado, Caique Mello, Mia Crowley, Monique 
Williams, Minkyung Lee, Mary Ann Zwiebel, Patrice Weller, Antonio Rivera-Lopez, 
Harrison Chan, Ruby Lee, Victoria Lesina, Vasilika Koci, Paul Kim, Steven Wang, Malissa 
Robinson, Edward Kenny, Danny Garcia, Venus Fernandez, Parul Shah, Celine Arar, Byron 
Bullough, Jonattan Rodriguez, Jessenia Fuentes, Jiamin Li, Arthur Goldbach, Genessi 
Rodriguez, Catherine Jerry, Nadi Islam, Madeline Gomez, Rajshri Hirpara, Ioanna 
Pahountis, Wayne Burns, Tahera Begum, Gianna Resso, Sophia Alvarez, Elizabeth 
Connolly, Roxanne Rosario, Sierra Derti, Britta Witting, Anna Gwak 

Weill Cornell 
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New York, NY 

Paul G. Matherne, MD Cassie Beeks, Sarah Bowen, Deven Fejka, Nicole Guttierrez, Lakeyla Bates, Pam Taylor, 
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Medpharmics Gulfport, MS 

Monica McArthur, MD, PhD Cheryl Young, Helen Powell, Levis Contreras, Panagiota Komninou, Christine Wade, 
Jumoke Oladapo, Kaitlin Mason, Robin Barnes, Leslie Howe, Cheilon Bolanos, Shannon 
Bittner, Elva Valle-Maldonado, Wanda Somrajit, Biraj Shrestha, Justin Ortiz, Nancy 
Greenberg, Kathleen Strauss, Lisa Chrisley, Melissa Billington, Sudhaunshu Joshi, Lavida 
Porter, Megan McGilvray, Daryl Grays, Shirley George, Jennifer Marron, Kelly Brooks, 
Natelaine Fripp, Mardi Reymann, Brenda Dorsey, Patricia Farley, Melissa Myers, Natasha 

University of 
Maryland School 
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Baltimore, MD 
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University of 
Washington & 
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Beals, Deidre Turner, Christina Spooner 

Womack Army 
Medical Center 

Fort Bragg, NC 
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Elizabeth Michael, Lisa Guider, Zack Harmon, Diane Sproles, Randy Cooper, Jessica 
Benvenuto, Stefanie Mullins, Quinetrice Bennett, Corey Flack 

WR Clinsearch Chattanooga, 
TN 

Jorge F. Méndez Galván, MD Adriana Sordo Durán, Martha Yarelli Valencia Mejía, Froylan David Martínez Sánchez, 
Ana María Piña Rodríguez, Diana Alim Mena Martínez, Melany Susel Fernández Valdez, 
Laura Ruy Sánchez Guerrero, Ana Fabiola Ruiz Villagrana, Mónica B. Carrascal, Martha 
Cecilia Gomora Madrid, Anahí García Álvarez, Ismael Delgado Ginebra, Omar Alfonso 
Heredia Nieto, Yanni Maldonado Ventura, Jonathan E. Ramírez Salazar, Mariela Salgado 
Zagal, María Fernanda Espinosa García, Yolanda Albor Hernández, Ricardo Antonio 
González, Germán Alonso Lara, Marbella Rojas Ortega, Bernardo Kleinfinger Chayet, 
Victor Emmanuel Alva López, Diego Carlos Angel Perez, Alejandro Cortes Meda,Ivonne 
Hernandez Giron 

Centro de Atención 
e Investigación 
Médica (CAIMED) 

Mexico City, 
Mexico 

Rajan Merchant, MD Anelgine Crans Yoon, Janet Hill, Lucy Ng-Price, Teri Thompson-Seim, Alejandra Cazares 
Hernandez, Danielle Hornbuckle, Adriane Rubit, Ann Campbell, Dawn Diorio, Adeline 
Stabler, Jasdeep Shergill, Claudia Gross, Anne Nguyen 

CommonSpirit 
Health Research 
Institute 

Woodland, CA 

Vicki E. Miller, MD, MPH Amy Starr, Shiela Varghese, Sonia Guerrero, Monica Murray, Vanessa Gonzales, Blanca 
Gomez, Zainab Rizvi, Victoria Aguilar, Anna Pena, Madiha Baig, Dustin Watson, Pauline 
Ngban, Afifah Ayub, Laura Drampou, Shelby Danforth, Diana Avalos, Jacquelyn Gonzales, 
Ragen Powell, Sajjad Naqyi, Ambily Dileep, Alefiyah Motiwala, Heather Leary, Humera 
Siddiqui, Miatta George, Kastyn Kelly, Nicole Segura, Maryam Jamil, Husain Motiwala, 
Sandra Smith, Sally Hussein, Yousra Yousif, Carlyn Robinson, Cannon Lenfield, Luis Leal, 
Muhammad Irfan, Nayab Croher, Pattie Tate, Sandra Natalia Perez, Fredric Santiago, Syeda 
Riaz, Arsani Iskandar, Alefya Hussain 

DM Clinical 
Research 

Tomball, TX 

Linda Murray, DO Christy Delcamp, Monica Hoewt, Kristin Shade, Tara McTigue Synexus Clinical 
Research 

Pinellas Park, 
FL 

David Musante, MD William P. Silver, Linda R. Belhorn, Nicholas A. Viens, David Dellaero, Shandelle Parker, 
Andrew Zimmerman, Roger Ordronneau, Bryan Stanislaus, Kevrin Johnson, Megan Dice, 
Megan Heron, Sarah Wilkerson 

M3-Emerging 
Medical Research 

Durham, NC 

Sherif Naguib, MD Justin Singletary, Sha-Wanda Richmond, Sarah Omodele, Emily Oppenheim, Jalisha 
Hemphill, Marqueta Jones, Millat Gedefa, Janean Smith, Bonnie Raufman, Lesley 
Whitehead, Elia O’Dell, Sarah Omodele, David Taylor, ShaWanda Richmond, Alexis 
Melson, Justin Singletary 

Synexus Clinical 
Research 
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Joseph Newberg, MD Laura Pearlman, Reuben Martinez, Victoria Andriulis, Jacquilyn McCormick, Anna 
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Synexus Clinical 
Research 

Chicago, IL 

Paul J. Nugent, DO Leonard Singer, Jeanne Blevins, Meagan Thomas, Christine Hull Synexus Clinical 
Research 

Cincinnati, OH 

Yaa D. Oppong, MD Ryan P. Starr, Scott N. Syndergaard, Nafisa Saleem, Cheryl Norris, Nicole Austin, Rozeli 
Shelly, Md Mashrur Islam Majumder, Annette Bunnells, Michelle Wallace, Avia McClain- 
Stocker, Rachel Ryan, Katie Wood, Arien Stebbins, Crystal Schmitt, Jeffrey Pemberton, 
Mitchel Arlidsen, Daniel Tomita, Geraldine McRae, Amy Sheets, Jeanette Mangual- 
Coughlin, 
Margo Miller-Smith, Melinda Thomas 

Carolina Institute 
for Clinical 
Research 

Fayetteville, NC 

J. Scott Overcash, MD Adrienna Marquez, Hanh Chu, Kia Lee, Kim Quillin, Jordan Coslet, Yashveer Dubbula, 
Adam Prince, John Rodriguez, Lee Tomatsu, Erin Vawter, Michael Voskanian, Michael 
Waters, Gina Weaver, Karla Zepeda, Angela Anorve, Gordon Bovee, Jennifer Baker, Laura 
Castillo, Allie Davis, Jacob Esparza, Andrea Garcia, Jessica Gonzales, Lizette Gonzalez, 

Velocity Clinical 
Research 

La Mesa, CA 
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 Ashleigh Lindsay, Erica Marinelli, Cathy Meza, Shandel Odom, Makenna Orel, Grecia 
Perez, Helen Pu, Cesar Ramirez, Melania Riordan, Deidre Romines, Raquel Taitingfong, 
Katrina Tyler, Bernadette Wilson 

  

Yogesh K. Paliwal, MD Amit Paliwal, Renu Bhupathy, Krystle Edwards, Sarah Gordon, Cynthia Montano-Pereira, 
Blanca Gomez, Yazmin Nunez, Cassandra Martinez, Connie Navarrete, Mayra Casas, 
Ysabel Lopez, Anthony Macias, Alexandria Vasquez, Maria Gomez 
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Research 

Pomona, CA 

Isabel Pereira, MD Gina Rivero, Tracy Okonya, Frances Downing, Paulina Miller, Yasmin Camberos Synexus Clinical 
Research 
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Bruce Rankin, DO John M. Hill, Steven Shinn, Vivek Rajasekhar, Marshall Nash, Michelle Tutt, Kimberlee 
Del Campo, Douglas F. Winter, Leandro Fernandez, Melissa Hodges, Michelle Jones, Sean 
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Toby, Albert Garcia, Alicia J. Cevera,Jeffery Hood, Hannah Hodges, Melissa Willard 

Accel Research 
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DeLand, FL 

María José Reyes Fentanes, MD Pablo Fermín González Limón, Luis Ricardo Acosta Beuló, Paulina Cleer García 
Valdovinos, Olivia de la Puente Flores, Eduardo Rugama Martel, Ana Gabriela Mier Flores, 
Ulises Abel Rodríguez Vargas, Diego Guillermo Muñoz Bolaños, Martha Alejandra Alonso 
Trejo, Elvia Ramírez Gutiérrez, Alberto Aaron del Rosal Medina, Jaime Chavez Baron, Ana 
Gabriela Guizar Zamora, Felipe Arredondo Saldaña, Juan De Dios Martín Luján Palacios, 
Juan José Pardo Moreno, Jorge Torres Ferrera, Itzetl Guzman Mendieta 

PanAmerican 
Clinical Research 
México 

Querétaro, 
Mexico 

Margaret Rhee, MD Jeffrey Klein, Katherine Stapleton, Stacy Collins, Dawn Greer, Kelli Meissner, Brenda 
Moore, Tylene Falkner, Celeste Blazy, Nicole Johnson, Christina Carter, Annette Pangle, 
Rosamond Hong 

Synexus Clinical 
Research 

Akron, OH 

Robert Riesenberg, MD Robert Riesenberg, Stanford Plavin, Mark Lerman, Leana Woodside, Maria Johnson Atlanta Center for 
Medical Research 

Atlanta, GA 

Barbara Rizzardi, MD Michelle King, Vanessa Abad, Jennifer Knowles, Benjamin Richeson, Denise Pessetto, 
Heather Holtman, Lori Luth, Wyatt Walsh, Andrea Johnson, Dreama Fackrell, Patrick 
O’Keefe, Sara Isolampi, Michelle Walkingshaw, Josh Carrillo, Renu Landage, Stephanie 
Wallace 

Velocity Clinical 
Research 

West Jordan, UT 

Carina A. Rodriguez, MD Patricia Emmanuel, Lucy Guerra, Asa Oxner, Alicia Marion, Reed Ryan, Tiffany Vasey, 
Susannah Hall, Amanda Morton, Emma Gonzalez, Elisabeth Ballans, Rachel Karlnoski, Luz 
Santamaria, Rosalinda Cruz, Joshua Finley, Michael Hayes, Oliver Emberger, Mark 
Pennington, Meghana Vankatesh, Kimberly Johnson, Marina Wassif, Janelle Perkins, 
Veroniya Winkfield, Amavyvis Garcia, John Jones, Lori Brock, Kyle Cesareo, Dilcina 
Dragon, Dominic Moore, Catherine Marten, Thi Nguyen, April Roberts, Kristi Bojaxhi, 
Chrestenie Mouse 

University of South 
Florida, Morsani 
College of 
Medicine 

Tampa, FL 

David Rosenberg, MD Lee Tomatsu, Viviana Gonzalez, Millie Manalo, Nicole Rudin Pharmacology 
Research Institute 

Los Alamitos, 
CA 

Vida Veronica Ruiz Herrera, MD Vida Veronica Ruiz Herrera, Eduardo Gabriel Vazquez Saldaña, Laura Julia Camacho 
Choza, Karen Sofia Vega Orozco, Sandra Janeth Ortega DominguezMaria, Carolina Molina 
Roman, Julian Camacho Choza, Rodolfo Fabian Lomeli Guerrero, Giuliana Magaña Garcia, 
Carlos Andres Perez Navarro, Cesar Alberto Lopez Martin, Luis Arturo Rico Godinez, 
Felipe de Jesus Lopez Cordova, Daniel Arroniz Bernal, Luisana Aldaco Cota, Edgar 
Cordova Pulido, David Aguila Rivera 

PanAmerican 
Clinical Research 
México 

Guadalajara, 
Mexico 

Beth Safirstein, MD Luz Zapata, Lazaro Gonzalez, Evelyn Quevedo, Farah Irani, Julio Vigil, Steven Rapp, Mark 
Firestone, Humberto Mucientes, Ali Yasells Garcia, Florence Baum, Robert Hacman, 
Martha Ravelo, Carlos Alzate, Keyanna Francois, Alberto Napoles, Jamie Lorenzo, Deandra 
Clarke, Disneydi Gutierrez, Yean Alfonso, Nestor Lopez, Ana Bustos, Ilya Faybishenko, 
Lynnette Perez, Evelyn Qulies, Maria del Valle, Natalie Joseph, Judith Powell, Jessica 
Hernandez, Rafael Sanchez, William Torres, Damaris Alonso, Dragos Juravle, Roberto 
Valledor, Veronica Valledor, Maria Pazos, Teresa Rios, Maria Lascano 

MD Clinical Hallandale 
Beach, FL 

Howard Schwartz, MD Nelia Sanchez-Crespo, Terry Piedra, Barbara Corral, Jennifer Schwartz Cenexel RCA Hollywood, FL 
Elizabeth Secord, MD Roy Collins, Marita Poff, Jamal Chehab, Sajith Matthews, Thomas Mazzocco, Chantel 

Karmo, Sarah Meram, Janie Faris, Valerie Mika, Shobi Mathew, Brian O’Neil, James 
Paxton, Amy Stolinski, Stacie Smith, Benjamin Wasinski, Lisa Palmer, Katherine Cross, 
Samuel Ceckowski, Theodore Falcon, Jeffrey Harrison, Abe Lovelace, Selmir Mahmutovic 

Wayne State 
University 

Detroit, MI 

Marian E. Shaw, MD Mark A. Turner, Cory J. Huffine, Esther S. Huffine, Jacqueline Hanson, Nicholas Tuttle, 
Shannon Veach, Antonio Navarrete, Jammie Smith 

Velocity Clinical 
Research 

Meridian, ID 

Teresa S. Sligh, MD Scott Sligh, Parul Desai, Vincent Huynh, Carlos Lopez, Erika Mendoza, Dennis Perez, 
Samuel Ceballos, Jennifer Gomez, Janneth Becerra, Tiffany Martinez, Erika Navarro Fausto 

Providence Clinical 
Research 
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Hollywood, CA 

Joel Solis, MD Carmen Medina, Westley Keating Centex Studies McAllen, TX 
Jonathan Staben, MD Jessica Horton, Hannah Neill-Gubitz, Hilary Koenigs, Autumn Dlugas, Stacie Rebar, Anne 

Reedy, Roslyn Pierce, Kali Karst, Jaimee Gribben, Sarah Troutt, Mimi Meipel, Ann Carson, 
Paige Ramos, Natosha Hardy, Zack Brownell, Dot Heid, Annie Estes, Andrea Fry, Veronica 
Navarro 

MultiCare Institute 
for Research and 
Innovation 

Cheney, WA 

Kathryn E. Stephenson, MD, 
MPH 

Karen A. Lorenc, Audrey B. Nathanson, Michelle Beck, Shaelah M. Huntington, Wendy 
Hori, Uyen Rasphoumy, Ashley Beckles, Jody Dushay, Vijai Bhola, Wilanda Gabriel, 
Annika Gompers, Halle Hall, Nicholas Manickas-Hill, Toluwanimi Ajayi, Nicole Magner, 
Conor Cronin, James Arrico, Heena Patel, Janet Mullington, Michael Seaman, Katherine 
Yanosick, Ariana Leonelli, Eric Dai 

Beth Israel 
Deaconess Medical 
Center 

Boston, MA 

Danny Sugimoto, MD Jeffrey Dugas Sr., Dolores Rijos, Sandra Shelton, Stephan Hong Cedar Crosse 
Research Center 

Chicago, IL 

Suzanne Swan, MD Sharine Phan, Tami Wahlin, Elizabeth Bennett, Amy Salzl, Jeannette Blaisdell, Stacie 
Mahowald, Dominick Thibodeau, Sophia Houser, Tammy Hanson 

Synexus Clinical 
Research 
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University of 
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d/b/a Atrium 
Health 

Charlotte, NC 

Lisa S. Usdan, MD Lora J. McGill, Valerie K. Arnold, Carolyn Scatamacchia, Codi M. Anthony, Carol R. 
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Petro, Gina Weaver, Kia Lee, Hanh Chu, Karla Zepeda, Crystle Rajania, John Rodriguez, 
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Dyer, Maria Webb, Akihisa Kodama, Cynthia Juarez, Sandra Gaona, Moriah Wilson, Mark 
Gonzalez 
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Supplementary Figure 1. (A) Case-cohort set (U.S. study sites). (B) Phases of the 
PREVENT-19 trial, timing of NVX-CoV2373 doses and serum sampling, and the time 
period for COVID-19 primary endpoints included in the Day 35 marker correlates analysis 
(correlates analyses restrict to Part A Pre-Crossover Phase and U.S. study sites). In (A), 
cases are baseline SARS-CoV-2 negative per-protocol vaccine recipients with the primary 
COVID-19 endpoint starting 7 days post D35 visit through to the efficacy data cut (April 19, 
2021). “Baseline SARS-CoV-2 negative” is defined as in ref.1, i.e. seronegative for anti-SARS-
CoV-2 nucleoprotein and SARS-CoV-2 RNA RT-PCR-negative nasal swab at baseline. “Per-
protocol” is also defined as in ref.1, i.e. received both planned vaccinations, had no specified 
protocol deviations, and were SARS-CoV-2 negative on the D21 visit. Primary COVID-19 
endpoints were as in ref.1: RT-PCR–confirmed symptomatic COVID-19 occurring at least 7 days 
after dose two. As all breakthrough cases occurred in the United States in Part A as of the 
efficacy data cut date, the case-cohort set (Panel A) was restricted to the U.S. cohort and 
therefore all primary COVID-19 endpoints included in the analysis (Panel B) were in the U.S.  
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Supplementary Figure 2. Flowchart of study participants from randomization through 
membership in the baseline SARS-CoV-2 negative per-protocol case-cohort set (U.S. 
study sites). Membership in the case-cohort set required availability of D0 and D35 antibody 
data and no evidence of SARS-CoV-2 infection through 6 days post D35. Antibody data from 
the placebo arm are not used in correlates analyses, given no variability in values; they were 
only used to verify low false positive rates of the immunoassays.  
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Supplementary Figure 3. Inverse probability sampling (IPS)-weighted empirical reverse 
cumulative distribution function curves for D35 (A) anti-spike IgG concentration, (B) 
anti-RBD IgG concentration, or (C) pseudovirus-nAb ID50 titer and application of the 
Siber (2007) method2 for estimating a threshold of perfect vs. no protection.  
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Supplementary Figure 4. Vaccine efficacy in the US study population with causal sensitivity 
analysis by Day 35 (A) anti-spike IgG concentration, (B) anti-RBD IgG concentration, or (C) 
pseudovirus (PsV)-nAb ID50 titer. Vaccine efficacy estimates were obtained using the method of 
Gilbert et al.3 The green histogram is an estimate of the density of D35 antibody marker level and the 
horizontal gray line is the overall vaccine efficacy from 7 to 59 days post D35, with the dotted gray lines 
indicating the 95% confidence intervals (this number 87.7% differs from the 90.4% reported in ref.1, 
which was based on counting COVID-19 endpoints starting 7 days post D35 in both the US and Mexico 
study sites). The pink solid line is point estimates assuming no unmeasured confounding; the dashed lines 
are bootstrap point-wise 95% CIs. The red solid line is point estimates assuming unmeasured confounding 
in a sensitivity analysis (dashed lines are bootstrap point-wise 95% CIs); see the Statistical Analysis Plan 
for details. LLOQ, lower limit of quantitation; LOD, (lower) limit of detection.  Analyses adjusted for 
baseline risk score. 
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Supplementary Figure 5. Performance of the baseline risk score built from ensemble machine 
learning. (A) Receiver operating characteristic (ROC) curves based on cross-validated (CV)-estimated 
predicted probabilities for the top two learners, Superlearner and Discrete Superlearner. CV-estimated 
predicted probabilities were computed using only data from the placebo arm in the US with cases as 
COVID-19 endpoints starting post-enrollment. (B) ROC curve based on Superlearner predicted 
probabilities in vaccine recipients used in the correlates analyses with cases considered as COVID-19 
endpoints starting 7 days post second vaccination visit and non-cases as participants with follow-up 
beyond 7 days post second vaccination visit who never registered a COVID-19 endpoint. 
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Supplementary Table 1. Sample sizes of baseline SARS-CoV-2 negative per-protocol vaccine 
recipients included in the case-cohort set included in immune correlates analyses (U.S. study sites), 
by baseline sampling strata and case/non-case strata. 

Case-cohort set = Baseline SARS-CoV-2 negative per-protocol vaccine recipients included in D35 marker 
correlates analysis [in the immunogenicity subcohort (IS) and/or a breakthrough COVID-19 case)]*  

Ab, antibody; IS, immunogenicity subcohort 
 
Demographic covariate strata:  
1. U.S. White Non-Hispanic**, age 18-64, No coexisting conditions*** 
2. U.S. White Non-Hispanic, age 18-64, Coexisting conditions 
3. U.S. White Non-Hispanic, age ≥ 65, No coexisting conditions 
4. U.S. White Non-Hispanic, age ≥ 65, Coexisting conditions 
5. U.S. Minority, age 18-64, No coexisting conditions 
6. U.S. Minority, age 18-64, Coexisting conditions 
7. U.S. Minority, age ≥ 65, No coexisting conditions 
8. U.S. Minority, age ≥ 65, Coexisting conditions 

 
Cases are baseline SARS-CoV-2 negative per-protocol vaccine recipients with the primary COVID-19 
endpoint starting 7 days post D35 visit through to the data cut (April 19, 2021). 
Non-cases/Controls are baseline negative per-protocol vaccine recipients sampled into the 
immunogenicity subcohort with no evidence of SARS-CoV-2 infection up to the end of the correlates 
study period (the data cut-off date April 19, 2021).  IS membership required availability of D0 and D35 
antibody data and no evidence of SARS-CoV-2 infection through 6 days post D35. 

*All breakthrough COVID-19 cases with D0, D35 Ab marker data were outside the IS 
 
** White Non-Hispanic is defined as Race=White and Ethnicity=Not Hispanic or Latino. All other Race 
subgroups are defined as Black, Asian, American Indian or Alaska Native, Native Hawaiian or Other 
Pacific Islander, Multiracial, Other, Not reported, or Unknown.  
Minority is defined as the complement of being known to be White Non-Hispanic. 
 
***Coexisting conditions are the same as those listed in Table 1 of Dunkle et al.1: obesity (defined as a 
body-mass index [the weight in kilograms divided by the square of the height in meters] of ≥30.0), 
chronic lung disease, diabetes mellitus type 2, cardiovascular disease, or chronic kidney disease.

 

 Baseline Sampling Strata of Baseline SARS-CoV-2 Negative Per-Protocol 
Vaccine Participants Included in Correlates Analyses 

1 2 3 4 5 6 7 
 

8 Total 
Breakthrough COVID-19 cases 

(both within and outside the IS*) 
with D0, D35 Ab marker data 

2 1 1 1 3 4 0 
 

0 
 

12 

Non-cases in the IS with D0, D35 
Ab marker data 102 97 89 80 74 73 55 69 639 
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Supplementary Table 2. PREVENT-19 U.S. cohort demographic and clinical characteristics at 
enrollment in the baseline SARS-CoV-2 negative per-protocol immunogenicity subcohort* 

Characteristics  
Vaccine  

(N = 669*) 
Placebo  

(N = 76)  
Total 

(N = 745) 
Age 

Age 18-64 355 (53.1%) 42 (55.3%) 397 (53.3%) 
Age ≥ 65 314 (46.9%) 34 (44.7%) 348 (46.7%) 
Mean (Range) 55.0 (18.0, 86.0) 54.6 (22.0, 80.0) 55.0 (18.0, 86.0) 

Coexisting Conditions**  
Yes 329 (49.2%) 41 (53.9%) 370 (49.7%) 
No 340 (50.8%) 35 (46.1%) 375 (50.3%) 

Age, Coexisting Conditions 
Age 18-64 Coexisting conditions 174 (26.0%) 22 (28.9%) 196 (26.3%) 
Age 18-64 No coexisting conditions 181 (27.1%) 20 (26.3%) 201 (27.0%) 
Age ≥ 65 314 (46.9%) 34 (44.7%) 348 (46.7%) 

Sex  
Female 309 (46.2%) 39 (51.3%) 348 (46.7%) 
Male 360 (53.8%) 37 (48.7%) 397 (53.3%) 

Hispanic or Latino Ethnicity 
Hispanic or Latino 143 (21.4%) 12 (15.8%) 155 (20.8%) 
Not Hispanic or Latino 521 (77.9%) 64 (84.2%) 585 (78.5%) 
Not reported and unknown 5 (0.7%) 0 (0.0%) 5 (0.7%) 

Race 
White 453 (67.7%) 47 (61.8%) 500 (67.1%) 
Black or African American 127 (19.0%) 19 (25.0%) 146 (19.6%) 
Asian 46 (6.9%) 6 (7.9%) 52 (7.0%) 
American Indian or Alaska Native 18 (2.7%) 1 (1.3%) 19 (2.6%) 
Native Hawaiian or Other Pacific Islander 1 (0.1%) 0 (0.0%) 1 (0.1%) 
Multiracial 12 (1.8%) 1 (1.3%) 13 (1.7%) 
Not reported and unknown 12 (1.8%) 2 (2.6%) 14 (1.9%) 

*Of the 669 sampled vaccine recipients, 639 had antibody marker data measured at D0 and D35 
and had no evidence of SARS-CoV-2 infection through 6 days post D35 and hence are in the 
immunogenicity subcohort. 
** Coexisting conditions are the same as those listed in Table 1 of Dunkle et al.1: obesity 
(defined as a body-mass index [the weight in kilograms divided by the square of the height in 
meters] of ≥30.0), chronic lung disease, diabetes mellitus type 2, cardiovascular disease, or 
chronic kidney disease. 
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Supplementary Table 3. Distribution of variants among primary COVID-19 endpoints in 
PREVENT-19 starting 7 days post D35 through to the data cut-off (April 19, 2021) (no primary 
endpoints were with the ancestral/Wuhan-Hu-1 strain) with available sequence data.  
 

Variant  
(PANGO 
lineage)* 

CDC and Prevention Classification (June 
2021) 

 
Placebo 
(n=37) 

 
Vaccine (n=7) 

B.1 Wuhan Ancestral lineage 2 1 
B.1.1 Wuhan Ancestral lineage 1 0 

B.1.1.519** Wuhan Ancestral lineage 1 0 
B.1.1.7 (Alpha) VoC 21 3 

B.1.2 Wuhan Ancestral lineage 2 0 
B.1.311 Wuhan Ancestral lineage 1 0 

B.1.351 (Beta) VoC 0 1 
B.1.526 (Iota) VoI 2 2 

B.1.596 Wuhan Ancestral lineage 1 0 
B.1.617.1 (Kappa) VoI 1 0 

B.1.623   Wuhan Ancestral 
lineage 

1 0 

B.1.637   Wuhan Ancestral 
lineage 

1 0 

P.1 (Gamma) VoC 2 0 
P.2 (Zeta) VoI 1 0 

*Variants without a Greek letter are of the Wuhan Ancestral lineage and have never been classified by the 
Center for Disease Control and Prevention as a variant of interest (VoI) or as a variant of concern (VoC). 
**Formerly monitored variant never classified as a VoI or VoC. 
 

 

 

 



 

Supplementary Table 4. D35 antibody marker response rates and geometric means in the U.S. cohort by COVID-19 outcome status. 
Analysis based on baseline SARS-CoV-2 negative per-protocol placebo recipients in the case-cohort set. Median (interquartile range) days from 
vaccination to D35 was 38 (5).  

 Placebo COVID-19 Cases1 Placebo Non-Cases in Immunogenicity 
Subcohort2 

Comparison 

D35 Marker N Proportion with 

Antibody 

Response3     

(95% CI)  

Geometric 

Mean (GM) 

(95% CI) 

N Proportion with 

Antibody 

Response3      

(95% CI) 

Geometric Mean 

(GM) (95 % CI) 

Response Rate 

Difference (Non-

Cases – Cases) 

Ratio of GM 

(Non-Cases/  

Cases) 

Anti Spike IgG 

(BAU/ml) 

41 7.3% 
(2.3%, 21.0%) 

1.19 
(0.89, 1.59) 

72 0.9% 
(0.2%, 3.5%) 

0.82 
(0.70, 0.95) 

0.2% (0%, 1.7%) 0.68 (0.50, 0.95) 

Anti RBD IgG 

(BAU/ml) 

41 0.0% 
(0.0%, 0.0%) 

15.32 
(15.32, 15.32) 

72 0.2% 
(0.0%, 1.7%) 

15.51 
(15.15, 15.87) 

0.2% (0%, 1.7%) 1.01 (0.99, 1.03) 

Pseudovirus-nAb 

ID50 (IU50/ml)  

41 0.0% 
(0.0%, 0.0%) 

1.31 
(1.31, 1.31) 

72 0.2% 
(0.0%, 1.7%) 

1.32 
(1.29, 1.35) 

-6.4% (-20.1%, -0.8%) 1.01 (0.99, 1.03) 

 

1Cases are baseline SARS-CoV-2 negative per-protocol placebo recipients with the primary COVID-19 endpoint (symptomatic RT-
PCR-confirmed COVID-19) starting 7 days post D35 visit through to the efficacy data cut-off date (April 19, 2021). 
2Non-cases are are baseline negative per-protocol placebo recipients sampled into the immunogenicity subcohort with no evidence of 
SARS-CoV-2 infection up to the end of the correlates study period (the data cut-off date April 19, 2021). 
3Antibody response defined by Spike IgG or RBD IgG concentration above the antigen-specific positivity cut-off (10.8424 BAU/ml 
and 30.6 BAU/ml, respectively) or by detectable ID50 > limit of detection (LOD) = 2.612 IU50/ml.  
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Supplementary Table 5. Assay limits of the two antibody markers evaluated as immune correlates. 
BAU = binding antibody units; IU = International Units; LLOQ, lower limit of quantitation; ULOQ, 
upper limit of quantitation. 

MSD Binding Assay (Nexelis) (Spike and RBD IgG markers) 

Reported units BAU/ml 

 Spike RBD 

Positivity Cutoff 10.8424  30.6 

LLOQ 1.35 30.6 

ULOQ 6934 9801 
All values < LLOQ were set to LLOQ/2 
All values > ULOQ were set to ULOQ (for immune correlates analyses)  

Pseudovirus neutralization titer (Monogram) (nAb ID50 marker) 

Reported units IU50/ml 

LOD* 2.612 

LLOQ 3.3303 

ULOQ 8319.938 
Values < LOD are denoted as undetectable responses and were set to LOD/2 
All values > ULOQ were set to ULOQ (for immune correlates analyses) 

*The limit of detection (LOD) was not formally defined; we denote the value corresponding to the starting dilution 
level of the assay as the LOD. 
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Supplementary Table 6. Individual baseline variables in baseline SARS-CoV-2 negative per-
protocol placebo recipients that were used in the ensemble machine learning for developing risk 
score and predicting occurrence of COVID-19.  

Variable Name  Definition  
Total missing 
values*  

Age  Age at enrollment in years  0/7332 (0.0%)  

Sex  Sex assigned at birth (1=female, 0=male)  0/7332 (0.0%)  

Black  Indicator race = Black (0 = White)  0/7332 (0.0%)  

Asian  Indicator race = Asian (0 = White)  0/7332 (0.0%)  

Ethnicity Hispanic  
Indicator ethnicity = Hispanic or Latino 
(0 = Non-Hispanic/Non-Latino) 0/7332 (0.0%)  

Height  Height at baseline (cm)  23/7332 (0.3%)  

Weight  Weight at baseline (kg)  24/7332 (0.3%) 

BMI  BMI at enrollment (kg/m^2)  24/7332 (0.3%)  

HighRiskInd  Protocol-defined high-risk pre-existing 
condition (1=yes, 0=no) 

0/7332 (0.0%) 

*Missing values in variables Height, Weight, and BMI were imputed using the mice package in R. 
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Supplementary Table 7. Ensemble (Superlearner) model with individual learners sorted by weight. 
Predictors within each learner are sorted by variable importance which is the absolute value in 
Coefficient (in case of learners SL.glm, SL.glmnet, and SL.gam), or Importance (in case of 
SL.ranger).  

Learner Screen Weight Predictors Coefficient 
Odds 
Ratio Importance 

SL.glm Univariate logistic p-
value 

0.431 (Intercept) -4.93 0.007 N/A 
Age -0.438 0.645 N/A 
Sex 0.293 1.34 N/A 

SL.glmnet No screen 0.304 (Intercept) -4.885 0.008 N/A 
Age -0.365 0.694 N/A 
Sex 0.212 1.236 N/A 
Asian 0.056 1.058 N/A 
HighRiskInd 0.113 1.119 N/A 

SL.gam High-correlation 0.221 (Intercept) -4.959 0.007 N/A 
s(Age, 2) -0.461 0.631 N/A 
s(Height, 2) 0.598 1.818 N/A 
s(Weight, 2) -0.842 0.431 N/A 
s(BMI, 2) 0.804 2.235 N/A 
Sex 0.454 1.574 N/A 
Black -0.016 0.984 N/A 
Asian 0.13 1.139 N/A 
EthnicityHispanic -0.057 0.945 N/A 
HighRiskInd 0.179 1.196 N/A 

SL.ranger No screen 0.044 BMI NA NA 33.275 
Weight NA NA 26.939 
Height NA NA 24.056 
Age NA NA 15.654 
Sex NA NA 2.386 
EthnicityHispanic NA NA 1.954 
Black NA NA 1.642 
HighRiskInd NA NA 1.533 
Asian NA NA 1.29 
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Supplementary Table 8. Algorithms included in Ensemble machine learning for baseline risk score 
development. 

Algorithms  Screens*/Tuning Parameters 
SL.mean  No screen 
SL.glm  No screen, Glmnet, Univariate logistic p-value, High-correlation 
SL.glm.interactio
n  Glmnet, Univariate logistic p-value, High-correlation 
SL.glmnet  No screen 
SL.gam  Glmnet, Univariate logistic p-value, High-correlation 
SL.xgboost  No screen 
SL.ranger  No screen 

*Screen: Pre-selection of variables to be fed to the individual learners based on statistical criteria.  
Glmnet: only includes variables with non-zero coefficients in a lasso model with default tuning parameter selection.  
Univariate logistic p-value: only includes variables with logistic regression univariate Wald test 2-sided p-value < 
0.1. 
High-correlation: selects variables at random from amongst a pair with high correlation (Spearman rank correlation 
> 0.9). 
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1 Introduction

This SAP describes the statistical analysis of antibody markers measured
at Day 35 as immune correlates of risk and as immune correlates of pro-
tection against the COVID primary endpoint in the Coronavirus Efficacy
(PREVENT-19) phase 3 trial of the NVX-CoV2373 COVID-19 vaccine. In
this trial, estimated efficacy of the NVX-CoV2373 vaccine against symp-
tomatic COVID illness was 90.4% (95% confidence interval, 82.9 to 94.6%)
[?]. Some key facts about this trial:

• There are sister trials in UK and South Africa; this SAP restricts to data
from the US and Mexico phase 3 trial

• Two doses regimen at Day 0 and 21. Primary efficacy analysis starts at
7 days post dose 2 (second dose at Day 21). Markers measured at Day
35.

• Enrollment occurred between December 27, 2020, and February 18, 2021.
Final analysis cutoff date is April 19, 2021.

• Per protocol means receiving two doses, baseline negative ( 6.5% baseline
positive, where positive means either serology or nucleic acid positive),
and being at risk at Day 28. Full analysis set means receiving one dose.
2:1 randomization ratio

• In PP population, a total of 77 cases (mild, moderate or severe) are
observed, 14 in the vaccine arm and 63 in the placebo arm (Dunkle et
al.).

• 31 of 77 cases are Alpha.

• COVID is classified into mild, moderate and severe. Mild requires at
least two from a list of symptoms. Mild and moderate in PREVENT-19
roughly correspond to non-severe in COVE, which requires two symp-
toms, and moderate but not mild in ENSEMBLE, which require two and
one symptom, respectively.

• Study include 6 sites in Mexico and 113 sites in US. In the primary
analysis, all vaccine cases are in US and one placebo case is in Mexico.
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For correlates all cases are in the US such that only US sites are included.

2 Antibody Assays and and Day 35 Markers

The antibody markers of interest are measured using two different humoral
immunogenicity assays [more detail on assay type (2) can be found in Sholukh
et al. (2020)]:

(1) bAbs: Binding antibodies to the vaccine insert SARS-CoV-2 proteins;

and (2) Pseudovirus-nAbs: Neutralizing antibodies against viruses
pseudotyped with the vaccine insert SARS-CoV-2 proteins.

The Supplementary text in the article provides details of the assays. We
include the necessary statistical details below.

(1) bAb assay: The MSD-ECL Multiplex Assay (MSD-ECL = meso scale
discovery-electrochemiluminescence assay).

The MSD assay measures binding antibody to antigens corresponding to:
Spike (an engineered version of the Spike protein harboring a double proline
substitution (S-2P) that stabilizes it in the closed, prefusion conformation
[McCallum et al. (2020)]); the Receptor Binding Domain (RBD) of the Spike
protein; and Nucleocapsid protein (N), which is not contained in any of the
COVID-19 vaccines.

The bAb assay readouts are in units AU/ml, where AU stands for arbitrary
units from a standard curve. The process of validating the assay defined a
lower limit of detection (LOD), an upper limit of detection (ULOD), a lower
limit of quantitation (LLOQ), an upper limit of quantitation (ULOQ), and a
positivity cut-off for each antigen that defines positive vs. negative response.
These values are as follows:

• bAb Spike:

– Pos. Cutoff = 1204.711 AU/ml

– LLOQ = 150.4 AU/ml

– ULOQ = 770,464.6 AU/ml
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– LOD = N/A

– ULOD = N/A

The Vaccine Research Center established factors for bridging the MSD as-
say readouts from AU/ml to Binding Antibody Units/ml (BAU/ml), based
on bridging to the WHO International Standard for anti-SARS-CoV-2 im-
munoglobulin. For the three binding antibody variables CoV-2 Spike IgG,
CoV-2 RBD IgG, and CoV-2 N IgG, these conversion factors are 0.0090,
0.0272, and 0.0024, respectively. These conversion factors are applied, such
that all binding Ab readouts are reported in BAU/ml, for all analyses. These
conversion factors are also applied to yield the LOD, ULOD, LLOQ, and
ULOQ on the WHO IU/ml scale. The following shows the assay limits on
the BAU/ml scale:

• bAb Spike:

– Pos. Cutoff = 10.8424 BAU/ml

– LOD = 0.3076 BAU/ml

– ULOD = 172,226.2 BAU/ml

– LLOQ = 1.35 BAU/ml

– ULOQ = 6934 BAU/ml

All values below the LLOQ are assigned the value LLOQ/2. A positive
response is defined by value above the Pos. Cutoff. For immunogenicity
reporting, values greater than the ULOQ are not given a ceiling value of the
ULOQ, the actual readouts are used. For the immune correlates analyses,
values greater than the ULOQ are assigned the value of the ULOQ.

(2) Pseudovirus-nAb assay: A firefly luciferase (ffLuc) reporter neutraliza-
tion assay for measuring neutralizing antibodies against SARS-CoV-2 Spike-
pseudotyped viruses.

Based on the assay in the Monogram lab, serum inhibitory dilution 50% titer
(ID50) values are estimated based on a starting serum dilution of 1:40, with
a total of ten 3-fold dilutions. (Each sample is diluted initially at 1:20, then
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diluted serially 3-fold for a total of 10 concentrations. The starting dilution of
1:20 is reported as 1:40 after addition of the virus.) So, the dilution series is
1:40 to 1:787,320 (= 40 * 39). Thus 1:40 is the LOD on the scale of the assay.
The process of validating the assay defined the LOD, LLOQ, and ULOQ for
ID50 as follows:

• ID50:

– LOD = 40

– LLOQ = 51

– ULOQ = 127411

ID50 values below the LOD are assigned the value LOD/2 = 40/2 = 20.
For immunogenicity reporting, values greater than the ULOQ are not given
a ceiling value of the ULOQ, the actual readouts are used. For the immune
correlates analyses, values greater than the ULOQ are assigned the value of
the ULOQ.

ID50 values are reported in international units with the following calibration
factor, defined using the D614G strain in the assay:

• Calibration factor ID50: 0.0653

The original readouts are calibrated to the IU scale by multiplying each
original ID50 value by 0.0653 (See Feng et al. Table 2 and Gilbert et al.
Supplementary Material), and units are reported in international units as
IU50/ml for ID50. Consequently, the LOD, LLOQ and ULOQ for IU50/ml
are as follows in International Units:

• IU50/ml:

– LOD = 2.612

– LLOQ = 3.3303

– ULOQ = 8319.938

Therefore the lowest possible value of ID50 readouts on the log10 scale is
log10(2.612/2) = 0.116. Positivity cutoff is assigned LOD.
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Based on each immunoassay applied to serum samples collected from partic-
ipants on Day 1 (baseline, first dose of vaccination visit)and Day 35 (post-
vaccination visit), the following set of antibody markers was defined for im-
munogenicity and immune correlates analyses.

• For bAb: log10 IgG concentration (BAU/ml) at each time point, and
the difference in log10 concentration (Day 35 minus Day 1) representing
log10 fold-rise in IgG concentration from baseline to 14 days post dose
two. These markers are defined for Spike.

• For PsV nAb: log10 serum inhibitory dilution 50% titer (ID50 in IU50/ml)
at each time point, as well as the log10 fold-rise of these markers over
Day 1 to Day 35.

3 Study Cohorts and Endpoints

3.1 Study Cohort for Correlates Analyses

The analysis cohort for the correlates analysis is baseline SARS-CoV-2 neg-
ative participants in the per-protocol cohort, with the per-protocol cohort
defined as those who received both planned vaccinations without any speci-
fied protocol deviations, and who were SARS-CoV-2 negative at the terminal
vaccination visit. We refer to this cohort representing the primary population
for correlates analysis as the Per-Protocol Baseline Negative Cohort.

As the primary analysis of vaccine efficacy is conducted in baseline negative
individuals, correlates of risk (CoR) and correlates of protection (CoP) anal-
yses are only done in baseline negative individuals, and the analysis of data
from baseline positive individuals is for purposes of immunogenicity charac-
terization, given too-few anticipated vaccine breakthrough study endpoints
for CoR/CoP assessment (although if there are many baseline positive vac-
cine breakthrough endpoint cases that baseline positive subgroup analyses
may be considered). In baseline negative individuals, antibody marker data
in placebo recipients is relevant for verifying the expectation that almost all
Day 35 marker responses will be negative, given the lack of SARS-CoV-2
antigen exposure.
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3.2 Study Endpoints

Endpoints for correlates analyses of Day 35 markers are included if they occur
at least 7 days after the Day 35 visit, to help ensure that the endpoint did
not occur prior to Day 35 antibody measurement.

Figure 2 defines five study endpoints assessed in COVID-19 vaccine efficacy
trials, where COVID (symptomatic infection) is used as the primary endpoint
in the PREVENT-19 trial. Only the COVID endpoint is assessed in the
current manuscript. For the correlates analysis, all available follow-up for
participants is included through to the time of the data base lock for the
correlates analysis, for every CoR and CoP analysis that is conducted. This
means that the time of right censoring for a given failure time endpoint is the
first event of loss to follow-up or the date of administrative censoring defined
as the last date of available follow-up. For CoP analyses, which use both
vaccine and placebo recipient data and leverage the randomization, follow-up
is censored at the time of unblinding. In general for the current manuscript
all blinded follow-up is included and no post-unblinding follow-up is included.

4 Objectives of Immune Correlates Analyses of a Phase 3 Trial
Data Set

4.1 Correlates of Risk and Correlates of Protection

We broadly classify the proposed analyses into two related categories: corre-
lates of risk (CoR) and correlates of protection (CoP) analyses. CoR analyses
seek to characterize correlations/associations of markers with future risk of
the outcome amongst vaccinated individuals in the study cohort. CoP anal-
yses seek to formally characterize causal relationships among vaccination,
antibody markers and the study endpoint, and use data from both vaccine
and placebo recipients. Table 1 summarizes these objectives and statistical
frameworks that are commonly used to these ends.

The advantage of CoR analyses it that it is possible to obtain definitive
answers from the phase 3 data sets, that is one can credibly characterize as-
sociations between markers and outcome. The advantage of CoP analyses is
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that the effects being estimated have interpretation directly in terms of how
an antibody marker can be used to reliably predict vaccine efficacy (the cri-
terion for use of a non-validated surrogate endpoint for accelerated approval,
Fleming and Powers, 2012). The disadvantage of CoR analyses are that a
CoR may fail to be a CoP, for example due to unmeasured confounding, lack
of transitivity where a vaccine effect on an antibody marker occurs in different
individuals than clinical vaccine efficacy, or off-target effects (VanderWeele,
2013). The disadvantage of CoP analyses is that statistical inferences rely
on causal assumptions that cannot be completely verified from the phase 3
data, such that compelling evidence may require multiple phase 3 trials and
external evidence on mechanism of protection (e.g., from adoptive transfer
or vaccine challenge trials). Our approach presents results for both CoR and
CoP analyses, seeking clear exposition of how to interpret results, the as-
sumptions undergirding the validity of the results, and diagnostics of these
assumptions and assessment of robustness of findings to violation of assump-
tions.
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Table 1: Correlates of Risk (CoRs) and Correlates of Protection (CoPs) Objectives for Day 35
Markers

Objective Type Objective

CoRs (Risk Prediction To assess Day 35 markers as CoRs in vaccine
Modeling) recipients

a. Relative risks of outcome across marker levels
b. Absolute risk of outcome across marker levels
c. Machine learning risk prediction for
multivariable markers

CoP: Correlates of VE To assess Day 35 markers as correlates of VE in
vaccine recipients
a. Principal stratification effect modification analysis
b. Assesses VE across subgroups of vaccine recipients defined by
Day 35 marker level in vaccine recipients

CoP: Controlled To assess Day 35 markers for how assignment
Effects on to vaccine and a fixed marker value would
Risk and VE alter risk compared to assignment to placebo

CoP: Stochastic To assess Day 35 markers for how stochastic
Interventional Effects shifts in their distribution would
on Risk and VE alter mean risk and VE (Hejazi et al., 2020)

CoP: Mediators of VE To assess Day 35 markers as mediators of VE
a. Mechanisms of protection via natural direct and indirect effects
a. Estimate the proportion of VE mediated by a marker or markers

Because there are only 12 vaccine breakthrough COVID-19 endpoints with
D35 antibody data available for correlates analyses, only a subset of the
statistical methods were applied. In particular only the CoR analyses a.
and b., the CoR nonparametric threshold analyses, and the CoP Controlled
Effects on Risk and VE through marginalized Cox modeling are applied.

5 Case-cohort Sampling Design for Measuring Antibody Markers

Figure 4 illustrates the case-cohort (Prentice, 1986) sampling design that is
used for measuring Day 1, 35 antibody markers in a random sample of trial
participants. The random sample is stratified by the key baseline covariates:
assigned randomization arm, baseline SARS-CoV-2 status (negative means
negative in both the anti-NP binding antibody assay and the nasal swab RT-
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PCR assay; positive means positive in either assay, Dunkle et al., 2021), and
demographics strata (8 US strata formed by Age 18-64 or ≥ 65, Underrep-
resented Minority: Yes vs. No /Unknown, and Coexisting conditions: Yes
vs. No, and 2 Mexico strata, Age 18-64 or ≥ 65). Because the design uses a
stratified random sample instead of the simple random sample proposed by
Prentice (1986), the design may also be referred to as a “two-phase sampling
design” (Breslow et al., 2009b,a), where “phase one” refers to variables mea-
sured in all participants and “phase two” refers to variables only measured
in a subset (thus the “case-cohort sample” constitutes the phase-two data).

The case-cohort design enables obtaining marker data (Day 1, 35) for the
immunogenicity subcohort during early trial follow-up in real-time batches,
thereby accelerating the time until final data set creation and hence data
analysis and results on Day 35 marker correlates. The design allows using the
same immunogenicity subcohort to assess correlates for multiple endpoints,
relevant for the COVID-19 VE trials with multiple endpoints (Figure 2). This
makes the design operationally simpler than a case-control sampling design.

5.1 Immunogenicity subcohort

The immunogenicity subcohort was sampled from the subset of participants
in the Full Analysis Set (FAS) cohort used in the primary analysis of vaccine
efficacy against the primary endpoint (with the FAS defined as all randomized
participants who received at least one dose of investigational product) for
whom all of the following information was available: baseline SARS-CoV-
2 status; age, race/ethnicity (needed to define Minority status as described
below), and presence of coexisting conditions associated with high risk of
severe COVID-19; and Day 1 and Day 35 samples collected.

Figure 1 summarizes the planned size of the immunogenicity subcohort, by
the baseline factors used to stratify the random sampling. The subcohort
sampling is implemented to create representative sampling across the entire
period of enrollment.

For the sampling, Minority includes Blacks or African Americans, Hispanics
or Latinos, American Indians or Alaska Natives, Native Hawaiians, and other
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Figure 1: Planned Immunogenicity Subcohort Sample Sizes by Baseline Strata for Antibody Marker
Measurement

Pacific Islanders. Non-Minority includes all other races with observed race
(Asian, Multiracial, White, Other) and observed ethnicity Not Hispanic or
Latino. Therefore Unknown and Not reported have missing values for this
sampling stratum variable.

Coexisting conditions refers to participants having coexisting conditions asso-
ciated with high risk of severe COVID-19 illness, with co-existing conditions
defined in Dunkle et al. (2021). (obesity, chronic lung disease, diabetes
mellitus type 2, cardiovascular disease, and/or chronic kidney disease)

6 Unsupervised Feature Engineering of Antibody Markers (Stage
1: Day 1, 35)

6.1 Descriptive Tables and Graphics

6.1.1 Antibody marker data

Binding antibody titers to full length SARS-CoV-2 Spike protein is mea-
sured in all participants in the immunogenicity subcohort (augmented with
COVID-19 endpoint cases). Binding antibody IgG Spike, as well as fold-
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rise in this marker from baseline, are measured at each pre-defined time
point. Indicators of 2-fold rise and 4-fold rise in IgG concentration (fold rise
[post/pre] ≥ 2 and ≥ 4, 2FR and 4FR) are measured at each pre-defined
post-vaccination timepoint. Binding antibody responders to a given antigen
at each pre-defined timepoint are defined as participants with value above the
antigen-specific positivity cut-off. Binding antibody IgG 2FR (4FR) at each
pre-defined timepoint to a given antigen are defined as participants who had
baseline values below the LLOQ with IgG concentration at least 2 times (4
times) above the assay LLOQ, or as participants with baseline values above
the LLOQ with at least a 2-fold (4-fold) increase in IgG concentration.

Pseudovirus neutralizing antibody ID50 titers, as well as fold-rise in ID50
titers from baseline, are measured at each pre-defined time point. Indica-
tors of 2-fold rise and 4-fold rise in ID50 titer (fold rise [post/pre] ≥ 2 and
≥ 4, 2FR and 4FR) are measured at each pre-defined post-vaccination time-
point. Neutralization responders at each pre-defined timepoint are defined
as participants who had baseline values below the LOD with detectable ID50
neutralization titer above the assay LOD, or as participants with baseline
values above the LOD with a 4-fold increase in neutralizing antibody titer.
Neutralization 2FR (4FR) at each pre-defined timepoint are defined as partic-
ipants who had baseline values below the LLOQ with ID50 at least 2 times (4
times) above the assay LLOQ, or as participants with baseline values above
the LLOQ with at least a 2-fold (4-fold) increase in neutralizing antibody
titer.

Note that for defining positive response, 2FR, and 4FR, a reason why values
below the LOD are set to half the LOD before calculating the indicator of
response, is to ensure that a vaccine recipient that has an unusually low
antibody readout at baseline and a post-vaccination value below or near the
LOD is not erroneously counted as a responder.

The following list describes the antibody variables that are measured from
immunogenicity subcohort and infection case participants. (The pre-defined
time points are Day 1, 35.)

1. Individual anti-Spike antibody concentration at each pre-defined time
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point

2. Individual anti-Spike antibody fold-rise concentration post-vaccination
relative to baseline at each pre-defined post-vaccination time point

3. 2-fold-rise and 4-fold rise (fold rise in anti-Spike antibody concentra-
tion [post/pre] ≥ 2 and ≥ 4, 2FR and 4FR) at each pre-defined post-
vaccination time point

4. Pseudovirus-nAb responders, at each pre-defined timepoint defined as
participants who had baseline values below the LLOQ with detectable
pseudovirus-nAb ID50 titers above the assay LLOQ or as participants
with baseline values above the LLOQ with a 4-fold increase in pseudovirus-
nAb ID50 titers

Summaries of the immunogenicity data will be reported in tables. In partic-
ular, the tables will include, for each pre-defined post-baseline time point:

1. For each binding antibody marker, the estimated percentage of partici-
pants defined as responders, and with concentrations ≥ 2x LLOQ or ≥
4 x LLOQ, will be provided with the corresponding 95% CIs using the
Clopper-Pearson method.

In addition, the estimated percentage of participants defined as respon-
ders, participants with 2-fold rise (2FR), and participants with 4-fold
rise (4FR) will be provided with the corresponding 95% CIs using the
Clopper-Pearson method.

2. For the ID50 pseudo-virus neutralization antibody marker, the estimated
percentage of participants defined as responders, participants with 2-fold
rise (2FR), and participants with 4-fold rise (4FR) will be provided with
the corresponding 95% CIs using the Clopper-Pearson method

3. Geometric mean titers (GMTs) and geometric mean concentrations (GMCs)
will be summarized along with their 95% CIs using the t-distribution ap-
proximation of log-transformed concentrations/titers (for each of the four
Spike-targeted marker types including pseudovirus-nAb ID50 and ID80,
as well as for binding Ab to N).
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4. Geometric mean titer ratios (GMTRs) or geometric mean concentration
ratios (GMCRs) are defined as geometric mean of individual titers/concentration
ratios (post-vaccination/pre-vaccination for each injection)

5. GMTRs/GMCRs will be summarized with 95% CI (t-distribution ap-
proximation) for any post-baseline values compared to baseline, and
post-Day 35 values compared to Day 35

6. The ratios of GMTs/GMCs will be estimated between groups with the
two-sided 95% CIs calculated using t-distribution approximation of log-
transformed titers/concentrations [the groups compared are vaccine re-
cipient non-cases vs. vaccine recipient breakthrough cases used for Day
35 marker correlates analyses (Post Day 35 cases)].

7. The differences in the responder rates, 2FRs, 4FRs between groups will
be computed along with the two-sided 95% CIs by the Wilson-Score
method without continuity correction (Newcombe, 1998) (the groups for
comparison are as described in the previous bullet).

All of the above point and confidence interval estimates will use inverse prob-
ability of antibody marker sampling weighting in order that estimates and
inferences are for the population from which the whole study cohort was
drawn. In two-phase sampling data analysis nomenclature, the “phase 1
ptids” are the per-protocol individuals excluding individuals with a COVID
failure event or any other evidence of SARS-CoV-2 infection < 7 days post
Day 35 visit (the RT-PCR assay is used to define any evidence of SARS-
CoV-2 infection). The “phase 2 ptids” are then the subset of these phase 1
ptids in the immunogenicity subcohort with Day 1 and Day 35 Ab marker
data available. Thus, marker data for the COVID endpoint cases outside
the subcohort will not be used in immunogenicity analyses; these cases are
excluded from immunogenicity analyses.

The estimated weight ŵsubcohort.35x is the inverse sampling probability weight,
calculated as the empirical fraction (No. Day 35 phase 1 ptids / No. Day 35
phase 2 ptids) within each of the baseline strata [(vaccine, placebo) × (base-
line negative, baseline positive) × (demographic strata)]. For individuals
outside the phase 1 ptids, ŵsubcohort.35x is assigned the missing value code NA.
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All other individuals have a positive value for ŵsubcohort.35x, including cases not
in the subcohort. This weight is only used for case outcome-status blinded
immunogenicity inferential analyses. Note that ŵsubcohort.35x is used for all
immunogenicity analyses, which are based solely on the immunogenicity sub-
cohort, for Day 1 and Day 35 markers. (Not used for correlates analyses.)

Tables will be provided separately for (1) baseline negative individuals, (2)
baseline positive individuals, (3) baseline negative individuals by subgroup
defined as in Table 2, and (4) baseline positive individuals by the same sub-
groups as in (3). Each table will show data for all available time points and
for each of the vaccine and placebo arms.

Table 2: Baseline Subgroups that are Analyzed1.

Age: 18-64, ≥ 65
Coexisting conditions: Yes, No
18-64 Coexisting conditions, 18-64 No coexisting conditions, ≥ 65 Coexisting conditions, ≥ 65 No coexisting conditions
Sex: Male, Female
Age x Sex:
18-64 Male, 18-64 Female, ≥ 65 Female, ≥ 65 Male
Hispanic or Latino Ethnicity: Hispanic or Latino, Not Hispanic or Latino
Race or Ethnic Group:
White Non-Hispanic2, Black, Asian, American Indian or Alaska Native (NatAmer)
Native Hawaiian or Other Pacific Islander (PacIsl), Multiracial,
Other, Not reported, Unknown
Underrepresented Minority Status in the U.S.:
Communities of color (Comm. of color), White2

Age x Underrepresented Minority Status in the U.S.:
Age ≥ 65 Comm. of color, Age < 65 Comm. of color, Age ≥ 65 White, Age ≥ 65 White

1All analyses are done within strata defined by randomization arm and baseline positive/negative
status, such that these variables are not listed here as subgroups for analysis.

2White Non-Hispanic is defined as Race=White and Ethnicity=Not Hispanic or Latino. All of the
other Race subgroups are defined solely by the Race variable, with levels Black, Asian, American

Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, Multiracial, Other, Not
reported, Unknown. Communities of color is defined by the complement of being known White

Non-Hispanic.

For comparing antibody levels between groups, the following groups are com-
pared:
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• Baseline negative vaccine vs. baseline negative placebo

• Baseline positive vaccine vs. baseline positive placebo

• Baseline negative vaccine vs. baseline positive vaccine

• Within baseline negative vaccine recipients, compare each of the follow-
ing pairs of subgroups listed in Table 2: Age ≥ 65 vs. age < 65; risk
for severe COVID: at risk vs. not at risk; age ≥ 65 at risk vs. age ≥ 65
not at risk; age < 65 at risk vs. age < 65 not at risk; male vs. fe-
male; Hispanic or Latino ethnicity: Hispanic or Latino vs. Not Hispanic
or Latino; Underrepresented minority status: Communities of color vs.
White Non-Hispanic (within the U.S.).

The entire immunogenicity analysis is done in the per-protocol cohort with
Day 1 and Day 35 marker data available (the two-phase sample).

6.1.2 Graphical description of antibody marker data

The Day 1, 35 antibody marker data collected from the immunogenicity sub-
cohort participants will be described graphically. These data are represen-
tative of the entire study cohort. Importantly, only antibody data from the
immunogenicity subcohort are included (i.e., no data from cases outside the
subcohort are included). This makes the analyses unsupervised (indepen-
dent of case-control status), enabling interrogation and optimization of the
antibody biomarkers prior to the inferential correlates analyses.

Plots are developed for the following purposes. All of the analyses are done
separately within each of the four subgroups defined by randomization arm
cross-classified with baseline negative/positive status. In addition, many of
the descriptive analyses will also be done separately for each demographic
subgroup of interest listed above. For descriptive plots of individual marker
data points that pool over one or more of the baseline strata subgroups, plots
show all observed data points.

For each antibody marker readout, both Day 35 and baseline-subtracted Day
35 readouts are of interest. We will refer to the latter as ‘delta.’ All readouts,
including delta, will be plotted on the log10 scale, with plotting labels on the
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natural scale. As such, delta is log10 fold-rise in the marker readout from
baseline.

The following descriptive graphical analyses are done.

1. The distribution of each antibody marker readout at Day 1 and Day
35 will be described with plots of empirical reverse cumulative distri-
bution functions (rcdfs) and boxplots (including individual data points)
within each of the four groups defined by randomization arm (vaccine,
placebo) and baseline positivity stratum (seronegative, seropositive). In-
verse probability of sampling into the subcohort weights (ŵsubcohort.35x)
are used in the estimation of the rcdf curves; henceforth we refer to these
weights as “inverse probability of sampling” (IPS) weights. Analyses of
Day 1 markers always pool across vaccine and placebo recipients given
that the two subgroups are the same at baseline.

2. Plots are arranged to compare each Day 35 marker readout between
randomization arms within each of the baseline seropositive and baseline
seronegative subgroups.

3. Plots are also arranged to compare each Day 35 marker readout between
baseline serostatus groups within each randomization arm.

4. The correlation of each antibody marker readout among Day 1 and Day
35, and between Day 1 and fold-rise to Day 35 (delta), is examined
within each randomization arm and baseline positivity stratum. Pairs
plots/scatterplots will be used, annotated with baseline strata-adjusted
Spearman rank correlations, implemented in the PResiduals R package
available on CRAN. For calculating the correlation within each random-
ization arm and baseline positivity stratum, because PResiduals does not
currently handle sampling weights, the correlation estimates are com-
puted as follows: For each re-sampled data set in the second approach to
graphical plotting, the covariate-adjusted Spearman correlation is calcu-
lated. The average of the estimated correlations across re-sampled data
sets is reported.

5. The correlation of each pair of Day 1 antibody marker readouts are com-
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pared within each baseline positivity stratum, pooling over the two ran-
domization arms. Pairs plots/scatterplots and baseline-strata adjusted
Spearman rank correlations are used, with covariate-adjusted Spearman
rank correlations computed as described above. The same analyses are
done for each pair of Day 35 antibody marker readouts.

6. Point estimates of Day 35 marker positive response rates for each ran-
domization arm within each baseline positivity stratum are provided.
The point and 95% CI estimates include all of the data and use IPS
weights.

6.2 Methods for Positive Response Calls for bAb and nAb Assays

As noted above, binding antibody responders at each pre-defined timepoint
are defined as participants with concentration above the specified positivity
cut-off, with a separate cut-off for each antigen Spike, RBD, N (10.8424,
14.0858, and 23.4711, respectively, in BAU/ml). This approach is used for
each of the Spike and RBD and N protein antigen targets.

Pseudovirus neutralization responders at each pre-defined timepoint are de-
fined as participants who had baseline ID50 values below the LOD with de-
tectable ID50 neutralization titer above the assay LOD, or as participants
with baseline values above the LOD with a 4-fold increase in neutralizing
antibody titer. Otherwise a value is negative for pseudovirus neutralization.

6.3 SARS-CoV-2 Antigen Targets Used for bAb and nAb Markers

The homologous vaccine strain antigens are used for the immune correlates
analyses for the bAb markers, whereas the homologous vaccine strain with
D614G mutation is used for the pseudovirus nAb markers.

7 Baseline Risk Score (Proxy for SARS-CoV-2 Exposure)

We will develop baseline risk score for US only (COUNTRY==“USA”) be-
cause there are no cases in the vaccine arm and there is a single case in
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the placebo arm from outside of the US in the primary analysis cohort (PP-
EFFFL==”Y”) for the primary endpoint (PARAMCD ==”PCRMMS”).

Imputation of marker variables, if needed, will be done for US and Mexico
together. Since we may need separate immunogenicity reports for US and
Mexico, we will create two analysis-ready datasets, one for US and one for
Mexico. This requires some tailoring of the correlates processing code.

Restrictions on Treatment assignment (TRT01P==”Placebo” or ”SARS-
CoV-2rS”), PP status (PARAMCD ==”PCRMMS1”), country and case ac-
crual period were applied as described. The list of baseline covariates poten-
tially relevant for SARS-CoV-2 exposure and risk of COVID was specified
below (xxTable S4 in the Supplementary Material) (See the .tex file for cor-
responding variable names in the dataset): Age, Sex at birth (Male/Female),
Race (7 categories), Ethnicity (3 categories), Height, Weight, BMI, and
Protocol-defined high-risk (yes/no).

Based on these covariates, a baseline risk score is developed and controlled
for in correlates analyses to adjust for potential confounding. The risk score
is defined as the logit of the predicted outcome probability from a regression
model estimated using the ensemble algorithm superlearner (i.e. stacking),
where this logit predicted outcome is scaled to have empirical mean zero
and empirical standard deviation one. The settings of superlearner (i.e.,
loss function, cross-validation technique, library of learners) that are used for
implementation of superlearner for building a baseline risk score are described
in Section 9.4.

The development of risk score will involve training the superlearner using
placebo arm data and predictions made on vaccine arm data (CV-predictions
will be made on placebo arm data). In both arms, risk score development will
be restricted to baseline negative per-protocol subjects with cases as COVID
endpoints starting post-enrollment. The CV-prediction performance of su-
perlearner (CV-AUC calculation and CV-ROC curves) will be derived with
cases as COVID endpoints starting post-enrollment as well. The prediction
performance of superlearner (AUC calculation and ROC curve) in the vaccine
arm, however, will be restricted to the same set of vaccine recipients as used

23



in the correlates analyses with cases considered as COVID endpoints start-
ing 7 days post second vaccination visit and non-cases as participants with
follow-up beyond 7 days post second vaccination visit and never registered a
COVID endpoint.

Independent of the superlearner risk score, important individual risk factors
are also specified for inclusion as adjustment factors in correlates analyses. In
particular, in addition to the risk score the at-risk indicator and the commu-
nities of color indicator are adjusted for in all correlates analyses. This choice
is justified by the epidemiological data showing that these two indicators are
strong infection and COVID-19 risk factors, and making use of the flexibility
of super learner to develop a model for how age relates to risk.

Henceforth we refer to the baseline variables that are adjusted for in corre-
lates analyses as “baseline factors” which, depending on the risk score results
and performance, will consist of only the individual key risk factors, or key
individual risk factors plus the baseline risk score.

8 Correlates Analysis Descriptive Tables by Case/Non-Case Sta-
tus

The key table summarizing the distribution of each of the two antibody mark-
ers at the Day 1 and 35 times points is listed below. For each time point Day
1 and Day 35 separately, the positive response rate with 95% CI, and the
GMT or GMC with 95% CI, is reported for each of of the case and non-
case groups. In addition, the point and 95% CI estimate of the difference
in positive response rate (non-cases vs. cases) and the GMT or GMC ratio
(non-cases/cases), is reported.

• Immunogenicity table: Antibody levels in the baseline SARS-CoV-2 neg-
ative per-protocol cohort (vaccine recipients). Post Day 35 cases are
baseline negative per-protocol vaccine recipients with the symptomatic
infection COVID-19 primary endpoint diagnosed starting 7 days after
the Day 35 study visit. Non-cases/Controls are baseline negative per-
protocol vaccine recipients sampled into the immunogenicity subcohort
with no COVID primary endpoint up to the time of data cut and no
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evidence of SARS-CoV-2 infection up to six days post Day 35 visit.

The point and confidence interval estimates are computed using inverse prob-
ability sampling weights ŵsubcohort.35x for Post Day 35 cases and for Non-cases,
as defined in Section 9.3.1.

9 Correlates of Risk Analysis Plan

This analysis plan for CoRs and CoPs focuses on the COVID primary end-
point, with its continuous failure times (failure time defined by the day of
the event) and no competing risks.

9.1 CoR Objectives

The following CoR objectives are assessed in baseline seronegative per-protocol
vaccine recipients:

1. Univariable CoR To assess each individual Day 35 antibody marker
as a CoR of outcome in vaccine recipients, adjusting for baseline factors
(See Section 7)

9.2 Outline of the Set of CoR Analyses

The univariable CoR objective is addressed by Cox proportional hazards
regression and nonparametric threshold regression. All of these analyses are
implemented in automated and reproducible press-button fashion.

9.3 Day 35 Markers Assessed as CoRs and CoPs

The following two markers at Day 35 are assessed as CoRs and CoPs, usually
as quantitative variables and in some analyses as ordered trinary variables or
binary variables, all of which do not subtract Day 1 (baseline) values:

1. binding Ab to Spike (IgG BAU/ml)

2. pseudovirus neutralization ID50 (IU50/ml)

For all univariable CoR analyses (first objective), the non-baseline subtracted
versions of the Day 35 antibody markers are studied; the baseline-subtracted

25



versions are not studied given that the analyses are done in the baseline
negative cohort for which Day 1 readouts will generally be negative.

9.3.1 Inverse probability sampling weights used in CoR analyses

In section 6.1, estimated inverse probability sampling (IPS) weights ŵsubcohort.35x

were defined for per-protocol immunogenicity subcohort members, for the
purpose of immunogenicity analyses. This section describes the IPS weight
used for Day 35 marker correlates analyses (ŵ35.x).

For baseline sampling stratum x [(vaccine, placebo) × (demographic strata)],
the IPS weight w35.x assigned to a non-case participant in stratum x is defined
by ŵ35.x = 1/π̂35(x) = Nx/nx, where Nx is the number of stratum x vaccine
recipient non-cases in the Per-Protocol Baseline Negative (PPBN) cohort
and nx is the number of these participants that also have Day 1, 21, and 35
marker data available, where participants with any evidence of SARS-CoV-2
infection before 7 days post Day 35 visit are excluded from the counts Nx and
nx. For non-case participant i in the immunogenicity subcohort, ŵ35.i = 1/
π̂35(Xi) denotes the weight ŵ35.x for this individual’s sampling stratum. All
Post Day 35 cases are assigned sampling weight N1/n1 where N1 is the total
number of vaccine recipient cases in the PPBN cohort restricting to cases
with event time starting 7 days post Day 35, and n1 is the number of these
participants that also had the Day 1 and 35 markers measured, and again
participants with any evidence of SARS-CoV-2 infection < 7 days post Day
35 visit are excluded from the counts Nx and nx.

In terms of two-phase sampling data analysis nomenclature, for the Day 35
marker analyses “phase 1 ptids” are defined as the entire PPBN cohort except
excluding participants with any evidence of SARS-CoV-2 infection < 7 days
post Day 35 visit. The “phase 2 ptids” are then the subset of these phase
1 ptids with Day 1, 21, and 35 Ab marker data available. Thus the weight
ŵ35.x is the inverse sampling probability weight, calculated as the empirical
fraction (No. phase 1 ptids / No. phase 2 ptids) within each of the baseline
negative strata (defined by PPBN vaccine group cases, PPBN placebo group
cases, PPBN vaccine group non-cases divided into the demographic strata,
and PPBN placebo group non-cases divided into the demographic strata).
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For baseline negative individuals outside the phase 1 ptids, ŵ35.x is assigned
the missing value code NA. All other individuals have a positive value for
ŵ35.x.

9.3.2 Choice of regression methods

Time-to-event methods of Day 35 marker correlates analyses use the Day 35
visit date as the time origin.

The IPWCC Cox regression model designed for case-cohort sampling designs
will be used for estimation and inference on hazard ratios of outcomes by Day
35 marker levels, and for estimation and inference on marginalized marker-
conditional cumulative incidence over time. The models will be fit using the
survey R package available on CRAN, and will adjust for the baseline factors.
We use a method from the survey package that assumes without replacement
two-phase sampling and not Bernoulli sampling, which matches the sampling
design and approach to weight estimation (?).

The final time point tF of follow-up for correlates analyses is taken to be the
latest COVID outcome event time. Let T be the failure time, S a Day 35
marker of interest, and X the vector of baseline factors that are adjusted for.
With S1(t|s, x) = P (T > t|S = s,X = x,A = 1), the Cox model fit yields
an estimate of S1(t|s,Xi) for each individual i in the phase-two sample. The
marginalized conditional risk risk1(t|s) = EX [P (T ≤ t|s,X,A = 1)] through
time t (for all times t through tF simultaneously) is estimated based on the
equation

risk1(t|s) =

∫
(1− S1(t|s, x))dH(x) (1)

where H(·) is the distribution of X in A = 1 individuals.

The function risk1(t|s) can be estimated by

r̂isk1(t|s) =
∑n

i=1
1

π̂(Xi)
(1− Ŝ1(t|s,Xi))∑n
i=1

1
π̂(Xi)

, (2)

where n is the number of participants with phase-two data.
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The bootstrap is used to obtain 95% pointwise confidence intervals for risk1(tF |s).

The bootstrap process will be performed by resampling with replacement
the subjects within the subcohort and the subjects outside the subcohort
separately within each stratum and by resampling with replacement subjects
with undetermined stratification variables. Across all bootstrap samples, the
number of participants in each stratum in the immunogenicity subcohort
remains fixed, but the number of cases does not stay the same.

The results of the above Cox modeling will be output in a variety of ways:

1. Plot r̂isk1(tF |s) vs. s with 95% CIs for continuous S = s varying over its

whole range. Include on the plot the estimate of r̂isk0(tF ) with a 95%
CI for the placebo arm (horizontal bands), computed by a Cox model
marginalizing over the same baseline factors as for the analysis of the
vaccine arm.

2. Based on a fit of the Cox model to a nominal categorical antibody marker
defined as the tertiles of S, plot r̂isk1(t|s) for each category of S values
with 95% CIs, for all time points t from Day 35 through tF . If more than
20% of vaccine recipients have S below the LOD of the assay, then the
categories instead will be (1) values ≤ LOD; (2) values below the median
of values > LOD; (3) values above the median of values > LOD. Include

on the plot the estimated curve r̂isk0(t) with 95% CIs for the placebo
arm, computed by a Cox model marginalizing over the same baseline
factors as for the analysis of the vaccine arm.

3. Tabular reporting of the hazard ratio per 10-fold change in the quanti-
tative Day 35 antibody marker with 95% confidence interval and 2-sided
p-value.

4. Tabular reporting of the hazard ratio for the Middle and Upper categories
of the categorical Day 35 antibody marker vs. the Lower category, with
95% confidence interval and 2-sided p-value, as well as a global general-
ized Wald two-sided p-value for whether the hazard rate of the endpoint
varies across the three categories. The table includes the attack rate
(with no. of cases / no. at risk) through tF for each of the three vaccine
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marker subgroups and for the placebo arm.

5. Report point and 95% CI estimates for the hazard ratio per 10-fold
change in the Day 35 antibody marker, for the entire per-protocol base-
line negative vaccine cohort and for each of the baseline demographic
strata subgroups defined in Table 2 (reported via forest plotting).

6. Westfall-Young (1997) q-values and FWER-adjusted p-values for the
generalized Wald tests are included in the table.

The bootstrap is used to calculate 95% pointwise CIs for risk1(tF |s) in s.
The 2-sided Wald p-value for testing the regression coefficient of the marker
in the Cox model provides a valid test of the null hypothesisH0 : risk1(tF |s) =
risk1(tF ) for all s, and is reported.

In addition, the same Cox model analysis will be used to estimate the alterna-
tive marginalized conditional risk parameter defined by risk1(t|S ≥ s) where
risk1(t|S ≥ s) = EX [P (T ≤ t|S ≥ s,X,A = 1)], which can be estimated by

r̂isk1(t|S ≥ s) =

∑n
i=1

1
π̂(Xi)

(1− Ŝ1(t|S ≥ s,Xi))∑n
i=1

1
π̂(Xi)

.

This parameter is useful because typically subgroups of interest are defined by
having marker response above a threshold. We will plot r̂isk1(tF |S ≥ s) vs. s
with 95% CIs for continuous S with s varying over the range of S in which the
number of cases to estimate Ŝ1(t|S ≥ s,Xi) is 5 or more. This type of analysis
is also included because it analyzes the same parameter as the nonparametric
threshold estimation method described below, providing a way to address the
threshold question both by Cox modeling and by nonparametric analysis.

9.3.3 Univariate CoR: Nonparametric threshold regression modeling

The targeted minimum loss-based estimation (TMLE) method of van der
Laan et al. (2022) extension of the nonparametric CoR threshold estimation
method of Donovan et al. (2019) is applied to each of the non-baseline sub-
tracted antibody markers at Day 35, using the version that defines the binary
outcome Y = I(T ≤ t) of interest as Y = 1 if a COVID endpoint occurred
during the blinded period of follow-up and Y = 0 otherwise, and accounts
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for right-censoring times of participants. The analyses adjust for the same
baseline factors X as used in the Cox model CoR analyses.

The extension adjusts for baseline covariates by estimating the conditional
mean function E[Y |S ≥ s,X,A = 1] using discrete-SuperLearner and then
empirically averaging over the baseline covariates X to estimate the marginal
risk riskY1 (S ≥ s) = EX [P (Y = 1|S ≥ s,X,A = 1)] for each threshold
s of the the antibody marker in a specified discrete set. We do not per-
form pooled regression across the thresholds s, which ensures we are totally
nonparametric in estimating the threshold dependence of riskY1 (S ≥ s) on
s. The SuperLearner library includes only L1-penalized logistic regression
(glmnet), because of the small number of vaccine breakthrough cases with
Day 35 antibody data. An advantage of the nonparametric CoR threshold
method compared to Cox modeling that specifies a log linear hazard ratio
with the marker is that it can potentially detect a threshold of very low risk.
The method is implemented with and without the monotonicity constraint
that riskY1 (S ≥ s) is monotone non-increasing in s, where the results assum-
ing monotonicity are reported unless there is evidence for violation of this
assumption.

The results are reported in the same way that Donovan et al. (2019) reports
results in its Figure 2, where point estimates, pointwise 95% confidence bands,
and simultaneous 95% confidence bands for riskY1 (S ≥ s) are plotted for
a range of threshold values. The simultaneous confidence bands cover the
entire curve in s with at least 95% probability and are useful for judging
whether risk varies over threshold subgroups, whereas the pointwise 95%
confidence bands are useful for quantifying precision at particular threshold
values. The method uses the same empirical two-phase sampling estimated
weights (IPS weights) as used for the other univariable IPWCC CoR analyses.
In addition, for each pre-specified risk threshold c set to take values over
a grid with lowest value 0, the method is applied to estimate the inverse
function sc = inf{s : EX [P (Y = 1|S ≥ s, A = 1, X] ≤ c}, where sc is
estimated by substitution of the marginal risk function estimate. Note that
the substitution estimator of sc requires that the marginal risk function is
estimated for all thresholds, which is computationally infeasible. Instead,
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we estimate the marginal risk function on a sufficiently large discrete set and
linearly interpolate to obtain marginal risk estimates for all thresholds outside
the discrete set. In order for this estimand to be well defined, we operate
(for this estimand only) under the assumption that s 7→ riskY1 (S ≥ s) is
monotone. For the substitution-based estimator of the inverse function sc to
be well-defined, we require the estimate of s 7→ riskY1 (S ≥ s) to be monotone
as well. If there is evidence that the function estimate is not monotone then
we replace the estimate with its monotone projection, which preserves its
theoretical properties (Westling, van der Laan, Carone, 2020).

9.3.4 P-values and Multiple hypothesis testing adjustment for CoR analysis

In general, p-values are only reported from pre-specified and automated
(press-button) analyses. For the CoR analyses, p-values are reported for
the univariable Cox regression analyses of the four specified Day 35 antibody
marker variables. Two-sided p-values for hypothesis testing of a Day 35
marker CoR are calculated both for the Cox regression of quantitative mark-
ers (two-sided Wald tests), and for the Cox regression of markers binned into
tertiles (two-sided Generalized Wald tests). Therefore a total of eight 2-sided
p-values for Day 35 CoRs are calculated. However, if there are fewer than 20
vaccine breakthrough cases with Day 35 antibody data, then no p-values will
be reported for the tertilized marker correlates analyses.

It is not completely clear whether to perform multiple hypothesis testing
adjustment, given the expectation that the correlations among the markers
are high, and possibly very high, meaning that multiplicity correction could
incur a relatively high cost on the false negative error rate. However, given
that robust evidence supporting an antibody marker as a CoR will be re-
quired for qualifying a marker, we will conduct multiplicity adjustment for
CoR analysis, as the ability to make an inference that a marker passed pre-
specified multiplicity adjusted criteria should aid an overall evidence package
for establishing a validated or non-validated surrogate endpoint. Therefore,
multiplicity adjustment is performed across the set of 2-sided p-values.

A permutation-based method (Westfall et al., 1993) will be used for both
family-wise error rate (Holm-Bonferroni) and false-discovery rate (q-values;
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Benjamini-Hochberg) correction. 104 replicates of the data under the null hy-
potheses will be created by randomly resampling the immunologic biomarkers
with replacement. For each Cox regression CoR analysis the unadjusted p-
value, the FWER-adjusted p-value, and the q-value is reported for whether
there is a covariate-adjusted association, where all p-values and q-values are 2-
sided. The FWER-adjusted p-values and q-values are computed pooling over
both the quantitative marker and tertilized marker CoR analyses. However,
if there are fewer than 20 vaccine breakthrough cases with Day 35 antibody
data, then no p-values are reported for the tertilized marker CoR analyses, in
which case the FWER-adjusted p-values and q-values are computed pooling
for the quantitative marker CoR analyses only. As a guideline for interpreting
CoR findings, markers with FWER-adjusted p-value ≤ 0.05 are flagged as
having statistical evidence for being a CoR. Additionally, markers with unad-
justed p-value ≤ 0.05 and q-value ≤ 0.10 are flagged as having a hypothesis
generated for being a CoR.

9.4 Implementation of superlearner for baseline risk score development

For baseline risk score development, Superlearner is applied to the placebo
arm only, as mentioned in Section 7. The following details are used in the
implementation of superlearner:

• Pre-scale each quantitative and ordinal variable to have empirical mean
0 and standard deviation 1.

• For the Novavax PREVENT-19 trial, there are 60 endpoint cases starting
Day 1 post-enrollment. So, superlearner modeling was conducted using
maximum of 20 risk score variables and 5-fold cross-validation with neg-
ative log-likelihood loss function.

• The library of adaptive and non-adaptive learners and the screens se-
lected for superlearning are shown in Table 3. Most of the learners are
non-data-adaptive type learning algorithms, such as parametric regres-
sion models (e.g., generalized linear models [glms]), which are simple,
stable, and advantageous for an application with a limited number of
endpoint events. Data-adaptive type algorithms are also included if the
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number of endpoint events is high enough, for increasing flexibility of
modeling and reducing the risk of model misspecification: SL.ranger,
SL.gam, and SL.xgboost. All of the selected learners are coded into the
SuperLearner R package.

• Screens used will be: 1) glmnet (lasso) pre-screening (with default tun-
ing parameter selection), 2) logistic regression univariate 2-sided p-value
screening (at level p < 0.10), and 3) high-correlation variable screening
(described below).

• Include high-correlation variable screening, not allowing any pair of input
variables to have Spearman rank correlation r > 0.9.

• The superlearner is conducted averaging over 10 random seeds, to make
results less dependent on random number generator seed.

• No IPS weighting is needed.

• Two levels of cross-validation are used:

– Outer level: CV-AUC computed over 5-fold cross-validation repeated
10 times to improve stability

– Inner level: 5-fold inner CV used to estimate ensemble weights with
no more than max(20, floor(np/20)) input variables included in each
model, where np is the number of evaluable placebo arm cases.

• Results for comparing classification accuracy of different models are
based on point and 95% confidence interval estimates of cross-validated
area under the ROC curve (CV-AUC) and difference in CV-AUC as a
predictiveness metric (Hubbard et al., 2016; ?). Results are presented
as forest plots of point and 95% confidence interval estimates similar to
those used in Figure 3 of Neidich et al. (2019) and Magaret et al. (2019).
CV-AUC is estimated using the R package vimp available on CRAN.
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Table 3: Learning Algorithms in the Superlearner Library of Estimators of the Conditional Prob-
ability of Outcome, for Building the Baseline Risk Score Based on the Placebo Arm1.

Screens/
Algorithms Tuning Parameters

SL.mean None
SL.glm Low-collinearity and (All, Lasso, LR)2

SL.glm.interaction Low-collinearity and (Lasso, LR)
SL.glmnet (alpha=1; All)
SL.gam Low-collinearity and (Lasso, LR)
SL.xgboost3 All and (maxdepth,shrinkage,balance)= (4, 0.1, no)
SL.ranger3 All and balance = no

1All continuous and ordinal covariates are pre-standardized to have empirical mean 0 and
standard deviation 1.

2All = include all variables; Lasso = include variables with non-zero coefficients in the standard
implementation of SL.glmnet that optimizes the lasso tuning parameter via cross-validation;
Low-collinearity = do not allow any pairs of quantitative variables with Spearman rank
correlation > 0.90; LR = Univariate logistic regression Wald test 2-sided p-value < 0.10.

3Covariate balancing (if requested) is done using option scale pos weight in SL.xgboost and
option case.weights in SL.ranger.

Table 4: Learning Algorithms in the Superlearner Library of Estimators of the Conditional Prob-
ability of Outcome: Simplified Library in the Event of Fewer than 50 Placebo Arm Cases for an
Analysis, for Building a Baseline Behavioral Risk Score in Novavax PREVENT-191.

Screens/
Algorithms Tuning Parameters

SL.mean None
SL.glm Low-collinearity and (All, Lasso, LR)2

SL.glmnet alpha=0, 1
SL.xgboost (maxdepth,shrinkage,balance3)= (2, 0.1, yes) (2, 0.1, no) (4, 0.1, yes) (4, 0.1, no)
SL.ranger balance = (yes, no)

1All continuous and ordinal covariates are pre-standardized to have empirical mean 0 and
standard deviation 1.

2All = include all variables; Lasso = include variables with non-zero coefficients in the standard
implementation of SL.glmnet that optimizes the lasso tuning parameter via cross-validation;
Low-collinearity = do not allow any pairs of quantitative variables with Spearman rank
correlation > 0.90; LR = Univariate logistic regression Wald test 2-sided p-value < 0.10.

3Covariate balancing (if requested) is done using option scale pos weight in SL.xgboost and
option case.weights in SL.ranger.
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In order to evaluate the performance of the superlearner estimated model,
derived using the learning algorithms specified in Table 3, the CV-AUC is
estimated with a 95% confidence interval (Hubbard et al., 2016; Williamson
et al., 2022). The point and 95% confidence interval estimates of CV-AUC
are reported in a forest plot, which provide a way to discern which anti-
body assays and readouts/markers provide the most information in predict-
ing COVID or other outcomes. As noted above CV-AUC is estimated using
the R package vimp available on CRAN.

If there are fewer than 50 placebo arm COVID-19 cases included in a corre-
lates analysis, then the library of learners will be simplified to that specified
in Table 4.

In addition, for selected variable sets, similar forest plots will be made com-
paring performance of the various estimated models (e.g., by individual learn-
ing algorithm types such as lasso), including discrete superlearner and super-
learner models. The plot will be examined to determine which individual
learning algorithm types are performing the best.

Cross-validated ROC curves are plotted for the superlearner estimated models
for each of the input variable sets. In addition, boxplots of cross-validated
estimated probabilities of outcome by case-control status (as estimated from
the superlearner models) are plotted.

10 Correlates of Protection: Generalities

In general, for all of the correlate of protection analyses, the same antibody
markers are assessed that were analysed as correlates of risk: the Day 35
antibody markers not subtracting for the Day 1 baseline readout are used.
Each of the Day 35 antibody biomarkers are separately studied as CoPs by
one analysis approach summarized below.
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11 Correlates of Protection: Interventional Effects

In these analyses, we seek to understand whether, how, and to what ex-
tent Day 35 antibody markers impact vaccine efficacy in causal ways. We
describe three approaches to this problem. Each involves consideration of
a binary counterfactual outcome Y (a, s) (e.g., indicator of the COVID dis-
ease endpoint by a pre-specified time) under a hypothetical intervention that
both sets randomization assignment A = a and sets the Day 35 immunologic
marker S to a fixed value or based upon a random draw from a analyst-
specified distribution. Below, we assume that S is scalar-valued, but some
of the approaches below naturally extend to the case where a vector of im-
munologic markers are considered (currently such analyses are not planned).
Given the central goal to develop a parsimonious surrogate endpoint based
on a single immunoassay, the main analysis will use each of the methods to
assess each of the four quantitative readouts (not baseline-subtracted) sepa-
rately as CoPs, adjusting for the same set of baseline covariates as used in
the CoR analyses previously described in Section 9.

11.1 CoP: Controlled Vaccine Efficacy

We first describe the controlled vaccine efficacy curve defined as

CVE(s) = 1− P (Y (1, s) = 1)

P (Y (0) = 1)
.

The value of CVE(s) represents the relative decrease in the probability of
endpoint occurrence achieved by administering vaccine and setting Day 35
immunologic marker level to s compared to the placebo control intervention,
for which the Day 35 immunologic marker level is structurally set equal to the
lowest possible value. Under our approach, the value of CVE(s) is assumed
to be monotone non-decreasing in s; in other words, vaccine efficacy can only
potentially be improved by setting greater marker levels. The extent to which
the marker plays a role in determining vaccine efficacy can be determined by
the degree of flatness of the graph of CVE(s) versus s.

In addition, because the primary study cohort for correlates analysis is naive
to SARS-CoV-2, each of the Day 35 markers S has no variability in the
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placebo arm [all values are ‘negative,’ below the positivity cut-off of the
binding antibody variables and below the lower limit of detection (LOD)
of the neutralizing antibody variables]. Therefore, advantageously in this
setting CVE (s) has a special connection to the mediation literature, where
CVE (s = LOD) is the natural direct effect, and vaccine efficacy is 100%
mediated through S if and only if CVE (s = LOD) = 0. Therefore inference
on CVE (s = LOD) evaluates full mediation.

Since P (Y (0) = 1) = P (Y = 1 |A = 0) in view of vaccine versus placebo ran-
domization, the controlled vaccine efficacy CVE(s) at level s can be identified
using the fact that

P (Y (1, s) = 1) = E [P (Y = 1 |S = s, A = 1, X)]

whenever Y (1, s) and S are independent given A = 1 and a vector X of
covariates, and P (S = s |A = 1, X) > 0 almost surely. In other words,
identification of the controlled vaccine efficacy CVE(s) requires that a rich
enough set of covariates be available so that deconfounding of the relationship
between endpoint Y and marker S is possible in the subpopulation of vaccine
recipients (no-unmeasured confounding assumption), and that marker level
S = smay occur within each subpopulation defined by values of the covariates
X (positivity assumption).

11.1.1 Point and 95% confidence interval estimation of CVE(s) and of RRC(s1, s2) =
(1−CVE(s2))/(1−CVE(s1)) assuming the causal assumptions hold

In this subsection, we describe how the point and 95% confidence interval
estimates for CVE(s) that are reported in the main article (Fig. 4C) and
the Supplement are calculated, which assume that both causal assumptions
mentioned above hold (no unmeasured confounders and positivity). In this
subsection we also describe how the point and 95% confidence interval esti-
mates for RRC(0, 1) = (1−CVE(1))/(1−CVE(0)) for a binary marker S are
calculated, with results for S = 1 representing the upper tertile and S = 0
representing the lower tertile reported in Supplementary Text S2. In the
next subsection, we describe how the sensitivity analysis is conducted, which
quantifies the sensitivity of the results to potential unmeasured confounding.
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Gilbert, Fong, Kenny, and Carone (2022) details the inferential and sen-
sitivity analysis approach, which was applied to the CYD14 and CYD15
dengue phase 3 data sets (Moodie et al., 2018); the same approach was
applied to the current Novavax PREVENT-19 trial data set, given that
the structure of the problem is the same. We summarize here the key
details needed for understanding the analysis of the PREVENT-19 trial.
Under the two causal assumptions, the numerator term P (Y (1, s) = 1) of
CVE(s) = 1− P (Y (1, s) = 1)/P (Y (0) = 1) is

P (Y (1, s) = 1) = E [P (Y = 1 |S = s, A = 1, X)] = risk1(tF |s),

as defined in Section 9.3.2, using the notation of Section 9.3.2. That section
described the Cox modeling approach that was used to compute an estimate
r̂isk1(tF |x) of risk1(tF |s), where Y = I(T ≤ tF ), T is the time from the Day
35 marker measurement date until the COVID outcome starting 7 days post
measurement date, and tF is taken to be the latest COVID outcome event
time, as noted earlier.

The same estimate r̂isk1(tF |s) is used to estimate the numerator term P (Y (1, s) =
1) of CVE(s). That is, there is a harmonization of the correlate of risk and

controlled VE analyses, where the estimate r̂isk1(tF |x) used for the former
is also used for the numerator term P (Y (1, s) = 1) of CVE(s) for the latter:

ĈVE(s) = 1− r̂isk1(tF |x)
P̂ (Y (0) = 1)

(where we detail the estimator P̂ (Y (0) = 1) next).

To estimate the denominator of CVE(s), P (Y (0) = 1) = P (Y = 1 |A = 0) =
P (T ≤ tF |A = 0), note that there is no concern about unmeasured confound-
ing given the study is randomized. While this denominator may be estimated
validly ignoring the potential baseline confounders X, it was estimated with
adjustment for the same covariates X adjusted for in the estimation of the
numerator r̂isk1(tF |s). In particular, E[P (Y = 1 |A = 0, X)] was estimated
with a standard Cox model (without two-phase sampling, i.e., including all
baseline negative per-protocol placebo recipients without evidence of infection
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by 6 days post Day 35 visit, respectively), with point estimate the average
of the fitted values Ê[P (Yi = 1|Ai = 0, Xi)] across the included placebo re-
cipients. Then, the point estimate of CVE(s) is computed as one minus the
ratio of the numerator point estimate divided by the denominator point esti-
mate. Pointwise 95% confidence intervals for CVE (s) were computed using

the same set of bootstrap estimates of the numerator r̂isk1(tF |s) as used for
the correlates of risk analysis, and also including bootstrap estimates of the
denominator Ê[P (Y = 1 |A = 0, X)]. The nonparametric percentile boot-
strap method was used for the confidence intervals.

11.1.2 Sensitivity analysis (to unmeasured confounding) for the Cox model controlled
vaccine efficacy analysis

Sensitivity analysis is generally warranted when a no-unmeasured confounders
assumption is made. The sensitivity analysis quantifies the rigor of evidence
for a controlled VE CoP after accounting for potential bias from unmeasured
confounding. We define S to be a controlled V E CoP if CVE(s) is monotone
non-decreasing in s with CVE(s) < CVE(s’) for at least some s < s′, where
point and 95% confidence interval estimates of CVE(s) versus s, with built
in robustness to unmeasured confounding, describe the strength of the CoP
in terms of the amount and nature of increase. Because the denominator
P (Y (0) = 1) of CVE(s) does not depend on s, a controlled V E CoP can
equivalently be defined as the numerator P (Y (1, s) = 1) being monotone
non-increasing in s with P (Y (1, s) = 1) > P (Y (1, s′) = 1) for at least some
s < s′, where point and 95% confidence interval estimates of P (Y (1, s) = 1)
versus s indicate some robustness to unmeasured confounding.

Two sensitivity analyses are conducted, the first of which considers the binary
immunologic marker S with 0 indicating the first tertile and 1 indicating
the third tertile. The second sensitivity analysis considers the quantitative
marker S varying over its full range.

As set-up for both sensitivity analyses, for any two marker values s1 and s2,
define the controlled risk ratio

RRC(s1, s2) =
rC(s2)

rC(s1)
=

(1− CVE(s2))

(1− CVE(s1))
,
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where rC(s) = P (Y (1, s) = 1) is the controlled risk at S = s. From the
observed data without the causal assumptions, the statistical parameters
rM(s) = risk1(tF |s) (the marginalized conditional risk) and

RRM(s1, s2) =
rM(s2)

rM(s1)

(the marginalized conditional risk ratio) can be estimated. Moreover, under
the causal assumptions (no-unmeasured confounding and positivity), rM(s) =
rC(s) and RRM(s1, s2) = RRC(s1, s2). Given that CoR analysis is based
on observational data — the biomarker value is not randomly assigned —
a central concern is that unmeasured or uncontrolled confounding of the
association between S and Y could render rM(s) ̸= rC(s), biasing estimates of
the causal parameters of interest rC(s) andRRC(s1, s2). Because we can never
be certain that confounding is adequately adjusted for, sensitivity analysis
is warranted, as considered in extensive literature — see, e.g., VanderWeele
and Ding (2017) and references therein.

Sensitivity analysis is useful to evaluate how strong unmeasured confounding
would have to be to explain away an observed causal association, that is,
to determine the strength of association of an unmeasured confounder be-
tween S and Y needed for the observed exposure-outcome association to not
be causal, rM(s) ̸= rC(s) and RRM(s1, s2) ̸= RRC(s1, s2). We follow the
recommendation of VanderWeele and Ding (2017) to report the E-value as a
summary measure of the evidence of causality, or, in our application, evidence
of whether S is a controlled risk CoP based on variation in the controlled risk
curve. We also include other closely related measures of sensitivity.

The E-value is the minimum strength of association, on the risk ratio scale,
that an unmeasured confounder would need to have with both the exposure
variable (S) and the outcome (Y ) in order to fully explain away a specific
observed exposure–outcome association, conditional on the measured covari-
ates [VanderWeele and Ding (2017); VanderWeele and Mathur (2020)]. Here,
in this section alone, we refer to the antibody marker S as an “exposure”
variable following the typical set-up in the causal inference statistical meth-
ods literature. If, as in CoP analyses, the estimated marginalized risk ratio
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R̂RM(s1, s2) = r̂M(s2)/r̂M(s1) for s1 < s2 is less than one, then the E-value

for R̂RM(s1, s2) is calculated as

eRR(s1, s2) =
1 +

√
1− R̂RM(s1, s2)

R̂RM(s1, s2)
. (3)

We include the argument (s1, s2) in the notation, with s1 < s2 by convention,
to be clear that the E-value depends on specification of two specific marker-
level subgroups.

To illustrate the interpretation of an E-value, suppose S is binary with lev-
els 0 and 1 and regression analysis yields an estimate R̂RM(0, 1) = r̂M(1)/
r̂M(0) = 0.40 with 95% confidence interval (CI) (0.14, 0.78). An E-value
e(0, 1) of 4.4 means that a marginalized risk ratio RRM(0, 1) at the observed
value 0.40 could be explained away (i.e., RRC(0, 1) = 1.0) by an unmea-
sured confounder associated with both the exposure and the outcome by a
marginalized risk ratio of 4.4-fold each, after accounting for the vector X of
measured confounders, but that weaker confounding could not do so.

In addition, we follow the recommendation of VanderWeele and Ding (2017)

to also report the E-value eUL(s1, s2) for the upper limit ÛL(s1, s2) of the

95% CI for the observed marginalized risk ratio R̂RM(s1, s2), computed as 1

if ÛL(s1, s2) ≥ 1 and, otherwise, as

1 +

√
1− ÛL(s1, s2)

ÛL(s1, s2)
,

which in the example equals eUL(0, 1) = 1.88. This E-value for the upper
limit indicates, for given s1 < s2, the strength of unmeasured confounding at
which statistical significance of the inference that RRC(s1, s2) < 1 would be
lost. The two E-values above are useful for judging how confident we can be
that an immunologic biomarker is a controlled risk CoP, with E-values near
one suggesting weak support and evidence increasing with greater E-values.

Because RRC(s1, s2) = (1− CV E(s2))/(1− CV E(s1)), evidence for
RRC(s1, s2) < 1 is equivalently evidence for CV E(s1) < CV E(s2). Thus in
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a placebo-controlled trial RRC(s1, s2) can be interpreted as the multiplica-
tive degree of superior vaccine efficacy caused by marker level s2 vs. marker
level s1, and E-values quantify evidence for whether CV E(s1) is less than
CV E(s2). It is also useful to provide conservative estimates of controlled
risk ratios and of the controlled risk curve, accounting for unmeasured con-
founding. We approach these tasks based on the sensitivity analysis, or bias
analysis, approach of Ding and VanderWeele (2016). We give their main
result and refer readers to the paper for details.

We begin by defining two (possibly context-specific) fixed sensitivity parame-
ters. First, we set RRUD(s1, s2) to be the maximum risk ratio for the outcome
Y comparing any two categories of the unmeasured confounders U , within
either exposure group S = s1 or S = s2, conditional on the vector X of ob-
served covariates. Second, we set RREU(s1, s2) to be the maximum risk ratio
for any specific level of the unmeasured confounder U comparing individuals
with S = s1 to those with S = s2, with adjustment already made for the
measured covariate vector X. Thus, RRUD(s1, s2) quantifies the importance
of the unmeasured confounder U for the outcome, and RREU(s1, s2) quanti-
fies how imbalanced the exposure/marker subgroups S = s1 and S = s2 are
in the unmeasured confounder U . The values RRUD(s1, s2) and RREU(s1, s2)
are always specified as greater than or equal to one. We suppose that
RRM(s1, s2) < 1 for the fixed values s1 < s2 — this is the case of inter-
est for immune correlates.

Define the bias factor

B(s1, s2) =
RRUD(s1, s2)RREU(s1, s2)

RRUD(s1, s2) +RREU(s1, s2)− 1

for s1 ≤ s2, and define RRU
M(s1, s2) the same way as RRM(s1, s2), except

marginalizing over the joint distribution of X and U . Then, RRU
M(s1, s2) ≤

RRM(s1, s2) × B(s1, s2), where RRU
M(s1, s2) = E{r(s2, X∗)}/E{r(s1, X∗)}

with X∗ = (X,U) and r(s, x, u) = P (Y = 1 |S = s, A = 1, X = x, U = u)
conditional risk. Translating this result to our problem context, under the
positivity assumption, we have that RRU

M(s1, s2) = RRC(s1, s2) and so, it
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follows that

RRC(s1, s2) ≤ RRM(s1, s2)×B(s1, s2) . (4)

This inequality states that the controlled risk ratio is bounded above by the
marginalized risk ratio multiplied by the bias factor. It follows that a conser-
vative (upper bound) estimate of RRC(s1, s2) is obtained as R̂RM(s1, s2) ×
B(s1, s2), and a conservative 95% CI is obtained by multiplying each con-
fidence limit for RRM(s1, s2) by B(s1, s2). These estimates for RRC(s1, s2)
account for the presumed-maximum plausible amount of deviation from the
no unmeasured confounders assumption specified by RRUD(s1, s2) and
RREU(s1, s2). An appealing feature of this approach is that the bound (4)
holds without making any assumption about the confounder vector X or the
unmeasured confounder U .

Conservative (bounded) estimation of rC(s) and RRC(s1, s2) for a quantita-
tive marker S The above approach does not directly provide a conservative
estimate of the controlled risk curve rC(s), because additional information is
needed for absolute versus relative risk estimation. To provide conservative
inference for rC(s), we next select a central value s

cent of S such that r̂M(scent)
matches the observed overall risk, P̂ (Y = 1|A = 1). This value is a ‘central’
marker value at which the observed marginalized risk equals the observed
overall risk. Next, we ‘anchor’ the analysis by assuming rC(s

cent) = rM(scent),
where picking the central value scent makes this plausible to be at least ap-
proximately true. Under this assumption, the bound (4) implies the bounds

rC(s) ≤ rM(s)B(scent, s) if s ≥ scent (5)

rC(s) ≥ rM(s)
1

B(s, scent)
if s < scent. (6)

Therefore, after specifying B(scent, s) and B(scent, s) for all s, we conserva-
tively estimate rc(s) by plugging r̂M(s) into the formulas (5) and (6).

Because B(s1, s2) is always greater than one for s1 < s2, formula (5) pulls the
observed risk r̂M(s) upwards for subgroups with high biomarker values, and
formula (6) pulls the observed risk r̂M(s) downwards for subgroups with low
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biomarker values. This makes the estimate of the controlled risk curve flatter,
closer to the null curve, as desired for a sensitivity/robustness analysis.

To specify B(s1, s2), we note that it should have greater magnitude for a
greater distance of s1 from s2, as determined by specifying RRUD(s1, s2) and
RREU(s1, s2) increasing with s2 − s1 (for s1 ≤ s2). We consider one specific
approach, which sets RRUD(s1, s2) = RREU(s1, s2) to the common value
RRU(s1, s2) that is specified log-linearly: logRRU(s1, s2) = γ(s2 − s1) for
s1 ≤ s2. Then, for a user-selected pair of values s1 = sfix1 and s2 = sfix2

with sfix1 < sfix2 , we set a sensitivity parameter RRU(s
fix
1 , sfix2 ) to some value

above one. It follows that

logRRU(s1, s2) =

(
s2 − s1

sfix2 − sfix1

)
logRRU(s

fix
1 , sfix2 ), s1 ≤ s2.

We anchor the analysis by setting s1 = sfix1 at the 15th percentile of the
Day 35 antibody marker and s2 = sfix2 at the 85th percentile of the Day 35
antibody marker.

Once rC(s) is conservatively estimated via the formulas (5) and (6), it is
immediate how to obtain a conservative estimate of CVE(s):

ĈVE(s) = 1− r̂M(s)B(scent, s)

P̂ (Y (0) = 1)
,

where the estimate of the placebo arm risk, P̂ (Y (0) = 1), is the same as for
the controlled VE analysis assuming no-unmeasured confounders.

Sensitivity analyses for controlled vaccine efficacy reported in the article

The sensitivity analysis is done for each of the two Cox model CoR analyses
described in Section 9.3.2, first for the binary Day 35 marker and second
for the quantitative Day 35 marker. For the former analysis, E-values are
reported for both the point estimate and the upper 95% confidence limit
for RRC(0, 1), where category 1 is the upper tertile (vaccine recipients with
antibodies S in the top third), category 0 is the lower tertile (vaccine re-
cipients with antibodies in the bottom third), and the intermediate mid-
dle tertile subgroup of vaccine recipients is excluded from the analysis. In

44



addition, we set RRUD(0, 1) = RREU(0, 1) = 2, such that B(0, 1) = 4/3,
and report conservative estimation and inference on the controlled risk ratio
RRC(0, 1) and equivalently on the ratio of controlled vaccine efficacy curves
RRC(0, 1) = (1− CV E(1))/(1− CV E(0)).

Next, we conduct the sensitivity analysis treating S as a quantitative variable,
as detailed in the subsection above “Conservative (bounded) estimation of
rC(s) and RRC(s1, s2) for a quantitative marker S.” This analysis reports
results in terms of point and 95% point-wise confidence interval estimates
of CVE(s) vs. s assuming the specified amount of unmeasured confounding
that makes the estimates of CVE(s) flatter than under the assumption of no
unmeasured confounding.

For validity the controlled risk/vaccine efficacy analyses require the positivity
assumption, and thus the methods will only be applied if the data are reason-
ably supportive of the positivity assumption. To check positivity, we study
the antibody marker distribution in vaccine recipients within each subgroup
of the covariates X that are adjusted for. For the tertiles analysis we require
evidence that within each subgroup some vaccine recipients have lower tertile
responses and some vaccine recipients have upper tertile responses. For the
quantitative S analysis, we look for evidence that S varies over its full range
within each level of the potential confounders that are adjusted for.

The details of the above causal sensitivity analysis are described in the in-
press article (Gilbert et al., 2022).

12 Estimating a Threshold of Protection Based on an Established
or Putative CoP (Population-Based CoP)

For each antibody marker studied as a CoP, we will apply the Chang-Kohberger
(2003) / Siber (2007) method to estimate a threshold of the antibody marker
associated with the estimate of overall vaccine efficacy observed in the trial.

This method makes two simplifying assumptions: (1) that a high enough an-
tibody marker value s∗ implies that individuals with S > s∗ have essentially
zero disease risk (perfect protection) regardless of whether they were vacci-
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nated; and (2) P (Y = 1|S ≤ s∗, A = 1)/P (Y = 1|S ≤ s∗, A = 0) = 1 (zero
vaccine efficacy if S ≤ s∗). Based on these assumptions, s∗ is calculated as
the value equating 1 − P̂ (S ≤ s∗|A = 1)/P̂ (S ≤ s∗|A = 0) to the estimate
of overall vaccine efficacy. This estimate is supplemented by estimating the
reverse cumulative distribution function (RCDF) of S in baseline negative
vaccine recipients and calculating a 95% confidence interval for the thresh-
old value s∗ as the points of intersection of the estimated RCDF curve with
the 95% confidence interval for overall vaccine efficacy (as in the figure in
Andrews and Goldblatt, 2014).

This method essentially assumes that S has already been established as a
CoP, and under that assumption estimates a threshold that may be consid-
ered as a benchmark / study endpoint for future immunogenicity vaccine trial
applications.

It is acknowledged that this approach makes simplifying assumptions that are
diagnosed to be violated in the PREVENT-19 trial; nonetheless it may yield
a useful benchmark and complementary information on a threshold correlate
of protection.

13 Considerations for Baseline SARS-CoV-2 Positive Study Par-
ticipants

As stated above, if enough COVID cases in baseline positive vaccine and/or
placebo recipients occur, then additional correlates analyses may be planned
in baseline positive individuals. For example, the same or similar correlates
of risk analysis plan that is used to analyze Day 35 marker correlates of risk in
baseline negative vaccine recipients could be applied to assess Day 1 marker
correlates of risk in baseline positive placebo recipients. In addition, analyses
could be done to assess how vaccine efficacy in baseline positive participants
varies with Day 1 markers. It is straightforward to make this analysis rigorous
because Day 1 markers are a baseline covariate, such that regression analyses
are valid based on the randomization.
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14 Avoiding Bias with Pseudovirus Neutralization Analysis due
to Use of Anti-HIV Antiretroviral Drugs

Because the lentivirus-based pseudovirus neutralization assay uses an HIV
backbone, the presence of anti-retroviral drugs in serum will give a false pos-
itive neutralization signal. This can be easily screened for using an MuLV
pseudotype control. Therefore, Day 1 and Day 35 samples of all study par-
ticipants with data included in correlates analyses will be tested for pres-
ence of anti-retroviral drugs. Samples with the control indicating likely anti-
retroviral are excluded from analyses, for all analyses that include pseudovirus
neutralization. Analyses that do not consider pseudovirus neutralization are
unaffected by this issue.
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Figure 2: A) Structural relationships among study endpoints in a COVID-19 vaccine efficacy trial
(Mehrotra et al., 2020). B) Study endpoint definitions.
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Figure 3: Example at-COVID diagnosis and post-COVID diagnosis disease severity and virologic
sampling schedule, in a setting where frequent follow-up of confirmed cases can be assured. Partic-
ipants diagnosed with virologically-confirmed symptomatic SARS-CoV-2 infection (COVID) enter
a post-diagnosis sampling schedule to monitor viral load and COVID-related symptoms (types,
severity levels, and durations).
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Figure 4: Case-cohort sampling design (Prentice, 1986) that measures Day 1, Day 35 antibody
markers in all participants selected into the subcohort and in all COVID and COV-INF cases
occurring outside of the subcohort.

50



Figure 5: Two-stage correlates analysis. Stage 1 consists of analyses of Day 35 markers as correlates
of risk and of protection of the primary endpoint and potentially also of some secondary endpoints,
and includes antibody marker data from all COVID and SARS-CoV-2 infection cases (COV-INF)
through to the time of the data lock for the first correlates analyses. Stage 2 consists of analyses
of Day 35 markers as correlates of risk and of protection of longer term endpoints and analyses
of longitudinal markers as outcome-proximal correlates of risk and of protection, and includes
antibody marker data from all subsequent COVID and COV-INF cases. Stage 1 measures Day
1, Day 35 antibody markers and COV-INF and COVID diagnosis time point markers; Stage 2
measures antibody markers from all sampling time points and COV-INF plus COVID diagnosis
sampling time points not yet assayed. The same immunogenicity subcohort is used for both stages.
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Table 5: Novavax PREVENT-19: Correlates of Vaccine Efficacy Results by Gilbert et al. (2020)
Method for High vs. Low Marker Subgroups Under No Early Harm Assumption with Sensitivity
Analysis Scenarios*

Marker Sens Ilol Ilou Elol Elou Ihil Ihiu Ehil Ehiu Icnl Icnu Ecnl Ecnu

1 D57S.4 None 0.79 0.79 0.64 0.88 0.95 0.95 0.92 0.97 4.22 4.22 2.17 8.21
2 D57S.4 Med 0.72 0.84 0.56 0.90 0.95 0.95 0.92 0.97 3.05 5.80 1.73 10.05
3 D57S.4 High 0.58 0.89 0.34 0.94 0.94 0.95 0.92 0.97 1.89 8.99 1.04 15.49
4 D57RBD.4 None 0.77 0.77 0.60 0.86 0.95 0.95 0.93 0.97 4.68 4.68 2.41 9.11
5 D57RBD.4 Med 0.69 0.83 0.52 0.89 0.95 0.95 0.93 0.97 3.38 6.42 1.91 11.14
6 D57RBD.4 High 0.53 0.89 0.28 0.93 0.95 0.95 0.92 0.97 2.09 9.97 1.15 17.18
7 D57ID50.4 None 0.75 0.75 0.58 0.84 0.88 0.88 0.80 0.93 2.12 2.12 1.06 4.24
8 D57ID50.4 Med 0.66 0.81 0.48 0.88 0.87 0.89 0.80 0.93 1.46 3.03 0.81 5.40
9 D57ID50.4 High 0.48 0.88 0.22 0.92 0.85 0.90 0.77 0.93 0.83 4.97 0.45 9.13

10 D57ID80.4 None 0.73 0.73 0.55 0.84 0.89 0.89 0.81 0.93 2.35 2.35 1.16 4.74
11 D57ID80.4 Med 0.64 0.80 0.45 0.87 0.88 0.89 0.81 0.93 1.62 3.36 0.89 6.04
12 D57ID80.4 High 0.45 0.87 0.16 0.92 0.86 0.90 0.78 0.94 0.93 5.51 0.49 10.24
13 D57S.5 None 0.87 0.87 0.79 0.92 0.95 0.95 0.93 0.97 2.87 2.87 1.52 5.42
14 D57S.5 Med 0.83 0.90 0.75 0.93 0.95 0.96 0.92 0.97 2.07 3.93 1.21 6.68
15 D57S.5 High 0.76 0.93 0.65 0.95 0.94 0.96 0.91 0.97 1.28 6.08 0.74 10.31
16 D57RBD.5 None 0.87 0.87 0.80 0.92 0.95 0.95 0.92 0.97 2.65 2.65 1.40 5.00
17 D57RBD.5 Med 0.84 0.90 0.76 0.93 0.95 0.96 0.92 0.97 1.91 3.63 1.12 6.17
18 D57RBD.5 High 0.77 0.93 0.66 0.95 0.94 0.96 0.91 0.98 1.18 5.72 0.68 10.51
19 D57ID50.5 None 0.75 0.75 0.62 0.83 0.91 0.91 0.82 0.95 2.72 2.72 1.26 5.84
20 D57ID50.5 Med 0.67 0.81 0.54 0.86 0.90 0.92 0.82 0.95 1.87 3.88 0.98 7.36
21 D57ID50.5 High 0.53 0.87 0.33 0.91 0.87 0.93 0.78 0.96 1.06 6.34 0.54 12.19
22 D57ID80.5 None 0.78 0.78 0.65 0.86 0.88 0.88 0.80 0.93 1.90 1.90 0.93 3.87
23 D57ID80.5 Med 0.72 0.83 0.58 0.89 0.87 0.90 0.79 0.94 1.31 2.72 0.72 4.93
24 D57ID80.5 High 0.59 0.88 0.40 0.92 0.84 0.91 0.74 0.94 0.74 4.43 0.39 8.16
25 D57S.6 None 0.88 0.88 0.82 0.92 0.97 0.97 0.94 0.98 3.82 3.82 1.87 7.80
26 D57S.6 Med 0.85 0.90 0.80 0.93 0.96 0.97 0.94 0.98 2.76 5.24 1.51 9.51
27 D57S.6 High 0.80 0.92 0.72 0.95 0.96 0.97 0.93 0.98 1.70 8.07 0.93 14.62
28 D57RBD.6 None 0.88 0.88 0.83 0.92 0.97 0.97 0.94 0.98 3.42 3.42 1.71 6.84
29 D57RBD.6 Med 0.85 0.90 0.80 0.93 0.96 0.97 0.93 0.98 2.47 4.68 1.37 8.36
30 D57RBD.6 High 0.80 0.93 0.73 0.95 0.95 0.97 0.92 0.98 1.52 7.22 0.84 12.86
31 D57ID50.6 None 0.78 0.78 0.67 0.85 0.92 0.92 0.81 0.96 2.65 2.65 1.08 6.47
32 D57ID50.6 Med 0.72 0.82 0.62 0.87 0.90 0.93 0.80 0.96 1.82 3.78 0.86 8.00
33 D57ID50.6 High 0.62 0.87 0.47 0.91 0.87 0.94 0.75 0.97 1.03 6.17 0.47 13.30
34 D57ID80.6 None 0.79 0.79 0.69 0.86 0.90 0.90 0.80 0.95 2.07 2.07 0.91 4.69
35 D57ID80.6 Med 0.74 0.84 0.64 0.88 0.88 0.91 0.78 0.95 1.42 2.95 0.71 5.86
36 D57ID80.6 High 0.64 0.88 0.50 0.92 0.85 0.93 0.72 0.96 0.81 4.82 0.39 9.77

*None: beta sensitivity parameters log(1.0) and -log(1.0); Med: beta sensitivity parameters log(0.75) and -log(0.75);
High: beta sensitivity parameters log(0.5) and -log(0.5)
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Table 6: Novavax PREVENT-19: Correlates of Vaccine Efficacy Results by Gilbert et al. (2020)
Method for High vs. Low Marker Subgroups Under No Early Harm Assumption with Sensitivity
Analysis Scenarios*

Marker Sens Ilol Ilou Elol Elou Ihil Ihiu Ehil Ehiu Icnl Icnu Ecnl Ecnu

1 D29S.3 None 0.78 0.78 0.54 0.89 0.94 0.94 0.92 0.96 3.62 3.62 1.63 8.04
2 D29S.3 Med 0.70 0.84 0.45 0.92 0.94 0.94 0.92 0.96 2.61 4.97 1.30 9.62
3 D29S.3 High 0.54 0.90 0.17 0.95 0.94 0.94 0.91 0.96 1.62 7.72 0.77 14.75
4 D29RBD.3 None 0.85 0.85 0.65 0.93 0.94 0.94 0.91 0.95 2.36 2.36 0.97 5.72
5 D29RBD.3 Med 0.79 0.89 0.59 0.95 0.93 0.94 0.91 0.95 1.70 3.24 0.79 6.78
6 D29RBD.3 High 0.69 0.93 0.38 0.97 0.93 0.94 0.91 0.95 1.05 5.04 0.47 10.40
7 D29ID50.3 None 0.58 0.58 0.34 0.73 0.90 0.90 0.84 0.94 4.23 4.23 2.25 7.95
8 D29ID50.3 Med 0.43 0.69 0.17 0.79 0.89 0.91 0.84 0.94 2.92 6.05 1.71 10.24
9 D29ID50.3 High 0.13 0.80 -0.27 0.87 0.88 0.91 0.83 0.94 1.67 9.82 0.97 16.58

10 D29S.4 None 0.86 0.86 0.76 0.91 0.95 0.95 0.92 0.96 2.60 2.60 1.40 4.83
11 D29S.4 Med 0.81 0.89 0.71 0.93 0.94 0.95 0.92 0.96 1.88 3.58 1.11 5.97
12 D29S.4 High 0.72 0.93 0.57 0.95 0.94 0.95 0.91 0.96 1.16 5.54 0.67 9.23
13 D29RBD.4 None 0.87 0.87 0.78 0.92 0.94 0.94 0.92 0.96 2.29 2.29 1.23 4.29
14 D29RBD.4 Med 0.83 0.90 0.73 0.94 0.94 0.95 0.92 0.96 1.65 3.15 0.97 5.31
15 D29RBD.4 High 0.74 0.93 0.61 0.96 0.93 0.95 0.91 0.96 1.02 4.89 0.59 8.20
16 D29ID50.4 None 0.66 0.66 0.49 0.77 0.91 0.91 0.85 0.95 3.88 3.88 2.01 7.47
17 D29ID50.4 Med 0.55 0.74 0.37 0.82 0.90 0.92 0.85 0.95 2.67 5.54 1.53 9.60
18 D29ID50.4 High 0.33 0.83 0.07 0.88 0.89 0.93 0.82 0.95 1.53 8.98 0.87 15.53
19 D29S.5 None 0.87 0.87 0.81 0.92 0.95 0.95 0.93 0.97 2.72 2.72 1.52 4.86
20 D29S.5 Med 0.84 0.90 0.77 0.93 0.95 0.96 0.93 0.97 1.96 3.74 1.20 6.06
21 D29S.5 High 0.77 0.93 0.68 0.95 0.94 0.96 0.92 0.97 1.21 5.78 0.73 9.36
22 D29RBD.5 None 0.88 0.88 0.81 0.92 0.95 0.95 0.93 0.97 2.68 2.68 1.50 4.78
23 D29RBD.5 Med 0.84 0.90 0.78 0.93 0.95 0.96 0.93 0.97 1.93 3.67 1.18 5.96
24 D29RBD.5 High 0.77 0.93 0.68 0.95 0.94 0.96 0.92 0.97 1.19 5.68 0.72 9.20
25 D29ID50.5 None 0.75 0.75 0.63 0.83 0.90 0.90 0.83 0.94 2.62 2.62 1.33 5.17
26 D29ID50.5 Med 0.68 0.80 0.55 0.86 0.89 0.91 0.82 0.95 1.81 3.75 1.02 6.62
27 D29ID50.5 High 0.54 0.86 0.36 0.90 0.86 0.92 0.78 0.96 1.03 6.11 0.58 11.56
28 D29S.6 None 0.89 0.89 0.84 0.92 0.97 0.97 0.94 0.98 3.29 3.29 1.74 6.23
29 D29S.6 Med 0.86 0.91 0.81 0.93 0.96 0.97 0.94 0.98 2.37 4.52 1.39 7.70
30 D29S.6 High 0.81 0.93 0.74 0.95 0.95 0.97 0.92 0.98 1.46 6.97 0.84 11.87
31 D29RBD.6 None 0.89 0.89 0.84 0.92 0.96 0.96 0.94 0.98 3.01 3.01 1.61 5.62
32 D29RBD.6 Med 0.86 0.91 0.82 0.93 0.96 0.97 0.93 0.98 2.17 4.13 1.28 6.96
33 D29RBD.6 High 0.81 0.93 0.75 0.95 0.95 0.97 0.92 0.98 1.33 6.37 0.78 10.73

*None: beta sensitivity parameters log(1.0) and -log(1.0); Med: beta sensitivity parameters log(0.75) and -log(0.75);
High: beta sensitivity parameters log(0.5) and -log(0.5)
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Table 7: Novavax PREVENT-19: Cut-points Defining High and Low Marker Subgroups

Perc. 0.4 Perc. 0.5 Perc. 0.6

D57Spike 1380.38 2094.11 2851.67
D57RBD 1895.40 3087.45 4218.91
D57ID50 157.98 223.46 297.17
D57ID80 381.24 497.62 606.18

Table 8: Novavax PREVENT-19: Cut-points Defining High and Low Marker Subgroups

Perc. 0.3 Perc. 0.4 Perc. 0.5

D29Spike 55.89 140.02 225.48
D29RBD 52.35 139.38 225.79
D29ID50 5.71 8.67 13.76
D29ID80 16.43 21.77 27.56

Table 9: Novavax PREVENT-19: Cut-points Defining High and Low Marker Subgroups

Perc. 0.3 Perc. 0.4 Perc. 0.5

D29Spike 1.75 2.15 2.35
D29RBD 1.72 2.14 2.35
D29ID50 0.76 0.94 1.14
D29ID80 1.22 1.34 1.44
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