

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Nudge interventions to reduce unnecessary antibiotic prescribing in primary care: a systematic review

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-062688
Article Type:	Original research
Date Submitted by the Author:	08-Mar-2022
Complete List of Authors:	Raban, Magdalena; Macquarie University Gonzalez, Gabriela; Macquarie University Nguyen, A; Macquarie University; St Vincent's Clinical School Newell, Ben; UNSW Li, Ling; Macquarie University Seaman, Karla ; Macquarie University Westbrook, Johanna; Macquarie University
Keywords:	Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Public health < INFECTIOUS DISEASES, PRIMARY CARE, Respiratory infections < THORACIC MEDICINE

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Nudge interventions to reduce unnecessary antibiotic prescribing in primary care: a systematic review

Magdalena Z. Raban^{1*}, Gabriela Gonzalez¹, Amy D. Nguyen^{1, 2}, Ben R. Newell³, Ling Li¹,

Karla Seaman¹, Johanna I Westbrook¹

¹Centre for Health Systems and Safety Research, Australian Institute of Health Innovation, Macquarie University, Sydney, Australia.

²St Vincent's Clinical School, UNSW Medicine, UNSW Sydney, NSW, Australia

³School of Psychology, UNSW, Sydney, Australia.

*Corresponding author:

Dr Magdalena Raban, Senior Research Fellow Centre for Health Systems and Safety Research, Australian Institute of Health Innovation, Macquarie University, Sydney, Australia. magda.raban@mq.edu.au

ABSTRACT

Objectives

Antibiotic prescribing in primary care contributes significantly to antibiotic overuse. Nudge interventions alter the decision-making environment to achieve behaviour change without restricting options. Our objectives were to conduct a systematic review to examine the types of nudge interventions used to reduce unnecessary antibiotic prescribing in primary care, and their effects on prescribing.

Methods

Medline, Embase and grey literature were searched for randomised trials or regression discontinuity studies. Risk of bias was assessed independently by two researchers. Vote counting was applied to synthesise effects on overall antibiotic prescribing. Effects of social norm nudges were examined for features that may enhance effectiveness.

Results

Nineteen studies were included, testing 23 nudge interventions. Four studies were rated as having a high risk of bias, nine as moderate risk of bias, and six as at low risk. Overall, 78.3% (n=23, 95% CI: 58.1, 90.3) of the nudges evaluated reported a reduction in overall antibiotic prescribing rates. Social norm feedback was the most frequently applied nudge (n=17), with 76.5% (n=13; 95% CI: 52.7, 90.4) of these studies reporting a reduction in antibiotic prescribing. Other nudge strategies applied were changing option consequences (n=3; with 2 reporting a reduction), providing reminders (n=2; 1 reporting a reduction), and facilitating commitment (n=1; reporting a reduction). Social norm nudges considered features

such as who to target, use of a respected authority for messaging, and the frequency of feedback, to increase effectiveness. Physicians with the lowest rates of antibiotic prescribing were used as the comparison point in effective social norm nudges.

Conclusions

Nudge interventions are effective for improving antibiotic prescribing in primary care. Expanding the use of nudge interventions beyond social norm nudges could reap further improvements in antibiotic prescribing practices. Policy makers and managers need to be mindful how social norm nudges are implemented to enhance intervention effects.

STRENGTHS AND LIMITATIONS

- Nudges are potentially useful interventions to influence clinical decisions so that they align with guidelines; however their effects can vary.
- This systematic review describes the types of nudges evaluated and their reported effects on antibiotic prescribing in primary care.
- A strength of the study is the broad search strategy with the assessment of whether an intervention was a nudge at the full-text stage.
- We were not able to synthesise results with meta-analysis due to the differences in outcome measures reported.

KEYWORDS

Antimicrobial Stewardship; Primary Health Care; General Practice; Clinical Decision-

Making; Quality of Health Care; Economics, Behavioural; Psychology; Systematic Review;

INTRODUCTION

Antimicrobial resistance is one of the most pressing challenges to global health [1]. Overuse and inappropriate use of antibiotics is a major contributor to the rise of antimicrobial resistance, and yet, between 2000 and 2010 global antibiotic consumption rose by 35% [2]. Concerningly, global per-capita consumption of antibiotics flagged by the World Health Organization (WHO) as having high resistance potential (Watch category) [3] rose by 90.9% between 2000 and 2015 [4]. Primary care accounts for the majority of antibiotic use, and rates of inappropriate use are estimated to be high [5-7]. For example, the majority of upper respiratory tract infections do not benefit from antibiotic treatment, particularly when weighed against the rates of adverse effects, however, antibiotics continue to be prescribed [5, 8, 9].

Efforts to reduce antibiotic prescribing in primary care have predominantly focused on the use of point-of-care testing, shared decision-making, and education strategies aimed at physicians and patients [10-12]. While some of these intervention strategies have been successful in improving antibiotic prescribing, they can be resource intensive, and in some cases only provide marginal reductions in antibiotic prescribing [10-12]. Furthermore, these intervention strategies rarely take account of how cues in the environment, unrelated to clinician knowledge or access to resources such as information or tests, can influence decision-making.

The field of behavioural economics has generated a collection of approaches, called 'nudges', that involve subtle changes in the decision-making environment, or choice architecture, to guide people towards a specific decision or behaviour. Nudge interventions are typically simple and low-cost interventions, and thus are attractive to healthcare managers and policy

makers. Furthermore, they do not restrict choices or penalise 'unfavourable' choices, thus preserving an individual's autonomy in the decision-making process.

Nudge interventions have similarities to traditional behaviour change techniques applied in health services and public health.[13, 14] For example, audit and feedback has long been applied in health service interventions and has similarities to social norm feedback nudges. However, audit and feedback may not necessarily include a comparison to the performance of peers, the essential component that would make it a nudge.[15, 16] Furthermore, social norm feedback nudges tend to target 'underperformers', as evidence from psychology has demonstrated a 'boomerang' effect; i.e. that high performers drop their performance toward the group mean (beyond that expected due to regression toward the mean). However, audit and feedback interventions used in health services may not take performance into account when deciding on who should receive feedback. Thus, there can be nuanced differences in the techniques from each of these paradigms.

Nudge interventions have been successfully implemented in fields other than health [17], and the evidence base for their use in influencing consumers' health-related behaviours is growing [18, 19]. However, while the use of nudge interventions in specific areas of health services and to influence clinical decision making is increasing,[17, 20] there is emerging evidence that the effect of nudges can vary depending on the context in which they are applied, as well as the type of nudge implemented. Against this background, our aim was to explore the use of nudge interventions and their effectiveness to improve antibiotic prescribing in primary care, and to draw out lessons to inform future directions for nudge intervention design and testing in healthcare. Our specific objectives were to describe the

types of nudge interventions trialled to date, their key features, and their effects on the rates of antibiotic prescribing overall.

METHODS

This systematic review is reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (Supplementary file 1) [21].

Information sources and search strategy

The databases MEDLINE (via Ovid and PubMed) and Embase were searched for original research articles reporting on randomised trials or regression discontinuity studies of interventions to improve antibiotic prescribing in primary care, published in English in the last 20 years. Though the behavioural economics term 'nudge' was proposed in 2008, many of the interventions now termed 'nudges' have been applied to influence behaviour prior to the emergence of this term. Therefore, we did not exclude articles published before 2008 if the interventions met the criteria for a nudge intervention, and our search strategy did not include 'nudges' as a theme. Instead, our search strategy covered three themes: antibiotics AND primary care AND intervention study designs. The reference lists of included studies were hand searched for relevant citations. Websites of government nudge units and other

organisations working to apply and test nudge theory were also searched for grey literature of relevance. Searches were carried out in April 2021. The full search strategy is presented in Supplementary file 2.

Eligibility criteria

Studies conducted in primary care facilities, general and family practices were included. Studies in hospital wards or in long-term care were excluded. The intervention tested had to fall under the broad definition of a nudge proposed by Thaler and Sunstein: "A nudge... is any aspect of the choice architecture that alters people's behaviour in a predictable way without forbidding any options or significantly changing their economic incentives. To count as a mere nudge, the intervention must be easy and cheap to avoid" [22]. For further guidance on whether the intervention used qualified as a nudge, we used a taxonomy of choice architecture techniques which focuses on interventions rather than the underlying cognitive processes of the interventions [23]. Interventions involving education, providing physicians with access to guidelines, passive decision support tools the clinician had to actively decide to use, and audit and feedback interventions with no social norm comparison were excluded. Studies evaluating multifaceted interventions that included a nudge strategy were also excluded as they did not allow evaluation of the impact of the nudge intervention

BMJ Open

rates of appropriate antibiotic prescribing to be eligible. Randomised controlled trials and regression discontinuity studies were included. Interrupted time-series, controlled beforeafter, cross-sectional, and before-after studies were excluded as they are at higher risk of bias.

alone. Studies had to evaluate the impact of the intervention on antibiotic prescribing rates or

Study selection

Titles and abstracts of citations returned from the searches were independently reviewed by at least two reviewers. At this stage, the reviewers assessed study setting, study design and outcomes for eligibility. The full-text of all selected citations were then reviewed independently by two of three authors against all eligibility criteria, including an assessment of whether the intervention qualified as a nudge using the definitions outlined above. Discrepancies between reviewers were resolved through discussions until consensus was reached.

Data collection and data items

Data extraction and categorisation of interventions was carried out independently by two reviewers for each study. We extracted data on study characteristics (country, study years,

sample size), nudge intervention description, types of infections targeted (e.g. all, respiratory tract infections [RTIs], urinary tract infections [UTIs]), outcomes, and study results. When studies reported more than one outcome, we extracted results for the outcome measuring changes in overall antibiotic use, appropriate antibiotic use, and any outcome defined as the primary outcome of the study. When a study trialled more than one nudge intervention, or the same nudge was implemented with differing features, we extracted intervention data for all nudges.

Nudge interventions were classified using a taxonomy of choice architecture techniques (Table 1) [23], and we refer to these as nudge intervention categories. Since social norm feedback nudge interventions are a frequent behaviour change technique in healthcare, often termed audit and feedback, but are implemented with varying features, we extracted details of the implementation. We recorded whether a social norm feedback nudge targeted high antibiotic prescribers or all physicians; the frequency of feedback; whether feedback was based on prescribing data for practices or individual physicians; the mode of intervention delivery (e.g. letter, email); whether a graphic representation of data was included; and the types of supporting information provided in addition to the social norm feedback.

2
3
1
-+ -
5
6
7
8
9
10
11
11
12
13
14
15
16
17
17
18
19
20
21
22
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
20
30
37
38
39
40
41
12
42
43
44
45
46
47
48
10
47 50
50
51
52
53
54
55
55
50
57
58
FΟ

60

Table 1: Ta	xonomy of choi	ce architecture teo	hniques with	implementation	examples[23]
			- · ·		

Category	Technique	Technique examples
A. Decision	A1. Translate information	Reframe information
information		 Simplify information
	A2. Make information visible	Provide real-time feedback
		Make external information visible
	A3. Provide social reference	Refer to descriptive norm (social
	point	norm feedback)
		 Refer to opinion leader
B. Decision	B1. Change choice defaults	 Set no-action default
structure		 Use prompted choice
	B2. Change option-related	 Increase/decrease physical effort
	effort	 Increase/decrease financial effort
	B3. Change range or	Change categories of options
	composition of options	 Change grouping of options
	B4. Change option	Connect decision to benefit or cost
	consequences	Change social consequences
C. Decision	C1. Provide reminders	Make information more or less
assistance		salient
	C2. Facilitate commitment	Support self-commitment/public
		commitment

Assessment of risk of bias in included studies

The risk of bias of each study was assessed using the Cochrane Effective Practice and

Organisation of Care group's tool for studies with a separate control group [24]. Each study

was independently assessed by two authors against each of the nine criteria assigning a score

of either low risk, high risk, or unclear risk of bias. Discrepancies were resolved through discussion. A summary assessment of the overall risk of bias was allocated to each study as follows: *low risk of bias* when all criteria were scored 'low', *medium risk of bias* when one or two criteria were scored 'unclear' or 'high' risk, and *high risk* when more than two criteria scored 'unclear' or 'high' [25].

Synthesis of results

Inconsistencies in the outcomes and data reported in the studies precluded meta-analysis. Thus, we applied vote counting to summarise results for each category of nudge intervention and for features of social norm feedback nudges.[26] Vote counting allows a comparison of the number of effects reporting a benefit to the number that showed no benefit. It is the recommended method by Cochrane for summarising studies when meta-analysis or other quantitative methods are not able to be applied.[26] For each nudge intervention, we recorded whether the study demonstrated a reduction or no change in overall antibiotic prescribing compared to controls. As per the Cochrane Handbook, the statistical significance of the effect was not taken into account, so as not to erroneously conclude that underpowered studies had no effect. For studies with multiple study outcomes, we only considered the effect on overall

BMJ Open

antibiotic prescribing. The percentage of interventions with a reduction in overall antibiotic prescribing was calculated for all nudge interventions and social norm feedback nudges. Sensitivity analyses were conducted removing studies with a high risk of bias. Confidence intervals for proportions were calculated using the Wilson method. Effect sizes from studies were summarised narratively by reporting the range of change for overall antibiotic prescribing outcomes.

We used harvest plots to graphically summarise the vote counting results.[27] In a harvest plot, each mark represents a study or intervention. We used the position of the mark to indicate whether the intervention effect (reduction or no change in overall antibiotic prescribing) and the size of the mark to indicate the risk of bias of the study (low risk studies having a larger mark). Harvest plots were created for all nudge interventions by nudge category, and for social norm nudges by whether the intervention targeted high antibiotic prescribers or all prescribers, the frequency of feedback (once or more than once) and whether the comparison group was the average or above average performers. The stratification of the social norm nudge interventions by these features aimed to examine if there was evidence supporting one implementation strategy over another. Lastly, results from

studies which directly compared different nudge interventions or implementation strategies or

examined intervention effects over time or on different sub-groups were described

narratively.

 Public and Patient Involvement

Patients or the public were not involved.

RESULTS

Nineteen studies were assessed as eligible for inclusion (Figure 1) [28-43]. Table 2 presents study characteristics. The majority of studies were conducted in Europe (n=8) [30, 32-35, 41, 42], six in the United States [31, 36-38, 40], two in Australia [29, 39], two in China [43], and one in Sudan [28]. Seventeen studies were randomised controlled trials and two were regression discontinuity studies [30, 41]. Interventions were aimed at improving antibiotic use for all types of infections in nine studies [28-30, 32, 33, 39, 41], RTIs in eight studies [31, 36-38, 40, 42, 43], UTIs in one study [35], and both RTIs and UTIs in one study [34].

Risk of bias in included studies

BMJ Open

Four studies were rated as having a high overall risk of bias [28, 31, 35, 40], nine as moderate risk of bias [29, 30, 34, 37-39, 41, 42], and six as at low risk of bias (Table 2) [32, 33, 36,

43]. Overall scores of meeting risk of bias criteria ranged from 4/9 to 9/9 across studies. No

single criterion was more frequently at high or unclear risk of bias across studies.

Supplementary file 3 shows the risk of bias assessment against each of the criteria for each

study.

Description of nudge interventions

Seventeen studies evaluated one type of nudge intervention and two evaluated three types of nudge interventions each [37, 38], with a total of 23 nudge interventions evaluated. Three studies compared different implementation strategies of social norm nudges[29, 36].

Social norm feedback nudges ('Decision information' category of nudge interventions; Table 2) were the most common intervention (n=17) evaluated [28-36, 38-42]. Implementation of social norm feedback varied between studies (Table 3). Social norm feedback was most commonly: based on prescribing data for individual physicians (n=12) [29, 31, 33, 35, 36,

38-42]; provided more than once (n=11) [28, 31, 33-35, 38-40]; sent to all prescribers (n=11) [28, 31, 34-36, 39, 40, 42] as opposed to the highest prescribers only; and distributed via letters (n=11) [28-30, 32-34, 36, 39, 41, 42]. Studies also cited application of other behavioural techniques or considerations in the design of their social norm feedback, such as the inclusion of actionable advice, addressing the feedback letter from a high profile or respected individuals, providing positive feedback to high performers (i.e. low prescribers), and comparison to the mean of the top performers as opposed to the group mean.

Three interventions used nudge techniques from the 'Decision structure' category involving changing option consequences (Table 4) [38, 40, 43]. Three interventions used techniques from the 'Decision assistance' category (Table 4) involving providing reminders via suggested alternatives to antibiotic use (n=2) [38, 40] and a statement of public commitment to reducing antibiotic use in RTIs (n=1) [37].

Table 4: Description of nudge and direction of effect on overall antibiotic prescribing in primary care (other than social norm feedback)

Nudge category/ Author, year	Type of Mode Description		Intervention effect*	
Decision st	ructure – chang	e option con	sequences	
Meeker, 2016	Accountable justification	Electronic health record	At time of prescribing an antibiotic, physicians were asked to justify their treatment decision in a mandatory free text field. The prompt informed physicians the justification would be visible in the patient's record.	Reduction
Persell, 2016	Accountable justification	Electronic health record	At time of prescribing an antibiotic, physicians were asked to justify their treatment decision in a mandatory free text field. The prompt informed physicians the justification would be visible in the patient's record.	No change
Yang, 2014	Public reporting	Posters and reports	Posters with antibiotic prescribing data were publicly displayed in the primary care clinics and reports with the data were sent to clinic managers and local health authorities.	Reduction
Decision as	sistance – provi	de reminder	S	
Meeker, 2016	Suggested alternatives	Electronic health record	At time of prescribing an antibiotic, a pop-up screen stated antibiotics are generally not indicated for the diagnosis and showed a list of alternative treatments.	Reduction
Persell, 2016	Suggested alternatives	Electronic health record	At time of prescribing an antibiotic, a computerised order set appeared with treatment alternatives and education materials for the patient.	Reduction
Decision as	sistance – facili	tate commiti	ment	
Meeker, 2014	Public commitment	Poster	A poster-sized letter signed by physicians and posted in examination rooms indicating commitment to reducing antibiotics for RTIs.	Reduction

*Results of vote counting assessment based on nudge effect on overall antibiotic prescribing

Effect of nudge interventions on overall antibiotic prescribing rates

Of the 23 nudge interventions evaluated, 78.3% (n=17, 95% CI: 58.1, 90.3) showed a

reduction in overall antibiotic prescribing rates. Removing studies with a high risk of bias,

the percentage of studies showing a reduction in overall antibiotic prescribing was 76.5%

(n=12, 95% CI: 52.7, 90.4). Figure 2 shows the distribution of intervention effects by the type

of nudge strategy evaluated.

BMJ Open

Of the seventeen studies evaluating social norm feedback nudges, 76.5% (n=13, 95% CI: 52.7, 90.4) reported a reduction in overall antibiotic prescribing (Figure 2). Removing studies with a high risk of bias, this percentage was 69.2% (n=9, 95% CI: 42.4, 87.3). Figure 3 shows social norm nudges stratified by the frequency of feedback, whether they targeted only high prescribers or all prescribers, and the comparison group. More studies showed a reduction than no change in overall antibiotic prescribing irrespective of the frequency of feedback and who was targeted by the intervention. However, only half of the studies that used the mean antibiotic prescribing of the group as the comparison reported a reduction in antibiotic prescribing, with the other half reporting no change.

Effect size of nudge interventions on antibiotic prescribing rates

The effect sizes of social norm feedback interventions on the number of antibiotics/1000 consultations (n=3) ranged from no change [39] to a reduction of 13.6% (95% CI: 16.6, 10.6) at 6-months post-intervention [29]; and the number of antibiotic prescriptions/1000 registered population (n=5) from no change [44] to an approximate 5% reduction (-58.7/1000

population [95% CI: 116.7, 0.7]) 12-months post intervention [30].

BMJ Open

Studies measuring antibiotic prescribing for specific infection types reported absolute difference effect sizes of -1.2% (95% CI: -10.5, 8.2) [34], -1.7% (p=0.93) [31], and -5.2% (95% CI: -6.9, -1.6) [38] in the proportion of upper RTI treated with an antibiotic; a relative decrease of 9.6% (p=0.0004) [35] in inappropriate antibiotic for UTIs, and lower odds of antibiotic prescribing for RTI (OR: 0.73 (95% CI: 0.53, 0.995)) [40].

The effect sizes of the two studies of accountable justification interventions ranged from no change [40] to a reduction of 7.0 percentage points (95% CI: 9.1, 2.9) [38] in the number of antibiotics/100 antibiotic inappropriate infections. One study of public reporting showed a 1.93 percentage point reduction (95% CI: -6.61, 2.75) in the percentage of RTI consultations with an antibiotic, and a 6.97 percentage point (95% CI: -13.9, 0.00) reduction in the percentage of RTI consultations with >1 antibiotic.

Supplementary file 4 provides details of the effects of interventions on outcomes.

Studies comparing the effects of different nudge interventions

Two studies compared the impact of three different types of nudge interventions on antibiotic prescribing for RTIs [38, 40]. One study (with a moderate risk of bias) examined the impact of nudges on RTI where an antibiotic was not indicated, i.e. antibiotic inappropriate RTIs.[38] This study reported a reduction in the prescribing of antibiotics for antibiotic inappropriate RTIs in the physician groups receiving social norm feedback and accountable justification nudges, and a non-significant reduction in the physician group receiving a suggested alternatives nudge intervention [38]. The second study (high risk of bias) compared the same three nudge interventions, and reported a reduction in antibiotic prescribing for all RTIs for the social norm feedback and suggested alternative nudges, but not in the groups receiving the accountable justification nudges.[40]

Supplementary file 4 provides details of the impact of interventions on outcomes and their vote counting results.

Social norm nudge effects over time and following repeat messaging

Two studies examined the effect of a single social norm nudge letter sent to high antibiotic prescribing physicians over time and both reported a diminishing effect on prescribing rates

BMJ Open

compared to controls over time [29, 30]. In one study, the effect of the intervention was examined over 12-months after the letter was sent [30]. While there was a significant reduction in antibiotic prescribing compared to controls in the 12 months after the intervention, the effect diminished over time, such that the reductions in antibiotic prescribing rates in the second, third and fourth quarters after the intervention were not statistically significant. The second study also reported a diminishing effect of the social norm nudge letter over a 12-month period, but the reduction continued to remain significant at 12-months after the intervention [29, 45].

Two studies examined the impact of repeat social norm feedback interventions over time [33, 41]. In the first study, the effect of quarterly social norm feedback sent to the top 50% of antibiotic prescribers was assessed for 2 years [33]. While there was no difference in overall antibiotic prescribing rates in the first and second years of the intervention, there was a significant reduction in the antibiotic prescribing for children and adolescents in the first year (-8.6%) and young to middle-aged adults in the second year of the intervention (-4.6%). In the second study, a social norm nudge was first used in 2014 targeting the top 20% antibiotic prescribers, and due to its success was repeated annually since [41]. The study

evaluated whether the intervention reduced antibiotic prescribing by physicians who had

previously received the letter and those that had not. The top 10% of prescribers did not reduce their prescribing whether or not they had previously been sent a letter. However, the top 11-20% antibiotic prescribers reduced their antibiotic prescribing even when they had previously been sent a letter. The authors speculated that the failure of the top 10% to reduce antibiotic prescribing may have been due to the more forceful message in the communication they received (i.e. that the great majority (90%) of practices prescribed fewer antibiotics), resulting in negative attitudes to the message and a lower behavioural intention to reduce (elien prescribing.

DISCUSSION

In this systematic review we have compiled the evidence on the effectiveness of nudge interventions in reducing antibiotic prescribing in primary care. Overall, 78.3% of studies reported a reduction in antibiotic prescribing. Social norm feedback was the most frequently evaluated nudge, and the evidence suggests that performance should be compared to high performers, rather than the average, to enhance intervention effects. Only four studies examined nudge strategies other than social norm nudges, such as changing option consequences, providing reminders and facilitating commitment. Thus, while the evidence base supports the effectiveness of social norm nudges in this context, further research is

BMJ Open

needed to evaluate other nudge strategies despite promising results thus far of their effectiveness.

The studies included in this review trialled five different nudges (social norm feedback, accountable justification, public reporting, suggested alternatives and public commitment) from four of the nine subcategories of choice architecture techniques described by Munscher.[23]. Two other broad reviews of nudges targeting health providers reported identifying a similar number of nudges employed in their included studies, but the types of nudges applied differed to those that we identified.[20, 46] For example, changing choice defaults is a frequently applied nudge to guide health care provider behaviour, but was not used to influence antibiotic prescribing in our review.[20, 46] Another example of a nudge not applied in studies in our review, but used in other contexts targeting health providers is changing the framing of information.[20, 46] Thus, there is scope for implementing and evaluating other nudge techniques in the primary care setting to improve antibiotic use. This is important since it is currently not clear whether the same nudge applied over more than one year will continue to have sustained impact.

We attempted to elucidate whether features of social norm feedback nudges have a role in their effectiveness. For example, the behavioural economics literature suggests that social norm nudges should only be provided to poor performers (i.e. high antibiotic prescribers in our case).[22] This is because of the 'boomerang effect' that may occur in individuals performing above average when they are provided social norm feedback confirming their above average performance, i.e. they reduce their performance. The studies in our review most frequently provided the social norm feedback to all prescribers (not only high prescribers) and all but one of these studies showed a reduction in overall antibiotic

BMJ Open

prescribing. However, the studies providing feedback to all prescribers also predominantly provided feedback more than once, which may have played a role in the reduction in antibiotic prescribing. Other factors that may have played a role in the prevention of a 'boomerang' effect in low prescribers, was the way the message was delivered and the comparison group used in the feedback. For example, one study informed the physicians with the lowest prescribing that they were a 'top performer', whereas the remaining physicians were informed they were 'not a top performer'.[38] The psychology literature supports the use of an injunctive when providing feedback i.e. conveying social approval or disapproval, as a way to eliminate the 'boomerang' effect.[47] The study also compared physicians' performance to the mean of the lowest decile prescribers, rather than the group mean. In fact, our results showed that comparison of performance to the group mean was the only feature of social norm feedback nudges that produced results that were evenly distributed between a reduction and no change in antibiotic prescribing. However, the studies that used comparisons to the lowest prescribers or ranked the prescriber against their peers all reported reductions in antibiotic prescribing.

The frequency of feedback may also play a role in social norm nudge effects. In the study described above that informed prescribers they were a 'top performer' or 'not a top performer', feedback was provided on a monthly basis, which allowed physicians to assess the degree to which they had changed their antibiotic prescribing.[38] This is a different approach to studies that targeted only the high prescribers, i.e. poor performers. These studies tended to provide the feedback once, informing the physicians that they prescribed at a higher rate than e.g. 80% of their peers.[29, 30, 32, 41, 45] The other behavioural feature included in the studies targeting high prescribers was that the letter was addressed from a high-profile figure to increase the credibility of the message.[29, 30, 32, 41, 45]

BMJ Open

It has been suggested that we can also learn from nudges that fail.[14, 48] There were four studies that implemented a social norm feedback nudge that had no effect on overall antibiotic prescribing.[33, 34, 39, 44] All four studies had two intervention features in common. Firstly, the peer comparison used was the mean prescribing rate of the group or in the case of one study the interquartile range of the group. For those prescribers that were at the mean prescribing level or marginally below it, this may not have provided enough motivation to change their behaviour. Furthermore, as mentioned above, the 'boomerang effect' may occur in individuals performing above average. Secondly, the feedback in the four evaluations of social norm nudges that did not reduce overall prescribing was not provided from a high-profile or respected figure, which may have reduced the salience of the message.

The literature on audit and feedback interventions in healthcare provides insights into what features make these interventions more effective, and complement those from the behavioural economics and psychology literature.[16] A Cochrane review found that feedback is more likely to be effective when: baseline performance is low; the source is a supervisor or colleague; the frequency is more than once; it is delivered both verbally and in written formats; and when feedback includes both targets and an action plan.[15] Many of these features were included in the social norm nudges we identified in this review. For example, most of the social norm nudges included information on appropriate antibiotic prescribing in primary care. Thus, synthesising such evidence from behavioural economics and psychology is likely to enhance the effectiveness of these interventions.

BMJ Open

This systematic review has a number of strengths. Firstly, our search strategy was inclusive of all studies evaluating interventions to improve antibiotic prescribing in primary care. The selection of studies based on the type of intervention occurred at the full-text screening stage to ensure that studies not explicitly stating they used nudge techniques were included. Secondly, we used a comprehensive taxonomy of behavioural architecture techniques,[23] rather than attempting to ascertain whether the underlying cognitive processes addressed by the intervention had the features of a nudge. However, we were unable to perform a meta-analysis or summarise the results quantitatively due to the heterogenous reporting of study outcomes. Nonetheless, this review has provided practical insights into the use of nudge interventions to reduce antibiotic use in primary care, and highlighted areas for further research.

CONCLUSIONS

Health systems worldwide continue to struggle to deliver evidence-based care.[49] Nudges can be used in lieu of, or to augment, more traditional efforts such as education (targeting clinicians, as well as the public), financial incentives, promotion of guidelines, and changing models of care. Evaluation of nudges applied in healthcare will play a key role in identifying interventions suitable for use in different contexts, including primary care, and in further developing applications of nudge strategies to improve the delivery of effective healthcare services.

FUNDING

This study was funded by a National Health and Medical Research Council (NHMRC) Partnership Project (2006957). MZR is supported by a NHMRC Early Career Fellowship (APP1143941). JIW is supported by a NHMRC Elizabeth Blackburn Leadership Investigator

 Grant (APP1174021). The funding body had no role in the design of the study, data collection, analysis, interpretation or writing of the manuscript.

COMPETING INTERESTS

The authors declare that they have no competing interests.

AUTHOR CONTRIBUTIONS

MZR conceived the study with JW and BN. MZR and GG designed the search strategy and GG ran the searches. MZR, GG and AN screened articles for inclusion with input from BN. MZR, GG and AN conducted data extraction and quality assessments. LL and KS provided support for the compilation of results. MZR compiled results and wrote the initial manuscript draft. All authors contributed to the editorial process of the manuscript and approved the final manuscript.

DATA SHARING STATEMENT

All data is available in the manuscript or Supplementary files.

ETHICS APPROVAL

This study does not involve human participants.

WORD COUNT: 4523

REFERENCES

1. Jee Y, Carlson J, Rafai E, Musonda K, Huong TTG, Daza P, et al. Antimicrobial resistance: a threat to global health. Lancet Infect Dis. 2018;18(9):939-940.

2		
3	2.	Van Boeckel TP, Gandra S, Ashok A, Caudron O, Grenfell BT, Levin SA, et al.
4 5		
6		Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical
7		sales data Lancet Infect Dis 2014:14(8):742 750
8 9		sales data. Lancet Infect Dis. 2014,14(8).742-750.
10	3.	World Health Organization. Model List of Essential Medicines, 21st List. Geneva:
11 12		
12		WHO. 2019. Available from:
14		https://apps.who.int/iris/bitstream/bandle/10665/325771/WHO_MVP_EMP_IAU
15 16		
17		2019.06-eng.pdf?sequence=1&isAllowed=y
18 10		
20	4.	Klein EY, Milkowska-Shibata M, Tseng KK, Sharland M, Gandra S, Pulcini C, et al.
21		Assessment of WHO antibiotic consumption and access targets in 76 countries 2000
22 23		Assessment of who antibiotic consumption and access targets in 70 countries, 2000-
24		15: an analysis of pharmaceutical sales data. Lancet Infect Dis. 2020;21(1):107-115.
25		
26 27	5.	Arnolda G, Hibbert P, Ting HP, Molloy C, Wiles L, Warwick M, et al. Assessing the
28		appropriateness of pageiatric antibiotic overuse in Australian children: a population
29 30		appropriateness of paediatric antibiotic overuse in Australian enhuren, a population-
31		based sample survey. BMC Pediatr. 2020;20(1):185.
32	<i>c</i>	
33 34	6.	Pouwels KB, Dolk FCK, Smith DRM, Robotham JV, Smieszek T. Actual versus
35		'ideal' antibiotic prescribing for common conditions in English primary care. J
36 37		name annotone presentening for common containent in English printary care o
38		Antimicrob Chemother. 2018;73(suppl_2):19-26.
39 40	7	Har AD Antiliation manufiliar in minure and DML 2010-2(4.1790
40	1.	Hay AD. Anubiouc prescribing in primary care. BMJ. 2019,364:1/80.
42	8.	Leis JA, Born KB, Theriault G, Ostrow O, Grill A, Johnston KB. Using antibiotics
43 44		
45		wisely for respiratory tract infection in the era of covid-19. BMJ. 2020;371:m4125.
46 47	0	Lomionaro M. van Driel M. Moronatoin D. Liira H. Makala M. Do Suttor A
47 48	9.	Lennengre M, van Dhei M, Merenstenn D, Lina H, Makeia M, De Sutter A.
49		Antibiotics for sinus infection of short duration in adults. Cochrane Database of
50 51		
52		Systematic Reviews. 2018(9).
53	10	Vächling A. Löffler C. Deinsch S. Hernung A. Döhmer F. Altiner A. et al. Deduction
54 55	10.	Kochning A, Lother C, Keinsch S, Hornung A, Bonnier F, Alther A, et al. Reduction
56		of antibiotic prescriptions for acute respiratory tract infections in primary care: a
57 58		
59		systematic review. Implement Sci. 2018;13(1):47.
60		

27

Page 29 of 54

1

2		
3 4	11.	Tonkin-Crine S, Tan P, van Hecke O, Wang K, Roberts N, McCullough A, et al.
5		Clinician-targeted interventions to influence antibiotic prescribing behaviour for acute
7 8		respiratory infections in primary care: an overview of systematic reviews. Cochrane
9 10		Database Syst Rev. 2017;9(9):CD012252.
11 12 13	12.	Vodicka TA, Thompson M, Lucas P, Heneghan C, Blair PS, Buckley DI, et al.
14 15		Reducing antibiotic prescribing for children with respiratory tract infections in
16 17		primary care: a systematic review. Br J Gen Pract. 2013;63(612):e445-54.
18 19	13.	Michie S, van Stralen MM, West R. The behaviour change wheel: a new method for
20 21 22		characterising and designing behaviour change interventions. Implement Sci
22 23 24		2011:6:42
25		
27	14.	Osman M, McLachlan S, Fenton N, Neil M, Lofstedt R, Meder B. Learning from
28 29		behavioural changes that fail. Trends in Cognitive Sciences. 2020;24(12):969-980.
30 31 22	15.	Ivers N, Jamtvedt G, Flottorp S, Young JM, Odgaard-Jensen J, French SD, et al.
32 33 34		Audit and feedback: effects on professional practice and healthcare outcomes.
35 36		Cochrane Database of Systematic Reviews. 2012(6).
37 38	16.	Ivers NM, Sales A, Colquhoun H, Michie S, Foy R, Francis JJ, et al. No more
39 40		'business as usual' with audit and feedback interventions: towards an agenda for a
41 42 42		reinvigorated intervention. Implement Sci. 2014;9:14.
43 44 45	17.	Hummel D, Maedche A. How effective is nudging? A quantitative review on the
46 47		effect sizes and limits of empirical nudging studies. J Behav Exp Econ. 2019;80:47-
48 49		58.
50 51	19	Adam A. Jonson I. What is the affactiveness of abasity related interventions at retail
52 53	10.	Adam A, Jensen J. what is the effectiveness of obesity related interventions at relation
54 55		grocery stores and supermarkets? a systematic review. BMC Public Health.
56 57		2016;16(1):1247.
58		
60		

28

19.	Bucher T, Collins C, Rollo ME, McCaffrey TA, De Vlieger N, Van der Bend D, et al.
	Nudging consumers towards healthier choices: a systematic review of positional
	influences on food choice. Br J Nutr. 2016;115(12):2252-2263.
20.	Yoong SL, Hall A, Stacey F, Grady A, Sutherland R, Wyse R, et al. Nudge strategies
	to improve healthcare providers' implementation of evidence-based guidelines,
	policies and practices: a systematic review of trials included within Cochrane
	systematic reviews. Implement Sci. 2020;15(1):50.
21.	Moher D, Liberati A, Tetzlaff J, Altman D. Preferred Reporting Items for Systematic
	Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med.
	2009;6(7):e1000097.
22.	Thaler R, Sunstein C, Nudge: Improving decisions about health, wealth, and
	happiness. 2009, US: Penguin Putnam Inc.
23.	Münscher R, Vetter M, Scheuerle T. A Review and Taxonomy of Choice Architecture
	Techniques. J Behav Decis Mak. 2016;29(5):511-524.
24.	Cochrane Effective Practice and Organisation of Care. EPOC resources for review
	authors: Suggested risk of bias criteria for EPOC reviews. 2017. Available from:
	https://epoc.cochrane.org/sites/epoc.cochrane.org/files/public/uploads/Resources-for-
	authors2017/suggested_risk_of_bias_criteria_for_epoc_reviews.pdf
25.	Raban MZ, Gasparini C, Li L, Baysari MT, Westbrook JI. Effectiveness of
	interventions targeting antibiotic use in long-term aged care facilities: a systematic
	review and meta-analysis. BMJ Open. 2020;10(1):e028494.
26.	Higgins J, Thomas J, Chandler J, Cumpston M, Li T, Page M, et al., Cochrane
	Handbook for Systematic Reviews of Interventions version 6.2 (updated February
	2021). 2021, Cochrane.

Page 31 of 54

BMJ Open

27.	Ogilvie D, Fayter D, Petticrew M, Sowden A, Thomas S, Whitehead M, et al. The
	harvest plot: a method for synthesising evidence about the differential effects of
	interventions. BMC Med Res Methodol. 2008;8:8.
28.	Awad A, Eltayeb I, Baraka O. Changing antibiotics prescribing practices in health
	centers of Khartoum State, Sudan. Eur J Clin Pharmacol. 2006;62(2):135-42.
29.	Behavioural Economics Team of the Australian Goverment (BETA). Nudge vs
	Superbugs: A behavioural economics trial to reduce the overprescribing of antibiotics.
	Canberra: Department of the Prime Minister and Cabinet. 2018. Available from:
	https://www.health.gov.au/resources/publications/nudge-vs-superbugs
30.	Bradley D, Allen S, Quinn H, Bradley B, Dolan M. Social norm feedback reduces
	primary care antibiotic prescribing in a regression discontinuity study. J Antimicrob
	Chemother. 2019;74:2797–2802.
31.	Gerber J, Prasad P, Ficks A, Localio A, Grundemeier R, Bell L, et al. Effect of an
	outpatient antimicrobial stewardship intervention on broad-spectrum antibiotic
	prescribing by primary care pediatricians. JAMA. 2013;309.
32.	Hallsworth M, Chadborn T, Sallis A, Sanders M, Berry D, Greaves F, et al. Provision
	of social norm feedback to high prescribers of antibiotics in general practice: a
	pragmatic national randomised controlled trial. Lancet. 2016;387(10029):1743-52.
33.	Hemkens L, Saccilotto R, Reyes S, Glinz D, Zumbrunn T, Grolimund O, et al.
	Personalized prescription feedback using routinely collected data to reduce antibiotic
	use in primary care. JAMA. 2017;177(2):176-183.
34.	Hurlimann D, Limacher A, Schabel M, Zanetti G, Berger C, Muhlemann K, et al.
	Improvement of antibiotic prescription in outpatient care: a cluster-randomized
	intervention study using a sentinel surveillance network of physicians. J Antimicrob
	Chemother. 2015;70:602-608.

35.	Lagerløv P, Loeb M, Andrew M, Hjortdahl P. Improving doctors' prescribing
	behaviour through reflection on guidelines and prescription feedback: a randomised
	controlled study. Qual Health Care. 2000;9(159-165).
36.	Mainous A, Hueston WJ, Love M, Evans M, Finger R. An evaluation of statewide
	strategies to reduce antibiotic overuse Fam Med. 2000;32(1):22-9.
37.	Meeker D, Knight T, Friedberg M, Linder J, Goldstein N, Fox C, et al. Nudging
	guideline-concordant antibiotic prescribing: a randomized clinical trial. JAMA Intern
	Med. 2014;174(3):425-31.
38.	Meeker D, Linder J, Fox C, Friedberg M, Persell S, Goldstein N, et al. Effect of
	Behavioral Interventions on Inappropriate Antibiotic Prescribing Among Primary
	Care Practices: A Randomized Clinical Trial. JAMA. 2016;315(6):562-70.
39.	O'Connell D, Henry D, Tomlins R. Randomised controlled trial of effect of feedback
	on general practitioners' prescribing in Australia. BMJ. 1999;318.
40.	Persell S, Doctor J, Friedberg M, Meeker D, Friesema E, Cooper A, et al. Behavioral
	interventions to reduce inappropriate antibiotic prescribing: a randomized pilot trial.
	BMC Infect Dis. 2016;16:373.
41.	Ratajczak M, Gold N, Hailstone N, Chadborn T. The effectiveness of repeating a
	social norm feedback intervention to high prescribers of antibiotics in general
	practice: a national regression discontinuity design. J Antimicrob Chemother.
	2019;74:3603–3610.
42.	Søndergaard J, Andersen M, Støvring H, Kragstrup J. Mailed prescriber feedback in
	addition to a clinical guideline has no impact: a randomised, controlled trial. Scand J
	Prim Health Care. 2003;21:47-51.

59 60

1		
2 3 4	43.	Yang L, Liu C, Wang L, Yin X, Zhang X. Public reporting improves antibiotic
5 6		prescribing for upper respiratory tract infections in primary care: a matched-pair
7 8 0		cluster-randomized trial in China. Health Res Policy Syst. 2014;12(61).
9 10 11	44.	Curtis H, Bacon S, Croker R, Walker A, Perera R, Hallsworth M, et al. Evaluating the
12 13		impact of a very low-cost intervention to increase practices' engagement with data and
14 15 16		change prescribing behaviour: a randomized trial in English primary care. Fam Pract.
17 18		2021.
19 20	45.	Behavioural Economics Team of the Australian Goverment (BETA). Nudge vs
21 22 23		Superbugs: 12 months on. Canberra: Department of the Prime Minister and Cabinet.
24 25		2020. Available from: https://www.health.gov.au/resources/publications/nudge-vs-
26 27		superbugs-12-months-on
28 29 20	46.	Last BS, Buttenheim AM, Timon CE, Mitra N, Beidas RS. Systematic review of
30 31 32		clinician-directed nudges in healthcare contexts. BMJ Open. 2021;11(7):e048801.
33 34	47.	Schultz PW, Nolan JM, Cialdini RB, Goldstein NJ, Griskevicius V. The constructive,
35 36		destructive, and reconstructive power of social norms. Psychol Sci. 2007;18(5):429-
37 38 39		34.
40 41	48.	Sunstein C. Nudges that fail. Behavioural Public Policy. 2017;1(1):4-25.
42 43	49.	Braithwaite J, Glasziou P, Westbrook J. The three numbers you need to know about
44 45		healthcare: the 60-30-10 Challenge. BMC Med. 2020;18(1):102.
46 47 48		
49 50	FIGU	RE LEGENDS
51 52		
53 54	Figur *One	e 1: PRISMA flow chart of search and screening results study had two publications.
55 56		
5/		

Figure 2: Harvest plot of effects of nudge interventions targeting antibiotic prescribing in primary care on overall antibiotic prescribing. Each mark or column represents one nudge

intervention. Column height represents the risk of bias in the study: tallest columns are studies with low risk of bias; medium columns are moderate risk of bias; short columns are high risk of bias.

Figure 3: Harvest plot of effects of social norm feedback nudge interventions on overall antibiotic prescribing by intervention features. Each mark or column represents one nudge intervention. Column height represents the risk of bias of the study: tallest columns are studies with low risk of bias; medium columns are moderate risk of bias; short columns are high risk of bias.

to peet even only
TABLES

Table 2: Characteristics of studies evaluating nudge interventions to improve antibiotic prescribing in primary care

Author, Year	Country	Sample size	Infections targeted	Nudge intervention/s	Outcomes of interest	Overall risk of bias ^a
Awad, 2006	Sudan	20 practices	All	Social norm feedback	No. of consultations with AB;	High
					No. of consultations with an	
					inappropriate AB ^b	
BETA, 2018 & 2020	Australia	6608 physicians	All	Social norm feedback	No. of ABs per 1000 consultations	Moderate
Bradley, 2019	Northern Ireland	331 practices	All	Social norm feedback	No. of ABs per 1000 registered population	Moderate
Chang, 2020	China	163 physicians	All	Social norm feedback	No. of AB prescriptions per 100	Moderate
					prescriptions	
Curtis, 2021	England	1401 practices	All	Social norm feedback	% broad spectrum AB of all AB	Low
Gerber, 2013	USA	162 physicians	RTI	Social norm feedback	% broad spectrum ABs among children	High
					with AB prescription;	
					ABs for viral RTI	
Hallsworth,	England	1581 practices	All	Social norm feedback	No. of ABs per 1000 registered	Low
2016					population	
Hemkens, 2017	Switzerland	2900 physicians	All	Social norm feedback	Antibiotic DDD per 1000 consultations	Low
Hurlimann, 2016	Switzerland	136 practices	RTI; UTI	Social norm feedback	% AB prescriptions for upper RTIs; % penicillins for RTI;	Moderate
					% trimethoprim/sulfamethoxazole for UTI	
Kronman, 2020	US	57 physicians	RTI	Social norm feedback	% of RTI with AB prescribed	Low
Lagerlov, 2000	Norway	199 physicians	UTI	Social norm feedback	% inappropriate ABs for UTI	High
Mainous, 2000	USA	216 physicians	RTI	Social norm feedback	% inappropriate AB treatments	Low

2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

1

Weeker, 2014 USA 14		14 physicians	RTI	Public commitment	No. of ABs per 100 AB inappropriate RTIs	Moderate
Лееker, 2016 USA 244 р		244 physicians	RTI	Social norm feedback, accountable justification, suggested alternatives	No. of ABs per 100 AB inappropriate RTIs	Moderate
O'Connell, 1999	Australia 2440 physicians All Social norm feedback		Social norm feedback	No. of ABs per 100 consultations	Moderate	
Persell, 2016	USA	28 physicians	RTI	Social norm feedback, accountable justification, suggested alternatives	No. of ABs per 100 RTIs; No. of ABs per 100 AB inappropriate RTIs	High
Ratajczak, 2019	England	6995 practices	All	Social norm feedback	No. of ABs per 1000 registered population	Moderate
Sondergaard, 2003	Denmark	299 physicians	RTI	Social norm feedback	No. of ABs per 1000 registered population	Moderate
Yang, 2014	China	20 practices (54 physicians)	RTI	Public reporting	% of RTI consultations with AB; % of RTI consultations with >1 AB	Low

RTI is respiratory tract infections; UTI is urinary tract infections. AB is antibiotic. No. is number. DDD is defined daily doses.

^aRisk of bias assessed using the Cochrane Effective Practice and Organisation of Care group's tool for studies with a control group. Overall rating assigned 'low' when all criteria were 'low' risk; 'medium' when 1-2 criteria were scored 'unclear' or 'high' risk; and 'high' when >2 criteria were scored 'unclear' or 'high' risk.

^bInappropriate with respect to antibiotic, doses and/or duration.

 BMJ Open

Author, Year	Based on individual physician or practice data?	Frequency of feedback	Targeting high prescribers or all prescribers?	Prescribing compared to which peers?	Mode	Graphic display of prescribing?	Supporting information provided in intervention group	Effect on overall antibiotic prescribing
Awad, 2006	Practice	Twice, one month apart	All	Average of region	Letter	No	Recommendations for improvement; 2 personal visits	Reduction
BETA, 2018 & 2020	Physician	Once	Top 30% highest prescribers	Prescribing at a higher rate than e.g. 70% of physicians	Letter	Group 1: No Group 2: No Group 3: Yes	Group 1: education material Group 2: delayed prescribing Group 3: none	Reduction
Bradley, 2019	Practice	Once	Top 20% highest prescribing practices	Prescribing at higher rate than 80% of practices	Letter	No	None	Reduction
Chang, 2020	Physician	Every 10 days	All	Ranking within department	Electron ic	No	Precautions for antibiotics being used	Reduction
Curtis, 2021	Practice	Thrice, 5 weekly	Top 20% highest broad- spectrum prescribing	All other practices	Letter, fax & email	Yes	Group 1: none Group 2: contact for more details, cost savings data	No change
Gerber, 2013	Physician	Quarterly for 1 year	All	Mean of practice and region	Email	Yes	1 hour presentation	Reduction
Hallsworth, 2016	Practice	Once	Top 20% highest prescribing practices	Prescribing at higher rate than 80% of practices	Letter	No	Patient focused education material	Reduction
Hemkens, 2017	Physician	Quarterly for 2 years	Top 50% highest prescribers	Mean of all physicians	Letter	Yes	Link to guidelines	No change

Page 38	of 54
---------	-------

1
י ר
2
3
4
5
6
7
8
0
9
10
11
12
13
14
15
16
10
1/
18
19
20
21
22
22
23
24
25
26
27
28
29
30
21
21
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
40

Hurlimann, 2016	Practice	Twice yearly for 2 years	All	Mean of intervention group	Letter	No	Guidelines	No change
Kronman, 2020	Physician	Four times, over 11 months	All	Mean of 20% lowest prescribers	Unclear	Yes	Online tutorials and videos	Reduction
Lagerlov, 2000	Physician	Twice, one week apart	Alla	Mean of group	Meeting	Unclear	2 x educational meetings	Reduction
Mainous, 2000	Physician	Once	All	Percentile rank compared to peers	Letter	Unclear	Group 1: none Group 2: patient education	Reduction for group 2
Meeker, 2016	Physician	Monthly for 18 months	All	Mean of top 10% lowest prescribers	Email	No	Link to guidelines	Reduction
O'Connell, 1999	Physician	Twice, six months apart	All	Interquartile range (25 th - 75 th percentile)	Letter	Yes	Educational newsletter	No change
Persell, 2016	Physician	Monthly	All ^b	Mean of top 10% lowest prescribers	Email	No	Link to guidelines	Reduction
Ratajczak, 2019	Physician	Once	Top 20% highest prescribers	Prescribing at higher rate than 80%/90% of practices	Letter	No	Patient focused education material	Reduction
Sondergaa d, 2003	Physician	Once	All	Mean of region	Letter	Unclear	Guidelines	Reduction

^aAntibiotic prescribing rates for individual physicians were compared to that of 4-8 other physicians in their group based on geographical area. ^bThe prescribers with the lowest prescribing (bottom 10%) were notified they were 'Top performers'

BMJ Open

Figure 2: Harvest plot of effects of nudge interventions targeting antibiotic prescribing in primary care on overall antibiotic prescribing. Each mark or column represents one nudge intervention. Column height represents the risk of bias in the study: tallest columns are studies with low risk of bias; medium columns are moderate risk of bias; short columns are high risk of bias.

285x272mm (47 x 47 DPI)

Figure 3: Harvest plot of effects of social norm feedback nudge interventions on overall antibiotic prescribing by intervention features. Each mark or column represents one nudge intervention. Column height represents the risk of bias of the study: tallest columns are studies with low risk of bias; medium columns are moderate risk of bias; short columns are high risk of bias.

281x390mm (47 x 47 DPI)

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
Rationale	3	Describe the rationale for the review in the context of what is already known.	4-5
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5-6
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	n/a
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	7-8
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	7
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	7
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	8
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	8-9
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	8-9
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	10
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	8-9
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	10-11
5 6 7		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml Page 1 of 2	

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #			
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	n/a			
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.				
RESULTS						
3 Study selection 4	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	12			
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	12			
8 Risk of bias within studies 9 0	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	12 & Supp file 3			
2 Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Tables 3 & 4			
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	14-16			
6 Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	12 & Supp file 3			
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	17-18			
DISCUSSION						
3 Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	19			
5 Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	22			
8 Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	22-23			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	24			

BMJ Open

. From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2003) Rreferred/Rengitipe Internet feb Systematic Reviewed and Metan Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

BMJ Open

PRISMA 2009 Checklist

For more information, visit: www.prisma-statement.org.

ration, visi: Page 2 of

Raban et al. Nudge interventions to reduce unnecessary antibiotic prescribing in primary care: a systematic review

SEARCH STRATEGY

MEDLINE (via Ovid and PubMed)

Date searched: 23 April 2021

Search ID#	Search Terms
1	exp Ambulatory Care/
2	exp Community Medicine/
3	exp General Practice/
4	exp General Practitioners/
5	exp Primary Health Care/
6	exp Physicians, Family/
7	exp Physicians, Primary Care/
8	"general practice".ti,ab.
9	"general practitioner*".ti,ab.
10	"family physician*".ti,ab.
11	"family practice".ti,ab.
12	"primary care".ti,ab.
13	"primary health care".ti,ab.
14	"primary healthcare".ti,ab.
15	exp *anti-bacterial agents/tu or exp *anti-infective agents, urinary/tu
16	antibiot*.ti,ab.
17	anti-biot*.ti,ab.
18	anti-microb*.ti,ab.
19	antimicrob*.ti,ab.
20	anti-infective*.ti,ab.
21	antiinfective*.ti,ab.
22	anti-bacterial*.ti,ab.
23	antibacterial*.ti,ab.
24	randomized controlled trial.pt
25	controlled clinical trial.pt
26	pragmatic clinical trial.pt
27	multicenter study.pt
28	exp non-randomized controlled trials as topic/
29	exp controlled before-after studies/
30	(randomis* or randomiz* or randomly).ti,ab.
31	groups.ab.
32	(trial or multicenter or multi center or multicentre or multi centre).ti.
33	(intervention? or effect? or impact? or controlled or control group? or (before
	adj5 after) or (pre adj5 post) or ((pretest or pre test) and (posttest or post test))
	or quasiexperiment* or quasi experiment* or evaluat*).ti,ab.
35	or/1-14
36	or/15-23
37	or/24-34

Raban et al. Nudge interventions to reduce unnecessary antibiotic prescribing in primary care: a systematic review

38	35 and 36 and 37
39	limit 38 to yr="1997 -Current"
40	limit 39 to english language
41	limit 40 to journal article
42	limit 41 to humans

Embase (via Ovid)

Date searched: 23 April 2021

Search ID#	Search Terms
1	exp Ambulatory Care/
2	exp Community Medicine/
3	exp General Practice/
4	exp General Practitioners/
5	exp Primary Health Care/
6	exp Family Medicine/
7	exp Primary Medical Care/
8	"general practice".ti,ab.
9	"general practitioner*".ti,ab.
10	"family physician*".ti,ab.
11	"family practice".ti,ab.
12	"primary care".ti,ab.
13	"primary health care".ti,ab.
14	"primary healthcare".ti,ab.
15	exp *anti-infective agents/
16	exp *anti-infective therapy/ or exp *antimicrobial therapy/
17	exp *antibiotic agent/
18	antibiot*.ti,ab.
19	anti-biot*.ti,ab.
20	anti-microb*.ti,ab.
21	antimicrob*.ti,ab.
22	anti-infective*.ti,ab.
23	antiinfective*.ti,ab.
24	anti-bacterial*.ti,ab.
25	antibacterial*.ti,ab.
26	exp "controlled clinical trial (topic)"/
27	exp epidemiology/
28	(randomis* or randomiz* or randomly).ti,ab.
29	groups.ab.
30	(trial or multicenter or multi center or multicentre or multi centre).ti.
31	(intervention? or effect? or impact? or controlled or control group? or (before adj5 after) or (pre adj5 post) or ((pretest or pre test) and (posttest or post test)) or quasiexperiment* or quasi experiment* or evaluat*).ti,ab.
32	or/1-14

Raban et al. Nudge interventions to reduce unnecessary antibiotic prescribing in primary care: a systematic review

33	or/15-25
34	or/26-31
35	32 and 33 and 34
36	limit 35 to english language
37	limit 36 to human
38	limit 37 to yr="1997 -Current"
39	limit 38 to (conference abstract or "conference review" or editorial or erratum
	or letter or note or "review")
40	38 not 39
41	remove duplicates from 40
42	limit 41 to embase

Websites searched

Date searched: 23 April 2021

Organisation name	URL
Behavioural Economics Team of the	https://behaviouraleconomics.pmc.gov.au/
Australian Government	
Behavioural Insights Team	https://www.bi.team
Danish Nudging Network	https://www.danishnudgingnetwork.dk/
iNudgeyou	https://inudgeyou.com/en/
Nudge France	http://www.nudgefrance.org/
Nudge-it	https://www.nudge-it.eu/
Nudge Italia	http://www.nudgeitalia.it/
Norwegian Nudging Network	https://sites.google.com/view/norsknudgenet/home
Penn Medicine Nudge Unit	https://nudgeunit.upenn.edu
The European Nudging Network	http://tenudge.eu/
The Swedish Nudging Network	https://theswedishnudgingnetwork.com/
	24

Raban et al. Nudge interventions to reduce unnecessary antibiotic prescribing in primary care: a systematic review

SUPPLEMENTARY FILE 3

Table S3: Assessment of risk of bias* against each criterion for individual studies

Study	Random sequence generation	Allocation concealment	Baseline outcome measurements similar	Baseline characteristics similar	Incomplete outcome data	Blinding of outcome measurement assessment	Protections against contamination	Selective reporting	Other bias	TOTAL number of criteria with low risk of bias
Awad, 2006	✓	?	\checkmark	?	?	?	✓	Х	✓	4/9
BETA, 2018 & 2020	~	 ✓ 	✓	~	?	~	~	~	~	8/9
Bradley, 2019	Х	Х	✓	\checkmark	✓	✓	✓	\checkmark	√	7/9
Chang, 2020	\checkmark	Х	\checkmark	✓	✓	✓	✓	\checkmark	\checkmark	8/9
Curtis, 2021	\checkmark	✓	~	\checkmark	✓	✓	✓	✓	✓	9/9
Gerber, 2013	\checkmark	✓	\checkmark	✓	?	Х	?	✓	✓	6/9
Hallsworth, 2016	\checkmark	~	~	~	~	~	~	\checkmark	\checkmark	9/9
Hemkens, 2017	\checkmark	~	~	~	~	~	~	~	~	9/9
Hurlimann, 2016	\checkmark	~	\checkmark	~	~	х	~	~	~	8/9
Kronman, 2020	✓	~	✓	~	V	~	~	~	~	9/9
Lagerlov, 2000	\checkmark	✓	\checkmark	✓	X	?	✓	?	Х	6/9
Mainous, 2000	\checkmark	~	\checkmark	\checkmark	~	v	~	\checkmark	\checkmark	9/9
Meeker, 2014	✓	✓	✓	✓	 ✓ 	~	?	✓	✓	8/9
Meeker, 2016	\checkmark	\checkmark	?	?	\checkmark	\checkmark	\checkmark	\checkmark	Х	6/9
O'Connell, 1999	?	~	\checkmark	\checkmark	~	✓	V	~	~	8/9
Persell, 2016	\checkmark	✓	~	?	✓	✓	?	✓	Х	7/9
Ratajczak, 2019	х	х	\checkmark	\checkmark	~	~	V	\checkmark	\checkmark	7/9
Sondergaard, 2003	?	~	✓	~	~	~	~	~	~	8/9
Yang, 2014	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	9/9
Number of studies with high risk of bias	2	3	0	0	1	2	0	1	3	
Number of studies with unclear bias	2	1	1	3	3	2	3	1	0	
Number of studies with	15	15	15	16	15	15	16	17	16	

Page 49 of 54

BMJ Open

Raban et al. Nudge interventions to reduce unnecessary antibiotic prescribing in primary care: a systematic review

review									
low risk of									
hias									
	utali af lata	- f + h :		2/		uial, af hia			
	I DI UI DId						, • uen		
KISK OF DIAS ASS	essed usin	g the Coc	nrane Ette	ctive Prac	tice and C	organisatio	on of Care	group's t	001
ttps://epoc.co	chrane.or	g/sites/ep	oc.cochra	ne.org/file	es/public/	uploads/R	esources	-for-	
thors2017/su	ggested ri	sk of bia	s criteria	for epoc	reviews.	pdf)			
				•.		. ,			

BMJ Open

SUPPLEMENTARY FILE 4

Table S4: Effects of nudge interventions to improve antibiotic use in primary care

Study	Design	Interventions	Control	Outcome/s	Follow-up period	Reported statistics	95% Cl, p- value	Vote counting assessment
Decision info	Decision information – provide social reference point							
Awad, 2006	Cluster randomised trial	Social norm feedback	Usual care	No. of consultations with AB prescribed	3-months post	Mean difference: -2.8	(-1.1, -4.6), p=0.004	Reduction
				No. of consultations with an inappropriate AB ^a	3-months post	Mean difference: -1.9	(-0.1, -3.7), p=0.040	n/a
BETA, 2018 & 2020	Cluster randomised trial	Social norm feedback with graph	Usual care	No. of ABs per 1000 consultations	6 & 12months post	Mean difference (6-months): -13.6 (~12% reduction) (12- months): -9.3 (~9.4% reduction)	6-months: (-16.6, - 10.6), p<0.00001 12- months: (-12.3, - 6.2); p<0.001	Reduction
		Social norm feedback with education material	Usual care	No. of ABs per 1000 consultations	6 & 12- months post	Mean difference (6-months): -10.3 (~9.3% reduction) (12- months):	6-months: (-13.8, - 6.8), p<0.001 12- months: (-11, -5.6); p<0.001	n/a

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Raban et al. Nudge interventions to reduce unnecessary antibiotic prescribing in primary care: a systematic review

						-8.3 (~8.4% reduction)		
		Social norm				Mean difference (6-months): -11.8	6 months: (-14.7, - 8.9); p<0.001	
		feedback with delayed prescribing	Usual	No. ABs per 1000 consultation	6 & 12- months post	(~10.7% reduction) (12- months): -8.8 (~8.9% reduction)	12- months: (-11.6, - 6.0); p<0.001	n/a
Bradley, 2019	Regression discontinuity study	Social norm feedback	Usual care	No. of ABs per 1000 registered population	3-months post	Mean difference: -25.7	(-42.5, - 8.8), p=0.0028	Reduction
				en	12-months post	Mean difference: -58.7 (~5% reduction)	(-116.7, - 0.7), p=0.047	n/a
Chang, 2020	Cluster randomised crossover- controlled trial	Social norm feedback	Usual care	No. of AB prescriptions per total prescriptions	3-month intervention period	Relative reduction in intervention arm: 35.2%; in control arm: 30.8%	p<0.001	Reduction
					3-month intervention period (after crossover)	Relative reduction in intervention arm: 14.2%; in control arm: 4.6%	p<0.001	n/a

BMJ Open

Raban et al. Nudge interventions to reduce unnecessary antibiotic prescribing in primary care: a systematic review

Curtis, 2021	Randomised trial	Social norm feedback (standard)	Usual care	AB prescriptions per 1000 population	6-months post	No change	NS	No change
				Proportion of antibiotics which were broad spectrum	6-months post	2.1% reduction compared to controls	p=0.104	n/a
		Social norm feedback (optimised)	Usual care	AB prescriptions per 1000 population	6-months post	No change	NS	No change
			De	Proportion of antibiotics which were broad spectrum	6-months post	2.1% reduction compared to controls	P=0.046	n/a
Gerber, 2013	Cluster randomised trial	Social norm feedback	Usual care	ABs for viral RTI	12-month intervention period	DID: -1.7%	NR, p=0.93	Reduction
				Percent of broad spectrum ABs among children with AB prescription	12-month intervention period	DID: -6.7%	NR, p=0.01	n/a
Hallsworth, 2016	Randomised trial	Social norm feedback	Usual care	No. of ABs per 1000 registered population	6-months post	IRR: 0.967 ^b (~3.3% reduction)	(0.957, 0.977), p<0.0001	Reduction
Hemkens, 2017	Randomised trial	Social norm feedback	Usual care	DDD per 1000 consultations	First 1-year intervention period	Between group difference: 0.81%	(-2.56, 4.30), NR	No change
					Second 1- year intervention period	Between group difference: -1.73%	(-5.07, 1.72%), p=0.32	NO Change

Page 53 of 54

BMJ Open

Raban et al. Nudge interventions to reduce unnecessary antibiotic prescribing in primary care: a systematic review

Hurlimann, 2016	Cluster randomised trial	Social norm feedback	Usual care	Percentage of AB prescriptions for upper RTIs	24-month intervention period	Difference in proportion: -1.2	(-10.5, - 8.2), p=0.66	No change
				Percentage of penicillins for RTI	24-month intervention period	OR: 1.42	(1.08- 1.89), p=0.01	n/a
		7		Percentage of trimethoprim/sulfamethoxazole for UTI	24-month intervention period	OR: 2.16	(1.19- 3.91), p=0.01	n/a
Kronman, 2020	Stepped wedge cluster randomised trial	Social norm feeback	Usual care	Percentage of RTI with antibiotic prescription	12-months	OR: 0.93	(0.90, 0.96), NR	Reduction
Lagerlov, 2000	Randomised trial	Social norm feedback	Intervention for asthma care	Percentage of inappropriate ABs for UTI	12-months post	Relative decrease: -9.6%	NR, p=0.0004	Reduction
Mainous, 2000	Randomised trial	Social norm feedback	Usual care	Mean proportion of inappropriate AB treatments	5-months post	NR	Not significant	-
		Social norm feedback with patient education material	Usual care	Mean proportion of inappropriate AB treatments	5-months post	Dunnett's T: 2.374	NR, p<0.05	Reduction
Meeker, 2016	Cluster randomised trial	Social norm feedback	Usual care	No. of ABs per 100 AB inappropriate RTIs	18-month intervention period	DID: -5.2%	(-6.9, -1.6), p<0.01	Reduction
O'Connell, 1999	Randomised trial	Social norm feedback	Interventions for other medication use	No. of AB prescriptions per 100 consultations	4-months post	Median: no difference between intervention and controls	NR	No change

BMJ Open

Raban et al. Nudge interventions to reduce unnecessary antibiotic prescribing in primary care: a systematic review

Persell, 2016	Randomised trial	Social norm feedback	Usual care	No. of ABs per 100 RTIs	12-month intervention period	OR: 0.73	(0.53, 0.995), p<0.05	Reduction
				No. of ABs per 100 AB inappropriate RTIs	12-month intervention period	OR: 0.45	(0.18, 1.11), NR	n/a
Ratajczak, 2019	Regression discontinuity study	Social norm feedback	Usual care	No. of ABs per 1000 registered population	6-months post	Percent change in intervention group: -3.69%	(-5.10,- 2.29), p<0.001	Reduction
Sondergaad, 2003	Randomised trial	Social norm feedback	Guidelines	No. of ABs per 1000 registered patients	3-months post	Mean difference: -0.6	(-2.8, 1.6), NR	Reduction
				Percent of prescriptions for narrow-spectrum penicillins	3-months post	Mean difference: 0.7	(-0.41, 1.7), NR	n/a
Decision strue	cture – change o	option conseque	nces				•	
Meeker, 2016	Cluster randomised trial	Accountable justification	Usual care	No. of ABs per 100 AB inappropriate RTIs	18-month intervention period	DID: -7.0%	(-9.1, -2.9), p<0.001	Reduction
Persell, 2016	Randomised trial	Accountable justification	Usual care	No. of ABs per 100 RTIs	12-month intervention period	OR: 1.05	(0.80, 1.39), NR	No change
				No. of ABs per 100 AB inappropriate RTIs	12-month intervention period	OR: 0.98	(0.42 <i>,</i> 2.29), NR	n/a
Yang, 2014	Cluster randomised trial	Public reporting	Education	Percentage of RTI consultations with AB	5-8 months post	DID: -1.93	(-6.61, 2.75), p=0.419	Reduction
				Percentage of RTI consultations with >1 AB	5-8 months post	DID: -6.97	(-13.94, 0.00), p=0.049	n/a

Page 55 of 54

BMJ Open

Raban et al. Nudge interventions to reduce unnecessary antibiotic prescribing in primary care: a systematic review

Decision as	sistance – provide	e reminders						
Meeker, 2016	Cluster randomised trial	Suggested alternatives	Usual care	No. of ABs per 100 AB inappropriate RTIs	18-month intervention period	DID: -5.0%	(-7.8, 0.1%), p=0.66	Reduction
Persell, 2016	Randomised trial	Suggested alternatives	Usual care	No. of ABs per 100 RTIs	12-month intervention period	OR: 0.72	(0.54, 0.96), p<0.01	Reduction
		R		No. of ABs per 100 AB inappropriate RTIs	12-month intervention period	OR: 0.68	(0.29, 1.58), NR	n/a
Decision as	sistance – facilita	te commitment						
Meeker, 2014	Randomised trial	Public commitment	26	No. of ABs per 100 AB inappropriate RTIs	12-week intervention period	DID: -19.7%	(-5.8, - 33.04), p=0.02	Reduction

No. is 'number'. AB is 'antibiotic'. Cl is 'confidence interval'. IRR is 'incidence rate ratio'. DDD is 'defined daily doses'. OR is odds ratio. RTI is 'respiratory tract infection'. UTI is 'urinary tract infection'. DID is 'difference in differences analysis'. NR is not reported. NS is 'not significant'.

*The intervention promise was assessed based on all antibiotic outcomes reported in each study.

^aInappropriate with respect to antibiotic, doses and/or duration.

BMJ Open

BMJ Open

Nudge interventions to reduce unnecessary antibiotic prescribing in primary care: a systematic review

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-062688.R1
Article Type:	Original research
Date Submitted by the Author:	13-Aug-2022
Complete List of Authors:	Raban, Magdalena; Macquarie University Gonzalez, Gabriela; Macquarie University Nguyen, A; Macquarie University; St Vincent's Clinical School Newell, Ben; UNSW Li, Ling; Macquarie University Seaman, Karla ; Macquarie University Westbrook, Johanna; Macquarie University
Primary Subject Heading :	Health services research
Secondary Subject Heading:	Infectious diseases, Public health, General practice / Family practice
Keywords:	Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Public health < INFECTIOUS DISEASES, PRIMARY CARE, Respiratory infections < THORACIC MEDICINE, INFECTIOUS DISEASES

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Nudge interventions to reduce unnecessary antibiotic prescribing in primary care: a systematic review

Magdalena Z. Raban^{1*}, Gabriela Gonzalez¹, Amy D. Nguyen^{1, 2}, Ben R. Newell³, Ling Li¹,

Karla Seaman¹, Johanna I Westbrook¹

¹Centre for Health Systems and Safety Research, Australian Institute of Health Innovation, Macquarie University, Sydney, Australia.

²St Vincent's Clinical School, UNSW Medicine, UNSW Sydney, NSW, Australia

³School of Psychology, UNSW, Sydney, Australia.

*Corresponding author:

Dr Magdalena Raban, Senior Research Fellow Centre for Health Systems and Safety Research, Australian Institute of Health Innovation, Macquarie University, Sydney, Australia. magda.raban@mq.edu.au

ABSTRACT

Objectives

Antibiotic prescribing in primary care contributes significantly to antibiotic overuse. Nudge interventions alter the decision-making environment to achieve behaviour change without restricting options. Our objectives were to conduct a systematic review to describe the types of nudge interventions used to reduce unnecessary antibiotic prescribing in primary care, their key features, and their effects on antibiotic prescribing overall.

Methods

Medline, Embase and grey literature were searched for randomised trials or regression discontinuity studies in April 2021. Risk of bias was assessed independently by two researchers using the Cochrane Effective Practice and Organisation of Care group's tool. Results were synthesised to report the percentage of studies demonstrating a reduction in overall antibiotic prescribing for different types of nudges. Effects of social norm nudges were examined for features that may enhance effectiveness.

Results

Nineteen studies were included, testing 23 nudge interventions. Four studies were rated as having a high risk of bias, nine as moderate risk of bias, and six as at low risk. Overall, 78.3% (n=23, 95% CI: 58.1, 90.3) of the nudges evaluated resulted in a reduction in overall antibiotic prescribing. Social norm feedback was the most frequently applied nudge (n=17), with 76.5% (n=13; 95% CI: 52.7, 90.4) of these studies reporting a reduction. Other nudges applied were changing option consequences (n=3; with 2 reporting a reduction), providing

reminders (n=2; 1 reporting a reduction), and facilitating commitment (n=1; reporting a reduction). Successful social norm nudges typically either included an injunctive norm, compared prescribing to physicians with the lowest prescribers or targeted high prescribers.

Conclusions

Nudge interventions are effective for improving antibiotic prescribing in primary care. Expanding the use of nudge interventions beyond social norm nudges could reap further improvements in antibiotic prescribing practices. Policy-makers and managers need to be mindful how social norm nudges are implemented to enhance intervention effects.

STRENGTHS AND LIMITATIONS

- This study employed a broad search strategy and the assessment of whether an intervention was a nudge was conducted at the full-text stage.
- Implementation features of social norm nudges were extracted from the studies.
- We were not able to synthesise results with meta-analysis due to the differences in outcome measures reported.

KEYWORDS

Antimicrobial Stewardship; Primary Health Care; General Practice; Clinical Decision-Making; Quality of Health Care; Economics, Behavioural; Psychology; Systematic Review;

INTRODUCTION

Antimicrobial resistance is one of the most pressing challenges to global health [1]. Overuse and inappropriate use of antibiotics is a major contributor to the rise of antimicrobial resistance, and yet, between 2000 and 2010 global antibiotic consumption rose by 35% [2]. Concerningly, global per-capita consumption of antibiotics flagged by the World Health Organization (WHO) as having high resistance potential (Watch category) [3] rose by 90.9% between 2000 and 2015 [4]. Primary care accounts for the majority of antibiotic use, and rates of inappropriate use are estimated to be high [5-7]. For example, the majority of upper respiratory tract infections do not benefit from antibiotic treatment, particularly when weighed against the rates of adverse effects, however, antibiotics continue to be prescribed [5, 8, 9].

Efforts to reduce antibiotic prescribing in primary care have predominantly focused on the use of point-of-care testing, shared decision-making, and education strategies aimed at physicians and patients [10-12]. While some of these intervention strategies have been successful in improving antibiotic prescribing, they can be resource intensive, and in some cases only provide marginal reductions in antibiotic prescribing [10-12]. Furthermore, these intervention strategies rarely take account of how cues in the environment, unrelated to clinician knowledge or access to resources such as information or tests, can influence decision-making.

The field of behavioural economics has generated a collection of approaches, called 'nudges', that involve subtle changes in the decision-making environment, or choice architecture, to guide people towards a specific decision or behaviour. Nudge interventions are typically simple and low-cost interventions, and thus are attractive to healthcare managers and policy

BMJ Open

 makers. Furthermore, they do not restrict choices or penalise 'unfavourable' choices, thus preserving an individual's autonomy in the decision-making process. Examples of nudge interventions include changing default settings, changing option consequences, and providing reminders during the decision-making process.

Nudge interventions have similarities to traditional behaviour change techniques applied in health services and public health.[13, 14] For example, audit and feedback has long been applied in health service interventions and has similarities to social norm feedback nudges. However, audit and feedback may not necessarily include a comparison to the performance of peers, the essential component that would make it a nudge.[15, 16] Furthermore, social norm feedback nudges tend to target 'underperformers', as evidence from psychology has demonstrated a 'boomerang' effect; i.e. that high performers drop their performance toward the group mean (beyond that expected due to regression toward the mean).[17] However, audit and feedback interventions used in health services may not take performance into account when deciding on who should receive feedback. Thus, there can be nuanced differences in the techniques from each of these paradigms.

Nudge interventions have been successfully implemented in fields other than health [18], and the evidence base for their use in influencing consumers' health-related behaviours is growing [19, 20]. However, while the use of nudge interventions in specific areas of health services and to influence clinical decision making is increasing,[18, 21] there is emerging evidence that the effect of nudges can vary depending on the context in which they are applied, as well as the type of nudge implemented [22, 23]. Against this background, our aim was to explore the use of nudge interventions and their effectiveness to improve antibiotic prescribing in primary care, and to draw out lessons to inform future directions for nudge

intervention design and testing in healthcare. Our specific objectives were to describe the types of nudge interventions trialled to date, their key features, and their effects on the rates of antibiotic prescribing overall, in order to elucidate "what kind of nudges work best in this ... setting?"[22].

METHODS

This systematic review is reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (Supplementary file 1) [24].

Information sources and search strategy

The databases MEDLINE (via Ovid and PubMed) and Embase were searched for original research articles reporting on randomised trials or regression discontinuity studies of interventions to improve antibiotic prescribing in primary care, published in English in the last 20 years. Though the behavioural economics term 'nudge' was proposed in 2008, many of the interventions now termed 'nudges' have been applied to influence behaviour prior to the emergence of this term. Therefore, we did not exclude articles published before 2008 if the interventions met the criteria for a nudge intervention, and our search strategy did not include 'nudges' as a theme. Instead, our search strategy covered three themes: antibiotics AND primary care AND intervention study designs. The reference lists of included studies

were hand searched for relevant citations. Websites of government nudge units and other organisations working to apply and test nudge theory were also searched for grey literature of relevance. Searches were carried out in April 2021. The full search strategy is presented in Supplementary file 2.

Eligibility criteria

Studies conducted in primary care facilities, general and family practices were included. Studies in hospital wards or in long-term care were excluded. The intervention tested had to fall under the broad definition of a nudge proposed by Thaler and Sunstein: "*A nudge… is any aspect of the choice architecture that alters people's behaviour in a predictable way without forbidding any options or significantly changing their economic incentives. To count as a mere nudge, the intervention must be easy and cheap to avoid*" [25]. For further guidance on whether the intervention used qualified as a nudge, we used a taxonomy of choice architecture techniques which focuses on interventions rather than the underlying cognitive processes of the interventions [26]. Interventions involving education, providing physicians with access to guidelines, passive decision support tools the clinician had to actively decide to use, and audit and feedback interventions with no social norm comparison

BMJ Open

were excluded. Studies evaluating multifaceted interventions that included a nudge strategy were also excluded as they did not allow evaluation of the impact of the nudge intervention alone. Studies had to evaluate the impact of the intervention on antibiotic prescribing rates or rates of appropriate antibiotic prescribing to be eligible. Randomised controlled trials and regression discontinuity studies were included. Regression discontinuity studies allow assessment of causality in studies where a cut-off point is used to allocate an intervention. This is of particular relevance to social norm nudges, where, e.g. the bottom 10% performers are targeted by an intervention. Studies have shown that regression discontinuity studies have similar effect estimates to randomised trials, though they require a large sample size.[27, 28] Interrupted time-series, controlled before-after, cross-sectional, and before-after studies were excluded as they are at higher risk of bias.

Study selection

Titles and abstracts of citations returned from the searches were independently reviewed by at least two reviewers. At this stage, the reviewers assessed study setting, study design and outcomes for eligibility. The full-text of all selected citations were then reviewed independently by two of three authors against all eligibility criteria, including an assessment

of whether the intervention qualified as a nudge using the definitions outlined above.

Discrepancies between reviewers were resolved through discussions until consensus was reached.

Data collection and data items

Data extraction and categorisation of interventions was carried out independently by two reviewers for each study. We extracted data on study characteristics (country, study years, sample size), nudge intervention description, types of infections targeted (e.g. all, respiratory tract infections [RTIs], urinary tract infections [UTIs]), outcomes, and study results. When studies reported more than one outcome, we extracted results for the outcome measuring changes in overall antibiotic use, appropriate antibiotic use, and any outcome defined as the primary outcome of the study. When a study trialled more than one nudge intervention, we extracted intervention data on the impact of each nudge individually.

Nudge interventions were classified using a taxonomy of choice architecture techniques

(Table 1) [26], and we refer to these as nudge intervention categories.

2
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
18
19
20
20
∠ I วว
22
23
24
25
26
27
28
29
30
21
21
32
33
34
35
36
37
38
39
40
<u>Δ</u> 1
יד ⊿ר
42
43
44
45
46
47
48
49
50
51
52
52 52
55
54
55
56
57
58
59
60

Category	Technique	Technique examples
A. Decision	A1. Translate information	Reframe information
information		Simplify information
	A2. Make information visible	Provide real-time feedback
		Make external information visible
	A3. Provide social reference	Refer to descriptive norm (social
	point	norm feedback)
		Refer to opinion leader
B. Decision	B1. Change choice defaults	Set no-action default
structure		Use prompted choice
	B2. Change option-related	Increase/decrease physical effort
	effort	 Increase/decrease financial effort
	B3. Change range or	Change categories of options
	composition of options	 Change grouping of options
	B4. Change option	 Connect decision to benefit or cost
	consequences	Change social consequences
C. Decision	C1. Provide reminders	Make information more or less
assistance		salient
	C2. Facilitate commitment	Support self-commitment/public commitment

Table 1: Taxonomy of choice architecture techniques with implementation examples[26]

Social norm feedback nudge interventions are a frequent behaviour change technique in healthcare, often termed audit and feedback. Social norm feedback involves providing people with feedback on their performance relative to their peers. However, this can be implemented in a variety of way. For example, the comparison can be descriptive or injunctive, i.e. associating a judgement to the performance. Psychology and health research has shown that certain features may enhance social norm feedback interventions, [15-17, 29] and thus, we

extracted details of how social norm nudges were implemented (Box 1), with the aim that this

may further elucidate the important features of effective social norm nudges to reduce

antibiotic prescribing in primary care.

Box 1: Social norm feedback nudge features extracted from studies

- Target of intervention: high antibiotic prescribers or all physicians
- The comparison group (average of group, top performers or rank within peers)
- Use of injunctive or descriptive norm
- Frequency of feedback
- For studies with more than one round of feedback: whether the norm for comparison was static or dynamic (i.e. did it change as the outcome change?)
- Use of a static norm or dynamic norm (i.e. one that changes with group performance)
- Whether feedback was based on prescribing data for practices or individual physicians
- Whether the reported performance was relative or absolute
- Was the antibiotic use reported on for all antibiotics or for diagnoses where antibiotic use is inappropriate
- The mode of intervention delivery (e.g. letter, email, meeting)
- Whether a graphic representation of data was included
- Whether supporting information was provided to aid behaviour change

Assessment of risk of bias in included studies

BMJ Open

The risk of bias of each study was assessed using the Cochrane Effective Practice and

Organisation of Care group's tool for studies with a separate control group [30]. Each study was independently assessed by two authors against each of the nine criteria assigning a score of either low risk, high risk, or unclear risk of bias. Discrepancies were resolved through discussion. A summary assessment of the overall risk of bias was allocated to each study as follows: low risk of bias when all criteria were scored 'low', medium risk of bias when one or two criteria were scored 'unclear' or 'high' risk, and high risk when more than two criteria tel. scored 'unclear' or 'high' [31].

Synthesis of results

Inconsistencies in the outcomes and data reported in the studies precluded meta-analysis. Thus, we applied vote counting to summarise results for each category of nudge intervention and for features of social norm feedback nudges [32]. Vote counting allows a comparison of the number of effects reporting a benefit to the number that showed no benefit. It is the recommended method by Cochrane for summarising studies when meta-analysis or other quantitative methods are not able to be applied [32]. For each nudge intervention, we recorded whether the study demonstrated a reduction or no change in overall antibiotic

prescribing compared to controls. As per the Cochrane Handbook, the statistical significance of the effect was not taken into account, so as not to erroneously conclude that underpowered studies had no effect. For studies with multiple study outcomes, we only considered the effect on overall antibiotic prescribing. The percentage of interventions with a reduction in overall antibiotic prescribing was calculated for all nudge interventions and social norm feedback nudges. Sensitivity analyses were conducted removing studies with a high risk of bias. Confidence intervals for proportions were calculated using the Wilson method. Effect sizes from studies were summarised narratively by reporting the range of change for overall antibiotic prescribing outcomes.

We used harvest plots to graphically summarise the vote counting results [33]. In a harvest plot, each mark represents a study or intervention. We used the position of the mark to indicate whether the intervention effect (reduction or no change in overall antibiotic prescribing) and the size of the mark to indicate the risk of bias of the study (low risk studies having a larger mark). Harvest plots were created for all nudge interventions by nudge category, and for social norm nudges by whether the intervention targeted high antibiotic prescribers or all prescribers, whether the comparison group was the average or above
BMJ Open

average performers, and whether the feedback was a descriptive or injunctive norm. These features were chosen as there is evidence from the psychology literature that they play an important role in intervention effects and avoid possible negative impacts, such as the boomerang effect. Thus, the stratification of the social norm nudge interventions by these features aimed to examine if there was evidence these features were important for intervention effects in the context of antibiotic prescribing in primary care. Lastly, results from studies that directly compared different nudge interventions, social norm nudge implementation strategies, or examined intervention effects over time or on different subd. groups, were described narratively.

Public and patient involvement

Patients or the public were not involved.

RESULTS

Nineteen studies were assessed as eligible for inclusion (Figure 1) [34-49]. Table 2 presents study characteristics. One study was a pilot study [46] of a larger trial [44], but was included as a separate study as it was conducted in a different population. The majority of studies were

conducted in Europe (n=8) [36, 38-41, 47, 48], six in the United States [37, 42-44, 46], two in Australia [35, 45], two in China [49], and one in Sudan [34]. Seventeen studies were randomised controlled trials and two were regression discontinuity studies [36, 47]. Interventions were aimed at improving antibiotic use for all types of infections in nine studies [34-36, 38, 39, 45, 47], RTIs in eight studies [37, 42-44, 46, 48, 49], UTIs in one study [41], and both RTIs and UTIs in one study [40]. Risk of bias in included studies

Four studies were rated as having a high overall risk of bias [34, 37, 41, 46], nine as moderate risk of bias [35, 36, 40, 43-45, 47, 48], and six as at low risk of bias (Table 2) [38, 39, 42, 49]. Overall scores of meeting risk of bias criteria ranged from 4/9 to 9/9 across studies. No

single criterion was more frequently at high or unclear risk of bias across studies.

Supplementary file 3 shows the risk of bias assessment against each of the criteria for each

study.

Description of nudge interventions

BMJ Open

Seventeen studies evaluated one type of nudge intervention and two evaluated three types of nudge interventions each [43, 44], with a total of 23 nudge interventions evaluated. Three studies compared different features of social norm nudges[35, 42].

Social norm feedback nudges ('Decision information' category of nudge interventions) were the most common intervention (n=17) evaluated [34-42, 44-48]. Implementation of social norm feedback varied between studies (Figure 2). Social norm feedback was most commonly: sent to all prescribers (n=11) [34, 37, 40-42, 45, 46, 48] as opposed to the highest prescribers only [35, 36, 38, 39, 47, 50, 51]; and compared prescribing to the group average (n=12) [34-36, 38, 40, 41, 45, 47, 48, 50]. Only four studies used an injunctive norm, which also provided a positive reinforcement to those performing well.[41, 44, 46, 52] Feedback was typically provided more than once (n=11) [34, 37, 39-41, 44-46]; based on prescribing data for individual physicians (n=12) [35, 37, 39, 41, 42, 44-48]; and distributed via letters (n=11) [34-36, 38-40, 42, 45, 47, 48]. Studies also cited application of other behavioural techniques or considerations in the design of their social norm feedback, such as the inclusion of actionable advice, and addressing the feedback letter from a high profile or respected individuals.

Three interventions used nudge techniques from the 'Decision structure' category involving

changing option consequences (Table 3) [44, 46, 49]. Three interventions used techniques

from the 'Decision assistance' category (Table 3) involving providing reminders via

suggested alternatives to antibiotic use (n=2) [44, 46] and a statement of public commitment

to reducing antibiotic use in RTIs (n=1) [43].

Table 3: Description of nudge and direction of effect on overall antibiotic prescribing in primary care (other than social norm feedback)

Nudge category/ Author, year	Type of nudge	Mode	Description	Intervention effect*
Decision st	ructure – chang	e option con	sequences	
Meeker, 2016	Accountable justification	Electronic health record	At time of prescribing an antibiotic, physicians were asked to justify their treatment decision in a mandatory free text field. The prompt informed physicians the justification would be visible in the patient's record.	Reduction
Persell, 2016	Accountable justification	Electronic health record	At time of prescribing an antibiotic, physicians were asked to justify their treatment decision in a mandatory free text field. The prompt informed physicians the justification would be visible in the patient's record.	No change
Yang, 2014	Public reporting	Posters and reports	Posters with antibiotic prescribing data were publicly displayed in the primary care clinics and reports with the data were sent to clinic managers and local health authorities.	Reduction
Decision as	sistance – prov	ide reminder	s	
Meeker, 2016	Suggested alternatives	Electronic health record	At time of prescribing an antibiotic, a pop-up screen stated antibiotics are generally not indicated for the diagnosis and showed a list of alternative treatments.	Reduction
Persell, 2016	Suggested alternatives	Electronic health record	At time of prescribing an antibiotic, a computerised order set appeared with treatment alternatives and education materials for the patient.	Reduction

Decision a	ssistance – facili		A postor sized letter size of humburisisme unit	
Meeker,	Public	Poster	A poster-sized letter signed by physicians and	De l. ··
2014	commitment		posted in examination rooms indicating	Reductio
			commitment to reducing antibiotics for RTIs.	
Effect of n			roll ontibiotic procoribing rotos	
			ran antibiotic presenting rates	
Of the 23 n	udge interventi	ons evalua	nted, 78.3% (n=17, 95% CI: 58.1, 90.3) showed	a
reduction in	n overall antibio	otic prescri	ibing rates. Removing studies with a high risk o	of bias,
		1		,
the percent	age of studies s	howing a 1	reduction in overall antibiotic prescribing was 7	6.5%
(n=12, 95%	6 CI: 52.7, 90.4). Figure 3	shows the distribution of intervention effects b	y the type
of nudge st	rategy evaluate	d.		
Of the seve	enteen studies e	valuating s	social norm feedback nudges, 76.5% (n=13, 959	% CI:
52.7, 90.4)	reported a redu	ction in ov	verall antibiotic prescribing (Figure 3). Removin	ng studies
with a high	risk of bias, th	is percenta	nge was 69.2% (n=9, 95% CI: 42.4, 87.3). Figur	e 4 shows
social norn	n nudges stratifi	ed by whe	ther they targeted only high prescribers or all	
prescribers	, the compariso	n group an	nd the use of an injunctive or descriptive norm.	All but
two (83%)	studies targetin	g high nre	scribers or using an injunctive norm or a compa	arison to

low prescribers reported a reduction in overall prescribing. Whereas 60% of studies without these features reported a reduction in antibiotic prescribing.

Effect size of nudge interventions on antibiotic prescribing rates

The effect sizes of social norm feedback interventions on the number of antibiotics/1000 consultations (n=3) ranged from no change [45] to a reduction of 13.6% (95% CI: 16.6, 10.6) at 6-months post-intervention [35]; and the number of antibiotic prescriptions/1000 registered population (n=5) from no change [51] to an approximate 5% reduction (-58.7/1000 population [95% CI: 116.7, 0.7]) 12-months post intervention [36].

Studies measuring antibiotic prescribing for specific infection types reported absolute difference effect sizes of -1.2% (95% CI: -10.5, 8.2) [40], -1.7% (p=0.93) [37], and -5.2% (95% CI: -6.9, -1.6) [44] in the proportion of upper RTI treated with an antibiotic; a relative decrease of 9.6% (p=0.0004) [41] in inappropriate antibiotic for UTIs, and lower odds of antibiotic prescribing for RTI (OR: 0.73 (95% CI: 0.53, 0.995)) [46].

The effect sizes of the two studies of accountable justification interventions ranged from no change [46] to a reduction of 7.0 percentage points (95% CI: 9.1, 2.9) [44] in the number of

BMJ Open

1.93 percentage point reduction (95% CI: -6.61, 2.75) in the percentage of RTI consultations with an antibiotic, and a 6.97 percentage point (95% CI: -13.9, 0.00) reduction in the percentage of RTI consultations with >1 antibiotic.

antibiotics/100 antibiotic inappropriate infections. One study of public reporting showed a

Supplementary file 4 provides details of the effects of interventions on outcomes.

Studies comparing the effects of different nudge interventions

Two studies compared the impact of three different types of nudge interventions on antibiotic prescribing for RTIs [44, 46]. One study (with a moderate risk of bias) examined the impact of nudges on RTI where an antibiotic was not indicated, i.e. antibiotic inappropriate RTIs [44]. This study reported a reduction in the prescribing of antibiotics for antibiotic inappropriate RTIs in the physician groups receiving social norm feedback and accountable justification nudges, and a non-significant reduction in the physician group receiving a suggested alternatives nudge intervention [44]. The second study (high risk of bias) compared the same three nudge interventions, and reported a reduction in antibiotic prescribing for all

RTIs for the social norm feedback and suggested alternative nudges, but not in the groups

receiving the accountable justification nudges [46].

Supplementary file 4 provides details of the impact of interventions on outcomes and their

vote counting results.

Social norm nudge effects over time and following repeat messaging

Two studies examined the effect of a single social norm nudge letter sent to high antibiotic prescribing physicians over time and both reported a diminishing effect on prescribing rates compared to controls over time [35, 36]. In one study, the effect of the intervention was examined over 12-months after the letter was sent [36]. While there was a significant reduction in antibiotic prescribing compared to controls in the 12 months after the intervention, the effect diminished over time, such that the reductions in antibiotic prescribing rates in the second, third and fourth quarters after the intervention were not statistically significant. The second study also reported a diminishing effect of the social norm nudge letter over a 12-month period, but the reduction continued to remain significant at 12-months after the intervention [35, 50].

BMJ Open

Two studies examined the impact of repeat social norm feedback interventions over time [39, 47]. In the first study, the effect of quarterly social norm feedback sent to the top 50% of antibiotic prescribers was assessed for 2 years [39]. While there was no difference in overall antibiotic prescribing rates in the first and second years of the intervention, there was a significant reduction in the antibiotic prescribing for children and adolescents in the first year (-8.6%) and young to middle-aged adults in the second year of the intervention (-4.6%). In the second study, a social norm nudge was first used in 2014 targeting the top 20% antibiotic prescribers, and due to its success was repeated annually since [47]. The study evaluated whether the intervention reduced antibiotic prescribing by physicians who had previously received the letter and those that had not. The top 10% of prescribers did not reduce their prescribing whether or not they had previously been sent a letter. However, the top 11-20% antibiotic prescribers reduced their antibiotic prescribing even when they had previously been sent a letter. The authors speculated that the failure of the top 10% to reduce antibiotic prescribing may have been due to the more forceful message in the communication they received (i.e. that the great majority (90%) of practices prescribed fewer antibiotics),

resulting in negative attitudes to the message and a lower behavioural intention to reduce prescribing.

DISCUSSION

In this systematic review we have compiled the evidence on the effectiveness of nudge interventions in reducing antibiotic prescribing in primary care. Overall, 78.3% of studies reported a reduction in antibiotic prescribing. Social norm feedback was the most frequently evaluated nudge, and the evidence suggests that comparisons should include an aspirational target, injunctive norm or target high prescribers to enhance intervention effects. However, future research should explore the types of features that will further enhance social norm feedback nudges in this context. Only four studies examined nudge strategies other than social norm nudges, such as changing option consequences, providing reminders and facilitating commitment, thus further research is also needed to evaluate other nudge strategies despite promising results thus far of their effectiveness.

The studies included in this review trialled five different nudges (social norm feedback, accountable justification, public reporting, suggested alternatives and public commitment) from four of the nine subcategories of choice architecture techniques described by Munscher [26]. Two other broad reviews of nudges targeting health providers reported identifying a similar number of nudges employed in their included studies, but the types of nudges applied differed to those that we identified.[21, 53] For example, changing choice defaults is a frequently applied nudge to guide health care provider behaviour, but was not used to influence antibiotic prescribing in our review.[21, 53] Another example of a nudge not

Page 25 of 57

BMJ Open

applied in studies in our review, but used in other contexts targeting health providers is changing the framing of information.[21, 53] Thus, there is scope for implementing and evaluating other nudge techniques in the primary care setting to improve antibiotic use. This is important since it is currently not clear whether the same nudge applied over more than one year will continue to have sustained impact.

We attempted to elucidate whether features of social norm feedback nudges have a role in their effectiveness. For example, the behavioural economics literature suggests that social norm nudges should only be provided to poor performers (i.e. high antibiotic prescribers in our case).[25] This is because of the 'boomerang effect' that may occur in individuals performing above average when they are provided social norm feedback confirming their above average performance, i.e. they reduce their performance. The studies in our review most frequently provided the social norm feedback to all prescribers (not only high prescribers) and all but one of these studies showed a reduction in overall antibiotic prescribing. However, the studies providing feedback to all prescribers also predominantly provided feedback more than once, which may have played a role in the reduction in antibiotic prescribing. Other factors that may have played a role in the prevention of a 'boomerang' effect in low prescribers, was the way the use of an injunctive norm and the comparison group used in the feedback. For example, one study informed the physicians with the lowest prescribing that they were a 'top performer', whereas the remaining physicians were informed they were 'not a top performer' [44]. The psychology literature supports the use of an injunctive norm when providing feedback i.e. conveying social approval or disapproval, as a way to eliminate the 'boomerang' effect [17]. The study also compared physicians' performance to the mean of the lowest decile prescribers, rather than the group mean [44]. Our results showed that comparison of performance to the group mean, use of a

BMJ Open

Page 26 of 57

descriptive norm and targeting all prescribers produced mixed results with three of five studies reporting a reduction in antibiotic prescribing. Thus, our results support the use of injunctive norms, comparisons to the lowest prescribers or targeting the highest prescribers.

The frequency of feedback may also play a role in social norm nudge effects. In the study described above that informed prescribers they were a 'top performer' or 'not a top performer', feedback was provided on a monthly basis, which allowed physicians to assess the degree to which they had changed their antibiotic prescribing [44]. This is a different approach to studies that targeted only the high prescribers, i.e. poor performers. These studies tended to provide the feedback once, informing the physicians that they prescribed at a higher rate than e.g. 80% of their peers [35, 36, 38, 47, 50]. However, care should be taken when deciding on the comparison group, as if becoming a 'top performer' is perceived as unattainable, this can be demotivating. This can occur when the comparison norm is dynamic, i.e. changes according the group's behaviour, which was the case in all our studies that provided feedback more than once (Figure 2). For example, if the comparison group is consistently the top 10%, 90% of people will never reach the target. One study included in our review reported that the top 10% of prescribers did not change their prescribing behaviour following the social norm nudge, despite an overall reduction following the intervention [47]. The authors speculated this may be due to the message not motivating behaviour change. Furthermore, individuals need to trust the data being presented is an accurate representation of their performance, and in the case of antibiotic prescribing, adequately accounts for the clinical features of the populations they treat. Thus, it is crucial for there to be an understanding of factors that may affect the intervention during intervention design so as to maximise impact [23].

Page 27 of 57

BMJ Open

It has been suggested that we can also learn from nudges that fail [14, 54]. There were four studies that implemented a social norm feedback nudge that had no effect on overall antibiotic prescribing [39, 40, 45, 51]. All four studies had two intervention features in common. Firstly, the peer comparison used was the mean prescribing rate of the group or in the case of one study the interquartile range of the group. For those prescribers that were at the mean prescribing level or marginally below it, this may not have provided enough motivation to change their behaviour. Furthermore, as mentioned above, the 'boomerang effect' may occur in individuals performing above average. Secondly, the feedback in the four evaluations of social norm nudges that did not reduce overall prescribing was not provided from a high-profile or respected figure, which may have reduced the salience of the message.

The literature on audit and feedback interventions in healthcare provides insights into what features make these interventions more effective, and complement those from the behavioural economics and psychology literature [16]. A Cochrane review found that feedback is more likely to be effective when: baseline performance is low; the source is a supervisor or colleague; the frequency is more than once; it is delivered both verbally and in written formats; and when feedback includes both targets and an action plan [15]. Many of these features were included in the social norm nudges we identified in this review. For example, most of the social norm nudges included information on appropriate antibiotic prescribing in primary care. Thus, synthesising such evidence from behavioural economics and psychology is likely to enhance the effectiveness of these interventions.

This systematic review has a number of strengths. Firstly, our search strategy was inclusive of all studies evaluating interventions to improve antibiotic prescribing in primary care. The

BMJ Open

selection of studies based on the type of intervention occurred at the full-text screening stage to ensure that studies not explicitly stating they used nudge techniques were included. Secondly, we used a comprehensive taxonomy of behavioural architecture techniques,[26] rather than attempting to ascertain whether the underlying cognitive processes addressed by the intervention had the features of a nudge. However, there are a number of limitations. We were unable to perform a meta-analysis or summarise the results quantitatively due to the heterogenous reporting of study outcomes. Furthermore, though we aimed to examine the features of social norm nudges that may enhance their effectiveness, the variation with which these nudges were implemented across a small number of studies prevented firm conclusions being drawn. The need for further research to improve the effectiveness of social norm nudges, also sometimes called audit and feedback interventions, in healthcare is recognised. Nonetheless, this review has provided practical insights into the use of nudge interventions to reduce antibiotic use in primary care, and highlighted areas for further research.

CONCLUSIONS

Health systems worldwide continue to struggle to consistently deliver evidence-based care [55]. Nudges can be used in lieu of, or to augment, more traditional efforts such as education (targeting clinicians, as well as the public), financial incentives, promotion of guidelines, and changing models of care. Evaluation of nudges applied in healthcare will play a key role in identifying interventions suitable for use in different contexts, including primary care, and in further developing applications of nudge strategies to improve the delivery of effective healthcare services.

J.C

FUNDING

This study was funded by a National Health and Medical Research Council (NHMRC) Partnership Project (2006957). MZR is supported by a NHMRC Early Career Fellowship (APP1143941). JIW is supported by a NHMRC Elizabeth Blackburn Leadership Investigator Grant (APP1174021). The funding body had no role in the design of the study, data collection , analysis, interpretation or writing of the manuscript.

COMPETING INTERESTS

The authors declare that they have no competing interests.

AUTHOR CONTRIBUTIONS

MZR conceived the study with JW and BN. MZR and GG designed the search strategy and GG ran the searches. MZR, GG and AN screened articles for inclusion with input from BN. MZR, GG and AN conducted data extraction and quality assessments. LL and KS provided support for the compilation of results. MZR compiled results and wrote the initial manuscript draft. All authors contributed to the editorial process of the manuscript and approved the final manuscript.

DATA SHARING STATEMENT

All data is available in the manuscript or Supplementary files.

ETHICS APPROVAL

This study does not involve human participants.

WORD COUNT: 4821

REFERENCES

- Jee, Y., et al., *Antimicrobial resistance: a threat to global health*. Lancet Infect Dis, 2018. 18(9): p. 939-940.
- Van Boeckel, T.P., et al., *Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data*. Lancet Infect Dis, 2014. 14(8): p. 742-750.
- World Health Organization, Model List of Essential Medicines, 21st List. 2019, WHO: Geneva.
- Klein, E.Y., et al., Assessment of WHO antibiotic consumption and access targets in 76 countries, 2000-15: an analysis of pharmaceutical sales data. Lancet Infect Dis, 2020. 21(1): p. 107-115.
- 5. Arnolda, G., et al., Assessing the appropriateness of paediatric antibiotic overuse in Australian children: a population-based sample survey. BMC Pediatr, 2020. 20(1): p. 185.
- 6. Pouwels, K.B., et al., *Actual versus 'ideal' antibiotic prescribing for common conditions in English primary care*. J Antimicrob Chemother, 2018. 73(suppl_2): p. 19-26.
- 7. Hay, A.D., *Antibiotic prescribing in primary care*. BMJ, 2019. **364**: p. 1780.
- 8. Leis, J.A., et al., *Using antibiotics wisely for respiratory tract infection in the era of covid-19*. BMJ, 2020. **371**: p. m4125.
- 9. Lemiengre, M., et al., *Antibiotics for sinus infection of short duration in adults*.
 Cochrane Database of Systematic Reviews, 2018(9).
- 10. Köchling, A., et al., *Reduction of antibiotic prescriptions for acute respiratory tract infections in primary care: a systematic review.* Implement Sci, 2018. **13**(1): p. 47.

1		
2 3	11	Tonkin-Crine S et al Clinician-targeted interventions to influence antibiotic
4 5		
6		prescribing behaviour for acute respiratory infections in primary care: an overview
/ 8 9		of systematic reviews. Cochrane Database Syst Rev, 2017. 9(9): p. CD012252.
10 11	12.	Vodicka, T.A., et al., Reducing antibiotic prescribing for children with respiratory
12 13		tract infections in primary care: a systematic review. Br J Gen Pract, 2013. 63(612):
14 15 16		p. e445-54.
17 18	13.	Michie, S., M.M. van Stralen, and R. West, The behaviour change wheel: a new
19 20		method for characterising and designing behaviour change interventions. Implement
21 22 22		Sci, 2011. 6: p. 42.
23 24 25	14.	Osman, M., et al., Learning from behavioural changes that fail. Trends in Cognitive
26 27		Sciences, 2020. 24(12): p. 969-980.
28 29	15.	Ivers, N., et al., Audit and feedback: effects on professional practice and healthcare
30 31 32		outcomes. Cochrane Database of Systematic Reviews, 2012(6).
33 34	16.	Ivers, N.M., et al., No more 'business as usual' with audit and feedback interventions:
35 36		towards an agenda for a reinvigorated intervention. Implement Sci, 2014. 9: p. 14.
37 38 20	17.	Schultz, P.W., et al., The constructive, destructive, and reconstructive power of social
40 41		norms. Psychol Sci, 2007. 18(5): p. 429-34.
42 43	18.	Hummel, D. and A. Maedche, How effective is nudging? A quantitative review on the
44 45		effect sizes and limits of empirical nudging studies. J Behav Exp Econ, 2019. 80: p.
46 47 48		47-58.
49 50	19.	Adam, A. and J. Jensen, What is the effectiveness of obesity related interventions at
51 52		retail grocery stores and supermarkets? a systematic review. BMC Public Health,
53 54		2016. 16 (1): p. 1247.
55 56 57	20.	Bucher, T., et al., Nudging consumers towards healthier choices: a systematic review
58 59 60		of positional influences on food choice. Br J Nutr, 2016. 115(12): p. 2252-2263.

21.	Yoong, S.L., et al., Nudge strategies to improve healthcare providers' implementation
	of evidence-based guidelines, policies and practices: a systematic review of trials
	included within Cochrane systematic reviews. Implement Sci, 2020. 15(1): p. 50.
22.	Fox, C.R., et al., Details matter: predicting when nudging clinicians will succeed or
	<i>fail</i> . Bmj, 2020. 370 : p. m3256.
23.	de Ridder, D., F. Kroese, and L. van Gestel, Nudgeability: Mapping Conditions of
	Susceptibility to Nudge Influence. Perspect Psychol Sci, 2022. 17(2): p. 346-359.
24.	Moher, D., et al., Preferred Reporting Items for Systematic Reviews and Meta-
	Analyses: The PRISMA Statement. PLoS Med, 2009. 6(7): p. e1000097.
25.	Thaler, R. and C. Sunstein, Nudge: Improving decisions about health, wealth, and
	happiness. 2009, US: Penguin Putnam Inc.
26.	Münscher, R., M. Vetter, and T. Scheuerle, A Review and Taxonomy of Choice
	Architecture Techniques. J Behav Decis Mak, 2016. 29(5): p. 511-524.
27.	Hagemeier, A., C. Samel, and M. Hellmich, The regression discontinuity design:
	Methods and implementation with a worked example in health services research. Z
	Evid Fortbild Qual Gesundhwes, 2022.
28.	Tang, Y. and T.D. Cook, Statistical Power for the Comparative Regression
	Discontinuity Design With a Pretest No-Treatment Control Function: Theory and
	Evidence From the National Head Start Impact Study. Eval Rev, 2018. 42(1): p. 71-
	110.
29.	Colquhoun, H.L., et al., Informing the research agenda for optimizing audit and
	feedback interventions: results of a prioritization exercise. BMC Med Res Methodol,
	2021. 21 (1): p. 20.
30.	Cochrane Effective Practice and Organisation of Care, EPOC resources for review
	authors: Suggested risk of bias criteria for EPOC reviews. 2017.

31.	Raban, M.Z., et al., Effectiveness of interventions targeting antibiotic use in long-term
	aged care facilities: a systematic review and meta-analysis. BMJ Open, 2020. 10(1):
	p. e028494.
32.	Higgins, J., et al., Cochrane Handbook for Systematic Reviews of Interventions
	version 6.2 (updated February 2021). 2021, Cochrane.
33.	Ogilvie, D., et al., The harvest plot: a method for synthesising evidence about the
	differential effects of interventions. BMC Med Res Methodol, 2008. 8: p. 8.
34.	Awad, A., I. Eltayeb, and O. Baraka, Changing antibiotics prescribing practices in
	health centers of Khartoum State, Sudan. Eur J Clin Pharmacol, 2006. 62(2): p. 135-
	42.
35.	Behavioural Economics Team of the Australian Goverment (BETA), Nudge vs
	Superbugs: A behavioural economics trial to reduce the overprescribing of
	antibiotics. 2018, Department of the Prime Minister and Cabinet: Canberra.
36.	Bradley, D., et al., Social norm feedback reduces primary care antibiotic prescribing
	in a regression discontinuity study. J Antimicrob Chemother, 2019. 74: p. 2797–2802.
37.	Gerber, J., et al., Effect of an outpatient antimicrobial stewardship intervention on
	broad-spectrum antibiotic prescribing by primary care pediatricians. JAMA, 2013.
	309.
38.	Hallsworth, M., et al., Provision of social norm feedback to high prescribers of
	antibiotics in general practice: a pragmatic national randomised controlled trial.
	Lancet, 2016. 387 (10029): p. 1743-52.
39.	Hemkens, L., et al., Personalized prescription feedback using routinely collected data
	to reduce antibiotic use in primary care. JAMA, 2017. 177(2): p. 176-183.

40. Hurlimann, D., et al., Improvement of antibiotic prescription in outpatient care: a *cluster-randomized intervention study using a sentinel surveillance network of* physicians. J Antimicrob Chemother, 2015. 70: p. 602-608. 41. Lagerløv, P., et al., Improving doctors' prescribing behaviour through reflection on guidelines and prescription feedback: a randomised controlled study. Qual Health Care, 2000. 9(159-165). 42. Mainous, A., et al., An evaluation of statewide strategies to reduce antibiotic overuse Fam Med, 2000. **32**(1): p. 22-9. 43. Meeker, D., et al., Nudging guideline-concordant antibiotic prescribing: a randomized clinical trial. JAMA Intern Med, 2014. 174(3): p. 425-31. 44. Meeker, D., et al., Effect of Behavioral Interventions on Inappropriate Antibiotic Prescribing Among Primary Care Practices: A Randomized Clinical Trial. JAMA, 2016. **315**(6): p. 562-70. 45. O'Connell, D., D. Henry, and R. Tomlins, Randomised controlled trial of effect of feedback on general practitioners' prescribing in Australia. BMJ, 1999. **318**. 46. Persell, S., et al., *Behavioral interventions to reduce inappropriate antibiotic* prescribing: a randomized pilot trial. BMC Infect Dis, 2016. 16: p. 373. 47. Ratajczak, M., et al., The effectiveness of repeating a social norm feedback intervention to high prescribers of antibiotics in general practice: a national regression discontinuity design. J Antimicrob Chemother, 2019. 74: p. 3603–3610. 48. Søndergaard, J., et al., Mailed prescriber feedback in addition to a clinical guideline has no impact: a randomised, controlled trial. Scand J Prim Health Care, 2003. 21: p. 47-51.

2		
3	49.	Ya
5		res
7 8		in
9 10	50.	Be
11 12 13		Su
14 15		Ca
16 17	51.	Cu
18 19		pro
20 21 22		trie
23 24	52.	Kr
25 26		Re
27 28	53	La
29 30 31	55.	cou
32		0
33 34	54.	Su
35 36	55.	Bra
37		ah
38 39		ub
40		
41 42		
43	FIGU	RE LE
44		
45 46	_	
40 47	Figur	e 1: F
48	*One	stud
49		
50		
51 52	F !	- 7. 1
52 53	Figur	e z: I
55		
55	Figur	e 3: F
56	prima	ary ca
57	inter	venti
58	studi	es wi
59 60	high	risk o
1.11.1		

- ng, L., et al., Public reporting improves antibiotic prescribing for upper spiratory tract infections in primary care: a matched-pair cluster-randomized trial China. Health Res Policy Syst, 2014. 12(61).
- chavioural Economics Team of the Australian Goverment (BETA), Nudge vs *perbugs: 12 months on.* 2020, Department of the Prime Minister and Cabinet: nberra.
- urtis, H., et al., Evaluating the impact of a very low-cost intervention to increase actices' engagement with data and change prescribing behaviour: a randomized al in English primary care. Fam Pract, 2021.
- onman, M.P., et al., *Reducing Antibiotic Prescribing in Primary Care for* spiratory Illness. Pediatrics, 2020. 146(3).
- st, B.S., et al., Systematic review of clinician-directed nudges in healthcare ntexts. BMJ Open, 2021. 11(7): p. e048801.
- nstein, C., Nudges that fail. Behavioural Public Policy, 2017. 1(1): p. 4-25.
- aithwaite, J., P. Glasziou, and J. Westbrook, The three numbers you need to know out healthcare: the 60-30-10 Challenge. BMC Med, 2020. 18(1): p. 102.

GENDS

PRISMA flow chart of search and screening results ly had two publications.

mplementation features of social norm feedback nudge interventions

Harvest plot of effects of nudge interventions targeting antibiotic prescribing in are on overall antibiotic prescribing. Each mark or column represents one nudge on. Column height represents the risk of bias in the study: tallest columns are th low risk of bias; medium columns are moderate risk of bias; short columns are of bias.

Figure 4: Harvest plot of effects of social norm feedback nudge interventions on overall antibiotic prescribing by implementation features. Each mark or column represents one nudge intervention. Column height represents the risk of bias of the study: tallest columns are studies with low risk of bias; medium columns are moderate risk of bias; short columns are high risk of bias.

cd

TABLES

Table 2: Characteristics of studies evaluating nudge interventions to improve antibiotic prescribing in primary care

Author, Year	Country	Sample size	Infections targeted	Nudge intervention/s	Outcomes of interest	Overall risk of bias ^a
Awad, 2006	Sudan	20 practices	All	Social norm feedback	No. of consultations with AB;	High
					No. of consultations with an	
					inappropriate AB ^b	
BETA, 2018 & 2020	Australia	6608 physicians	All	Social norm feedback	No. of ABs per 1000 consultations	Moderate
Bradley, 2019	Northern Ireland	331 practices	All	Social norm feedback	No. of ABs per 1000 registered population	Moderate
Chang, 2020	China	163 physicians	All	Social norm feedback	No. of AB prescriptions per 100	Moderate
					prescriptions	
Curtis, 2021	England	1401 practices	All	Social norm feedback	% broad spectrum AB of all AB	Low
Gerber, 2013	USA	162 physicians	RTI	Social norm feedback	% broad spectrum ABs among children	High
					with AB prescription;	
					ABs for viral RTI	
Hallsworth,	England	1581 practices	All	Social norm feedback	No. of ABs per 1000 registered	Low
2016					population	
Hemkens, 2017	Switzerland	2900 physicians	All	Social norm feedback	Antibiotic DDD per 1000 consultations	Low
Hurlimann, 2016	Switzerland	136 practices	RTI; UTI	Social norm feedback	% AB prescriptions for upper RTIs; % penicillins for RTI;	Moderate
					% trimethoprim/sulfamethoxazole for UTI	
Kronman, 2020	US	57 physicians	RTI	Social norm feedback	% of RTI with AB prescribed	Low
Lagerlov, 2000	Norway	199 physicians	UTI	Social norm feedback	% inappropriate ABs for UTI	High
Mainous, 2000	USA	216 physicians	RTI	Social norm feedback	% inappropriate AB treatments	Low

2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
22
25
25
20
27
20
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

1

Meeker, 2014	USA	14 physicians	RTI	Public commitment	No. of ABs per 100 AB inappropriate RTIs	Moderate
Meeker, 2016	USA	244 physicians	RTI	Social norm feedback, accountable justification, suggested alternatives	No. of ABs per 100 AB inappropriate RTIs	Moderate
O'Connell, 1999	Australia	2440 physicians	All	Social norm feedback	No. of ABs per 100 consultations	Moderate
Persell, 2016	USA	28 physicians	RTI	Social norm feedback, accountable justification, suggested alternatives	No. of ABs per 100 RTIs; No. of ABs per 100 AB inappropriate RTIs	High
Ratajczak, 2019	England	6995 practices	All	Social norm feedback	No. of ABs per 1000 registered population	Moderate
Sondergaard, 2003	Denmark	299 physicians	RTI	Social norm feedback	No. of ABs per 1000 registered population	Moderate
Yang, 2014	China	20 practices (54 physicians)	RTI	Public reporting	% of RTI consultations with AB; % of RTI consultations with >1 AB	Low

RTI is respiratory tract infections; UTI is urinary tract infections. AB is antibiotic. No. is number. DDD is defined daily doses.

^aRisk of bias assessed using the Cochrane Effective Practice and Organisation of Care group's tool for studies with a control group. Overall rating assigned 'low' when all criteria were 'low' risk; 'medium' when 1-2 criteria were scored 'unclear' or 'high' risk; and 'high' when >2 criteria were scored 'unclear' or 'high' risk.

^bInappropriate with respect to antibiotic, doses and/or duration.

 BMJ Open

For peer review only For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Medline via

Figure 1: PRISMA flow chart of search and screening results *One study had two publications.

243x193mm (120 x 120 DPI)

Figure 2: Implementation features of social norm feedback nudge interventions

869x610mm (47 x 47 DPI)

BMJ Open

Figure 3: Harvest plot of effects of nudge interventions targeting antibiotic prescribing in primary care on overall antibiotic prescribing.

Each mark or column represents one nudge intervention. Column height represents the risk of bias in the study: tallest columns are studies with low risk of bias; medium columns are moderate risk of bias; short columns are high risk of bias.

278x270mm (47 x 47 DPI)

Figure 4: Harvest plot of effects of social norm feedback nudge interventions on overall antibiotic prescribing by implementation features.

Each mark or column represents one nudge intervention. Column height represents the risk of bias of the study: tallest columns are studies with low risk of bias; medium columns are moderate risk of bias; short columns are high risk of bias.

295x489mm (47 x 47 DPI)

Page 44 of 57

PRISMA 2020 for Abstracts Checklist

3 4	Section and Topic	ltem #	Checklist item	Reported (Yes/No)
5	TITLE			
7	Title	1	Identify the report as a systematic review.	Yes
8	BACKGROUND			
9 10	Objectives	2	Provide an explicit statement of the main objective(s) or question(s) the review addresses.	Yes
11	METHODS			
12	Eligibility criteria	3	Specify the inclusion and exclusion criteria for the review.	Yes
13 14 15	Information sources	4	Specify the information sources (e.g. databases, registers) used to identify studies and the date when each was last searched.	Yes
16	Risk of bias	5	Specify the methods used to assess risk of bias in the included studies.	Yes
17	Synthesis of results	6	Specify the methods used to present and synthesise results.	Yes
10 19	RESULTS			
20	Included studies	7	Give the total number of included studies and participants and summarise relevant characteristics of studies.	Yes
21 22 23 24	Synthesis of results	8	Present results for main outcomes, preferably indicating the number of included studies and participants for each. If meta-analysis was done, report the summary estimate and confidence/credible interval. If comparing groups, indicate the direction of the effect (i.e. which group is favoured).	Yes
25	DISCUSSION			
26 27	Limitations of evidence	9	Provide a brief summary of the limitations of the evidence included in the review (e.g. study risk of bias, inconsistency and imprecision).	Yes
28 29	Interpretation	10	Provide a general interpretation of the results and important implications.	Yes
30	OTHER			
31 32 33	Funding	11	Specify the primary source of funding for the review.	In main text
33 34	Registration	12	Provide the register name and registration number.	N/A
35 36				

³⁸ *From:* Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic ³⁹ reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

PRISMA 2020 Checklist

3 4 5	Section and Topic	ltem #	Checklist item	Location where item is reported				
6	TITLE							
7	Title	Title 1 Identify the report as a systematic review.						
8	ABSTRACT							
9 10	Abstract	2	See the PRISMA 2020 for Abstracts checklist.	See previous page				
11	INTRODUCTION							
12	Rationale	3	Describe the rationale for the review in the context of existing knowledge.	5				
13	Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	6				
15	METHODS							
16	Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	7				
17 18	Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	6				
19	Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	6				
20 21	Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	8				
22 23 24	Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	8				
25 26	Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	8				
27 28 20		10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	9				
29 30 31	Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	10				
32	Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	11				
33 34	Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	11-12				
35 36		13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	11				
37		13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	12				
38 39		13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	12				
40 41		13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	12				
42		13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	12				
43 44	Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	10				
45	Certainty	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	N/A				
46 ^L	-							

BMJ Open

BMJ Open

PRISMA 2020 Checklist

3 4 5	Section and Topic	ltem #	Checklist item	Location where item is reported
6	assessment			
7	RESULTS			
8 9	Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	12
10		16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	12
11 12	Study characteristics	17	Cite each included study and present its characteristics.	12
13 14	Risk of bias in studies	18	Present assessments of risk of bias for each included study.	13
15 16	Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	Supplementary file 4
17	Results of	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	Table 2
19 20	syntheses	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	13-18
21		20c	Present results of all investigations of possible causes of heterogeneity among study results.	N/A
22		20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	13-18
23 24	Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	N/A
24 25 26	Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	N/A
27	DISCUSSION			
28	Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	19-22
29		23b	Discuss any limitations of the evidence included in the review.	23
30 31		23c	Discuss any limitations of the review processes used.	23
32		23d	Discuss implications of the results for practice, policy, and future research.	22
33	OTHER INFORMA	TION		
34	Registration and	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	Not registered
35	protocor	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	N/A
30 37		24c	Describe and explain any amendments to information provided at registration or in the protocol.	N/A
38	Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	24
39 40	Competing interests	26	Declare any competing interests of review authors.	24
41 42 43	Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	Supplementary files
44				

45 From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmarn TOP MURDING D, 21 al. That PR/SIM 2020 statements and the diage of the light events and systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71

- 46
- 47

Page 47 of 57

47

PRISMA 2020 Checklist

For more information, visit: http://www.prisma-statement.org/

ition, visit: <u>http:</u>

BMJ Open

Raban et al. Nudge interventions to reduce unnecessary antibiotic prescribing in primary care: a systematic review

SEARCH STRATEGY

MEDLINE (via Ovid and PubMed)

Date searched: 23 April 2021

Search ID#	Search Terms	
1	exp Ambulatory Care/	
2	exp Community Medicine/	
3	exp General Practice/	
4	exp General Practitioners/	
5	exp Primary Health Care/	
6	exp Physicians, Family/	
7	exp Physicians, Primary Care/	
8	"general practice".ti,ab.	
9	"general practitioner*".ti,ab.	
10	"family physician*".ti,ab.	
11	"family practice".ti,ab.	
12	"primary care".ti,ab.	
13	"primary health care".ti,ab.	
14	"primary healthcare".ti,ab.	
15	exp *anti-bacterial agents/tu or exp *anti-infective agents, urinary/tu	
16	antibiot*.ti,ab.	
17	anti-biot*.ti,ab.	
18	anti-microb*.ti,ab.	
19	antimicrob*.ti,ab.	
20	anti-infective*.ti,ab.	
21	antiinfective*.ti,ab.	
22	anti-bacterial*.ti,ab.	
23	antibacterial*.ti,ab.	
24	randomized controlled trial.pt	
25	controlled clinical trial.pt	
26	pragmatic clinical trial.pt	
27	multicenter study.pt	
28	exp non-randomized controlled trials as topic/	
29	exp controlled before-after studies/	
30	(randomis* or randomiz* or randomly).ti,ab.	
31	groups.ab.	
32	(trial or multicenter or multi center or multicentre or multi centre).ti.	
33	(intervention? or effect? or impact? or controlled or control group? or (before	
	adj5 after) or (pre adj5 post) or ((pretest or pre test) and (posttest or post test))	
25	or quasiexperiment* or quasi experiment* or evaluat*).ti,ab.	
35	0r/1-14	
36	07/15-23	
3/	OF/24-34	

Raban et al. Nudge interventions to reduce unnecessary antibiotic prescribing in primary care: a systematic review

38	35 and 36 and 37
39	limit 38 to yr="1997 -Current"
40	limit 39 to english language
41	limit 40 to journal article
42	limit 41 to humans
	38 39 40 41 42

Embase (via Ovid)

Date searched: 23 April 2021

Search ID#	Search Terms	
1	exp Ambulatory Care/	
2	exp Community Medicine/	
3	exp General Practice/	
4	exp General Practitioners/	
5	exp Primary Health Care/	
6	exp Family Medicine/	
7	exp Primary Medical Care/	
8	"general practice".ti,ab.	
9	"general practitioner*".ti,ab.	
10	"family physician*".ti,ab.	
11	"family practice".ti,ab.	
12	"primary care".ti,ab.	
13	"primary health care".ti,ab.	
14	"primary healthcare".ti,ab.	
15	exp *anti-infective agents/	
16	exp *anti-infective therapy/ or exp *antimicrobial therapy/	
17	exp *antibiotic agent/	
18	antibiot*.ti,ab.	
19	anti-biot*.ti,ab.	
20	anti-microb*.ti,ab.	
21	antimicrob*.ti,ab.	
22	anti-infective*.ti,ab.	
23	antiinfective*.ti,ab.	
24	anti-bacterial*.ti,ab.	
25	antibacterial*.ti,ab.	
26	exp "controlled clinical trial (topic)"/	
27	exp epidemiology/	
28	(randomis* or randomiz* or randomly).ti,ab.	
29	groups.ab.	
30	(trial or multicenter or multi center or multicentre or multi centre).ti.	
31	(intervention? or effect? or impact? or controlled or control group? or (before adj5 after) or (pre adj5 post) or ((pretest or pre test) and (posttest or post test)) or quasiexperiment* or quasi experiment* or evaluat*).ti,ab.	
32	or/1-14	

Raban et al. Nudge interventions to reduce unnecessary antibiotic prescribing in primary care: a systematic review

33	or/15-25
34	or/26-31
35	32 and 33 and 34
36	limit 35 to english language
37	limit 36 to human
38	limit 37 to yr="1997 -Current"
39	limit 38 to (conference abstract or "conference review" or editorial or erratum or letter or note or "review")
40	38 not 39
41	remove duplicates from 40
42	limit 41 to embase

Websites searched

Date searched: 23 April 2021

Organisation name	URL
Behavioural Economics Team of the	https://behaviouraleconomics.pmc.gov.au/
Australian Government	
Behavioural Insights Team	https://www.bi.team
Danish Nudging Network	https://www.danishnudgingnetwork.dk/
iNudgeyou	https://inudgeyou.com/en/
Nudge France	http://www.nudgefrance.org/
Nudge-it	https://www.nudge-it.eu/
Nudge Italia	http://www.nudgeitalia.it/
Norwegian Nudging Network	https://sites.google.com/view/norsknudgenet/home
Penn Medicine Nudge Unit	https://nudgeunit.upenn.edu
The European Nudging Network	http://tenudge.eu/
The Swedish Nudging Network	https://theswedishnudgingnetwork.com/
	21
BMJ Open

Raban et al. Nudge interventions to reduce unnecessary antibiotic prescribing in primary care: a systematic review

SUPPLEMENTARY FILE 3

Table S3: Assessment of risk of bias* against each criterion for individual studies

Study	Random sequence generation	Allocation concealment	Baseline outcome measurements similar	Baseline characteristics similar	Incomplete outcome data	Blinding of outcome measurement assessment	Protections against contamination	Selective reporting	Other bias	TOTAL number of criteria with low risk of bias
Awad, 2006	✓	?	✓	?	?	?	✓	Х	✓	4/9
BETA, 2018 & 2020	~	 ✓ 	~	~	?	~	✓	✓	~	8/9
Bradley, 2019	Х	Х	✓	✓	✓	✓	\checkmark	\checkmark	✓	7/9
Chang, 2020	\checkmark	Х	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	✓	8/9
Curtis, 2021	✓	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	9/9
Gerber, 2013	✓	✓	\checkmark	✓	?	Х	?	\checkmark	✓	6/9
Hallsworth, 2016	~	~	~	~	~	~	✓	✓	~	9/9
Hemkens, 2017	\checkmark	~	~	~	✓	\checkmark	\checkmark	\checkmark	\checkmark	9/9
Hurlimann, 2016	~	~	~	~	~	х	\checkmark	\checkmark	~	8/9
Kronman, 2020	~	~	~	~	V	~	\checkmark	✓	~	9/9
Lagerlov, 2000	✓	✓	✓	✓	X	?	\checkmark	?	Х	6/9
Mainous, 2000	\checkmark	~	\checkmark	\checkmark	1	~	\checkmark	\checkmark	\checkmark	9/9
Meeker, 2014	✓	✓	✓	✓	✓ ●	\checkmark	?	✓	✓	8/9
Meeker, 2016	\checkmark	\checkmark	?	?	\checkmark	~	\checkmark	\checkmark	Х	6/9
O'Connell, 1999	?	~	~	✓	~	~	~	✓	~	8/9
Persell, 2016	\checkmark	\checkmark	✓	?	✓	~	?	\checkmark	Х	7/9
Ratajczak, 2019	х	х	~	\checkmark	~	✓ ●	V	\checkmark	\checkmark	7/9
Sondergaard, 2003	?	~	~	~	~	~	✓	~	~	8/9
Yang, 2014	✓	✓	✓	√	✓	√	\checkmark	\checkmark	✓	9/9
Number of studies with high risk of bias	2	3	0	0	1	2	0	1	3	
Number of studies with unclear bias	2	1	1	3	3	2	3	1	0	
Number of studies with	15	15	15	16	15	15	16	17	16	

Raban et al. Nudge interventions to reduce unnecessary antibiotic prescribing in primary care: a systematic roviow

CVICW								
low risk of								
bias								
X' denotes high	risk of bias for thi	s criterion; '?	' denotes	unclear r	isk of bias	; ' √ ' deno	otes low ri	isk of bias.
Risk of bias asse	essed using the Co	chrane Effec	ctive Pract	ice and O	rganisatio	n of Care	group's to	ool
https://epoc.cod	chrane.org/sites/	poc.cochran	ne.org/file:	s/public/เ	uploads/R	esources-	for-	
uthors2017/sug	gested_risk_of_b	ias_criteria_	for_epoc_	reviews.p	odf)			

Raban et al. Nudge interventions to reduce unnecessary antibiotic prescribing in primary care: a systematic review

SUPPLEMENTARY FILE 4

Table S4: Effects of nudge interventions to improve antibiotic use in primary care

Study	Design	Interventions	Control	Outcome/s	Follow-up period	Reported statistics	95% Cl, p- value	Vote counting assessment
Decision info	mation – provi	de social referen	ce point					
Awad, 2006	Cluster randomised trial	Social norm feedback	Usual care	No. of consultations with AB prescribed	3-months post	Mean difference: -2.8	(-1.1, -4.6), p=0.004	Reduction
				No. of consultations with an inappropriate AB ^a	3-months post	Mean difference: -1.9	(-0.1, -3.7), p=0.040	n/a
BETA, 2018 & 2020	Cluster randomised trial	Social norm feedback with graph	Usual care	No. of ABs per 1000 consultations	6 & 12months post	Mean difference (6-months): -13.6 (~12% reduction) (12- months): -9.3 (~9.4% reduction)	6-months: (-16.6, - 10.6), p<0.00001 12- months: (-12.3, - 6.2); p<0.001	Reduction
		Social norm feedback with education material	Usual care	No. of ABs per 1000 consultations	6 & 12- months post	Mean difference (6-months): -10.3 (~9.3% reduction) (12- months):	6-months: (-13.8, - 6.8), p<0.001 12- months: (-11, -5.6); p<0.001	n/a

Raban et al. Nudge interventions to reduce unnecessary antibiotic prescribing in primary care: a systematic review

						-8.3 (~8.4% reduction)		
		Social norm feedback	Usual	No. ABs per 1000 consultation	6 & 12- months	Mean difference (6-months): -11.8 (~10.7% reduction)	6 months: (-14.7, - 8.9); p<0.001 12-	n/a
		prescribing	r Pe		post	(12- months): -8.8 (~8.9% reduction)	months: (-11.6, - 6.0); p<0.001	
Bradley, 2019	Regression discontinuity study	Social norm feedback	Usual care	No. of ABs per 1000 registered population	3-months post	Mean difference: -25.7	(-42.5, - 8.8), p=0.0028	Reduction
				en	12-months post	Mean difference: -58.7 (~5% reduction)	(-116.7, - 0.7), p=0.047	n/a
Chang, 2020	Cluster randomised crossover- controlled trial	Social norm feedback	Usual care	No. of AB prescriptions per total prescriptions	3-month intervention period	Relative reduction in intervention arm: 35.2%; in control arm: 30.8%	p<0.001	Reduction
					3-month intervention period (after crossover)	Relative reduction in intervention arm: 14.2%; in control arm: 4.6%	p<0.001	n/a

Page 55 of 57

BMJ Open

Raban et al. Nudge interventions to reduce unnecessary antibiotic prescribing in primary care: a systematic review

Curtis, 2021	Randomised trial	Social norm feedback (standard)	Usual care	AB prescriptions per 1000 population	6-months post	No change	NS	No change
				Proportion of antibiotics which were broad spectrum	6-months post	2.1% reduction compared to controls	p=0.104	n/a
		Social norm feedback (optimised)	Usual care	AB prescriptions per 1000 population	6-months post	No change	NS	No change
			De	Proportion of antibiotics which were broad spectrum	6-months post	2.1% reduction compared to controls	P=0.046	n/a
Gerber, 2013	Cluster randomised trial	Social norm feedback	Usual care	ABs for viral RTI	12-month intervention period	DID: -1.7%	NR, p=0.93	Reduction
				Percent of broad spectrum ABs among children with AB prescription	12-month intervention period	DID: -6.7%	NR, p=0.01	n/a
Hallsworth, 2016	Randomised trial	Social norm feedback	Usual care	No. of ABs per 1000 registered population	6-months post	IRR: 0.967 ^b (~3.3% reduction)	(0.957, 0.977), p<0.0001	Reduction
Hemkens, 2017	Randomised trial	Social norm feedback	Usual care	DDD per 1000 consultations	First 1-year intervention period	Between group difference: 0.81%	(-2.56, 4.30), NR	No change
					Second 1- year intervention period	Between group difference: -1.73%	(-5.07, 1.72%), p=0.32	no change

Raban et al. Nudge interventions to reduce unnecessary antibiotic prescribing in primary care: a systematic review

Hurlimann, 2016	Cluster randomised trial	Social norm feedback	Usual care	Percentage of AB prescriptions for upper RTIs	24-month intervention period	Difference in proportion: -1.2	(-10.5, - 8.2), p=0.66	No change
				Percentage of penicillins for RTI	24-month intervention period	OR: 1.42	(1.08- 1.89), p=0.01	n/a
		R		Percentage of trimethoprim/sulfamethoxazole for UTI	24-month intervention period	OR: 2.16	(1.19- 3.91), p=0.01	n/a
Kronman, 2020	Stepped wedge cluster randomised trial	Social norm feeback	Usual care	Percentage of RTI with antibiotic prescription	12-months	OR: 0.93	(0.90, 0.96), NR	Reduction
Lagerlov, 2000	Randomised trial	Social norm feedback	Intervention for asthma care	Percentage of inappropriate ABs for UTI	12-months post	Relative decrease: -9.6%	NR, p=0.0004	Reduction
Mainous, 2000	Randomised trial	Social norm feedback	Usual care	Mean proportion of inappropriate AB treatments	5-months post	NR	Not significant	-
		Social norm feedback with patient education material	Usual care	Mean proportion of inappropriate AB treatments	5-months post	Dunnett's T: 2.374	NR, p<0.05	Reduction
Meeker, 2016	Cluster randomised trial	Social norm feedback	Usual care	No. of ABs per 100 AB inappropriate RTIs	18-month intervention period	DID: -5.2%	(-6.9, -1.6), p<0.01	Reduction
O'Connell, 1999	Randomised trial	Social norm feedback	Interventions for other medication use	No. of AB prescriptions per 100 consultations	4-months post	Median: no difference between intervention and controls	NR	No change

Page 57 of 57

BMJ Open

Raban et al. Nudge interventions to reduce unnecessary antibiotic prescribing in primary care: a systematic review

Persell, 2016	Randomised trial	Social norm feedback	Usual care	No. of ABs per 100 RTIs	12-month intervention period	OR: 0.73	(0.53, 0.995), p<0.05	Reduction
				No. of ABs per 100 AB inappropriate RTIs	12-month intervention period	OR: 0.45	(0.18, 1.11), NR	n/a
Ratajczak, 2019	Regression discontinuity study	Social norm feedback	Usual care	No. of ABs per 1000 registered population	6-months post	Percent change in intervention group: -3.69%	(-5.10,- 2.29), p<0.001	Reduction
Sondergaad, 2003	Randomised trial	Social norm feedback	Guidelines	No. of ABs per 1000 registered patients	3-months post	Mean difference: -0.6	(-2.8, 1.6), NR	Reduction
				Percent of prescriptions for narrow-spectrum penicillins	3-months post	Mean difference: 0.7	(-0.41, 1.7), NR	n/a
Decision strue	cture – change d	option conseque	nces					
Meeker, 2016	Cluster randomised trial	Accountable justification	Usual care	No. of ABs per 100 AB inappropriate RTIs	18-month intervention period	DID: -7.0%	(-9.1, -2.9), p<0.001	Reduction
Persell, 2016	Randomised trial	Accountable justification	Usual care	No. of ABs per 100 RTIs	12-month intervention	OR: 1.05	(0.80, 1.39), NR	No change
					period			ļ
				No. of ABs per 100 AB inappropriate RTIs	12-month intervention period	OR: 0.98	(0.42, 2.29), NR	n/a
Yang, 2014	Cluster randomised trial	Public reporting	Education	No. of ABs per 100 AB inappropriate RTIs Percentage of RTI consultations with AB	12-month intervention period 5-8 months post	OR: 0.98 DID: -1.93	(0.42, 2.29), NR (-6.61, 2.75), p=0.419	n/a Reduction

Raban et al. Nudge interventions to reduce unnecessary antibiotic prescribing in primary care: a systematic review

Decision ass	istance – provide	e reminders						
Meeker, 2016	Cluster randomised trial	Suggested alternatives	Usual care	No. of ABs per 100 AB inappropriate RTIs	18-month intervention period	DID: -5.0%	(-7.8, 0.1%), p=0.66	Reduction
Persell, 2016	Randomised trial	Suggested alternatives	Usual care	No. of ABs per 100 RTIs	12-month intervention period	OR: 0.72	(0.54, 0.96), p<0.01	Reduction
		R		No. of ABs per 100 AB inappropriate RTIs	12-month intervention period	OR: 0.68	(0.29 <i>,</i> 1.58), NR	n/a
Decision ass	istance – facilita	te commitment						
Meeker, 2014	Randomised trial	Public commitment	26	No. of ABs per 100 AB inappropriate RTIs	12-week intervention period	DID: -19.7%	(-5.8, - 33.04), p=0.02	Reduction

No. is 'number'. AB is 'antibiotic'. Cl is 'confidence interval'. IRR is 'incidence rate ratio'. DDD is 'defined daily doses'. OR is odds ratio. RTI is 'respiratory tract infection'. UTI is 'urinary tract infection'. DID is 'difference in differences analysis'. NR is not reported. NS is 'not significant'.

*The intervention promise was assessed based on all antibiotic outcomes reported in each study.

^aInappropriate with respect to antibiotic, doses and/or duration.