Supplementary Materials for

Betulinic acid analogs inhibit N- and T-type voltage-gated calcium channels to attenuate nerve-injury associated neuropathic and formalin models of pain

Aida Calderon-Rivera^{a,b}, Kimberly Gomez^{a,b}, Santiago Loya^{a,b}, E. M. Kithsiri Wijeratne^c, Harrison Stratton^d, Cheng Tang^{a,b}, Paz Duran^{a,b}, Kyleigh Masterson^b, Omar Alsbiei^b, A. A. Leslie Gunatilaka^c, Rajesh Khanna^{a,b*}

^aDepartment of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States

^bNYU Pain Research Center, New York University, New York, NY, United States.

^cNatural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, United States.

^dDepartment of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.

*Correspondence to:

Dr. Rajesh Khanna, Department of Molecular Pathobiology, College of Dentistry, New York University, 433 First Avenue, 8Th floor, New York, NY, 10010, USA. Office phone: (520) 271-0433; Email: rk4272@nyu.edu ORCID: 0000-0002-9066-2969

Supplementary Methods

Synthesis and characterization of betulinic acid and betulin analogs 3–31.

General Experimental Procedures. Betulinic acid (1) and betulin (2) were purchased from Skin Acives Scientific, Gilbert, AZ, USA and Sigma Aldrich (St. Louis, MO, USA), respectively. All reagents used for chemical transformations were purchased from Sigma Aldrich (St. Louis, MO, USA) and Fisher Scientific (Pittsburgh, PA, USA). Solvents used for reactions were distilled before use. The progress of all reactions was monitored by thin-layer chromatography (TLC) on silica gel 60 F₂₅₄ plates (Merck, Darmstadt, Germany) and spots were visualized under UV light and spraying with a solution of anisaldehyde in $H_2SO_4/HOAc$ followed by heating. Column chromatographic (CC) separations involved silica gel 40 μ m flash chromatography packing (J. T. Baker, Jackson, TN, USA). Analytical and preparative TLCs were performed on pre-coated 0.20 mm thick plates of silica gel 60 F₂₅₄ (E. Merck). Preparative HPLC was performed on a Waters Delta Prep 4000 system equipped with a Waters 996 photodiode array detector and a Waters Prep LC controller utilizing Empower Pro software and a reversed-phase (RP) column (Kromasil KR-100-7-C₁₈; 250 × 20 mm); chromatograms were acquired at 254 and 270 nm. 1D and 2D NMR spectra were recorded in CDCl₃ with a Bruker AVANCE III instrument at 400 MHz for ¹H NMR and 100 MHz for ¹³C NMR using residual CHCl₃ as the internal standard. The chemical shift (δ) values are given in parts per million (ppm) and the coupling constants (J values) are in Hz. High-resolution mass spectra (HRMS) were recorded on an Agilent G6224A TOF mass spectrometer.

Preparation of 3-O-acetylbetulinic acid (3). To a solution of betulinic acid (1, 20.0 mg) in pyridine (500 μ L) was added Ac₂O (50 μ L) and stirred at 25 °C. After 16 h (TLC control), EtOH was added to the reaction mixture and evaporated under reduced pressure. Residue thus obtained was chromatographed over a column of silica gel using hexanes/CH₂Cl₂ (40:60) followed by hexanes/CH₂Cl₂ (20:80). Fractions eluted with hexanes/CH₂Cl₂ (20:80) were

combined and evaporated to give **3** (20.5 mg, 98%) as a white solid. The spectroscopic data (NMR and LRMS) of **3** were identical with those reported.¹

Preparation of 3-O-cyclopropanoyl betulinic acid (4). To a solution of 1 (25.0 mg) in anhy. EtOAc was added cyclopropanecarboxylic acid (14.1 mg), DCC (50.8 mg) and 4pyrrolidinopyridine (4-pp, 2.0 mg) and stirred at 25 °C for 72 h (TLC control). The reaction mixture was filtered and the filtrate was evaporated under reduced pressure. The residue thus obtained was chromatographed over a column of silica gel (1.0 g) using hexanes/CH₂Cl₂ (1:1) as eluant to give 4 (27.5 mg, 96%) as awhite amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ 4.71 (1H, brd, J = 1.8 Hz, Ha-29), 4.59 (1H, brt, J = 1.8 Hz, Hb-29), 4.44 (1H, dd, J = 10.5, 6.0 Hz, H-3), 2.98 (1H, dt, J = 5.0, 11.0 Hz, H-19), 2.25 (1H, dt, J = 12.6, 3.3 Hz, Ha-16), 2.15 (1H, dt, J = 3.8, 12.6 Hz, H-13), 1.96 (1H, dd, J = 9.9, 3.5 Hz, Ha-21), 1.94 (1H, m, Ha-22), 1.68 (1H, m, Ha-12), 1.67 (3H, s, H₃-30), 1.64 (1H, m, Ha-1), 1.59 (1H, m, H-18), 1.58 (2H, m, H₂-2), 1.57 (1H, m, H-2'), 1.50 (1H, m, Ha-15), 1.48 (1H, m, Ha-6), 1.47 (1H, m, Hb-22), 1.38 (1H, m, Hb-21), 1.36 (1H, m, Hb-6), 1.35 (2H, m, H₂-7), 1.27 (1H, m, H-9), 1.23 (1H, m, Hb-11), 1.16 (1H, m, Hb-15), 1.01 (1H, m, Hb-12), 0.96 (2H, m, Ha-3', Ha-4'), 0.94 (3H, s, H₃-27), 0.93 (1H, m, Hb-1), 0.91 (3H, s, H₃-26), 0.82 (6H, s, H₃-23, H₃-25), 0.81 (3H, s, H₃-24), 0.80 (2H, m, Hb-3', Hb-4'), 0.76 (1H, d, J = 9.4, Hz, H-5); ¹³C NMR (100 MHz, CDCl₃) δ 182.2 (C, C-28), 174.6 (C, C-1'), 150.3 (C, C-20), 109.7 (CH₂, C-29), 80.7 (CH, C-3), 56.4 (C, C-17), 55.4 (CH, C-5), 50.4 (CH, C-9), 49.2 (CH, C-18), 46.9 (CH, C-19), 42.4 (C, C-14), 40.7 (C, C-8), 38.4 (C, C-4), 38.3 (C, C-10), 37.9 (CH₂, C-1), 37.1 (CH₂, C-22), 34.2 (CH₂, C-7), 32.2 (CH₂, C-16), 30.6 (CH₂, C-21), 29.7 (CH₂, C-15), 27.9 (CH₃, C-23), 25.4 (CH₂, C-12), 23.7 (CH₂, C-2), 20.8 (CH₂, C-11), 19.3 (CH₃, C-30), 18.1 (CH₂, C-6), 16.5 (CH₃, C-24), 16.1 (CH₃, C-25), 16.0 (CH₃, C-26), 14.7 (CH₃, C-27), 13.3 (CH, C-1'), 8.1 (2*CH₂, C-3', C-4'); calcd for C₃₄H₅₂NaO₄ [M+Na]⁺ 547.3763, found 547.3758.

Preparation of 3-O-(1*H***-imidazole-1-carbonyl)betulinic acid (5).** To a solution of **1** (50.0 mg) in anhy. CH₂Cl₂ (10.0 mL) was added 1,1'-carbonyldiimidazole (53.0 mg) and stirred at 25

^oC for 16 h (TLC control). Reaction mixture was evaporated under reduced pressure and the residue was chromatographed over a column of silica gel (2.0 g) made up in EtOAc/hexanes (30:70) and eluted with the same solvent combination to give **5** (52.5, 87%) as a white amorphous solid. The spectroscopic data (NMR and LRMS) of **5** were identical with those reported.²

Preparation of 3-O-methoxycarbonylbetulinic acid (6). To a solution of 5 (20.0 mg) in anhy. MeOH (1.0 mL) was added NaOMe (1.0 mg) and stirred at 25 °C for 6 h (TLC control). The reaction mixture was evaporated under reduced pressure and the resulting residue was chromatographed over a column of silica gel (1.0 g) using hexanes/CH₂Cl₂ (60:40) as eluant to give **6** (15.2 mg, 81%) as an amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ 4.71 (1H, brd, J = 1.8 Hz, Ha-29), 4.59 (1H, brt, J = 1.8 Hz, Hb-29), 4.29 (1H, dd, J = 10.7, 4.8 Hz, H-3), 3.74 (3H, s, OMe), 2.98 (1H, dt, J = 4.2, 10.4 Hz, H-19), 2.25 (1H, dt, J = 12.6, 3.3 Hz, Ha-16), 2.15 (1H, dt, J = 3.5, 12.2 Hz, H-13), 1.96 (1H, m, Ha-21), 1.94 (1H, m, Ha-22), 1.66 (1H, m, Ha-12), 1.67 (3H, s, H₃-30), 1.66 (1H, m, Ha-12), 1.59 (1H, m, H-18), 1.56 (2H, m, H₂-2), 1.48 (2H, m, Ha-15, Ha-6), 1.47 (1H, m, Hb-22), 1.39 (1H, m, Hb-21), 1.36 (1H, m, Hb-6), 1.35 (2H, m, H₂-7), 1.27 (1H, m, H-9), 1.23 (1H, m, Hb-11), 1.16 (1H, m, Hb-15), 1.01 (1H, m, Hb-12), 0.95 (3H, s, H₃-27), 0.93 (1H, m, Hb-1), 0.91 (3H, s, H₃-26), 0.89 (3H, s, H₃-25), 0.82 (3H, s, H₃-23), 0.81 $(3H, s, H_3-24), 0.76 (1H, d, J = 9.8, Hz, H-5); {}^{13}C NMR (100 MHz, CDCl_3) \delta 181.9 (C, C-28),$ 155.8 (C, C-1'), 150.4 (C, C-20), 109.7 (CH₂, C-29), 85.5 (CH, C-3), 56.4 (C, C-17), 55.4 (CH, C-5), 54.5 (CH₃, OMe), 50.4 (CH, C-9), 49.2 (CH, C-18), 46.9 (CH, C-19), 42.4 (C, C-14), 40.7 (C, C-8), 38.4 (C, C-4), 38.3 (C, C-10), 38.0 (CH₂, C-1), 37.1 (CH₂, C-22), 34.2 (CH₂, C-7), 32.1 (CH₂, C-16), 30.6 (CH₂, C-21), 29.7 (CH₂, C-15), 27.8 (CH₃, C-23), 25.4 (CH₂, C-12), 23.6 (CH₂, C-2), 20.8 (CH₂, C-11), 19.3 (CH₃, C-30), 18.1 (CH₂, C-6), 16.3 (CH₃, C-24), 16.1 (CH₃, C-25), 16.0 (CH₃, C-26), 14.7 (CH₃, C-27); calcd for C₃₂H₅₀NaO₅ [M+Na]⁺ 537.3556, found 537.3368.

Preparation of methyl betulinate (7). A solution of excess CH_2N_2 in Et_2O was added to a solution of **1** (40.0 mg) in Et_2O (10.0 mL) and stirred at 25 °C for 1 h (TLC control). The reaction mixture was evaporated under reduced pressure to give **6** (40.8 mg, 99%) as a white solid. The data (NMR and LRMS) of **6** were identical with those reported.³

Preparation of 28-O-5-methyl-2-furoylbetulinic anhydride (8). A solution of 1 (25.0 mg), 5-methyl-2-furoic acid (20.7 mg), N,N'-dicyclohexylcarbodiimide (DCC, 50.0 mg) and 4-pp (1.0 mg) in anhy. EtOAc (1.5 mL) was stirred at 25 °C for 72 h (TLC control). The reaction mixture was filtered, filtrate was evaporated under reduced pressure and the residue thus obtained was chromatographed over a column of silica gel (2.0 g) made up in hexanes/CH₂Cl₂ (80:20) and eluted with hexanes/CH₂Cl₂ (80:20) followed by CH₂Cl₂. Fractions eluted with CH₂Cl₂ were combined to give 8 (22.3 mg, 72%) as a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ 7.17 (1H, d, J = 3.4 Hz, H-3'), 6.17 (1H, d, J = 3.4 Hz, H-4'), 4.72 (1H, brd, J = 1.8 Hz, Ha-29), 4.60 (1H, brt, J = 1.8 Hz, Hb-29), 3.16 (1H, dd, J = 11.9, 4.2 Hz, H-3), 2.99 (1H, dt, J = 5.0, 11.3 Hz, H-19), 2.39 (3H, s, H₃-6'), 2.31 (1H, dt, *J* = 12.6, 3.3 Hz, Ha-16), 2.27 (1H, dt, *J* = 3.9, 12.2 Hz, H-13), 2.11 (1H, m, Ha-22), 2.04 (1H, m, Ha-21), 1.71 (1H, m, Ha-12), 1.67 (3H, s, H₃-30), 1.65 (2H, m, Ha-1, H-18), 1.60 (1H, m, Ha-15), 1.57 (2H, m, H₂-2), 1.50 (2H, m, Hb-16, Hb-22), 1.49 (1H, m, Ha-6), 1.43 (1H, m, Hb-21), 1.40 (1H, m, Ha-11), 1.36 (3H, m, Hb-6, H₂-7), 1.28–1.22 (3H, m, H-9, Hb-11, Hb-15), 1.00 (1H, m, Hb-12), 0.97 (3H, s, H₃-27), 0.96 (3H, s, H₃-26), 0.95 (3H, s, H₃-23), 0.85 (1H, m, Hb-1), 0.80 (3H, s, H₃-25), 0.74 (3H, s, H₃-24), 0.65 (1H, d, J = 9.4 Hz, H-5); ¹³C NMR (100 MHz, CDCl₃) δ 171.2 (C, C-28), 159.6 (C, C-5'), 154.1 (C, C-1'), 150.0 (C, C-20), 142.8 (C, C-2'), 122.7 (CH, C-3'), 109.9 (CH₂, C-29), 109.3 (CH, C-4'), 78.9 (CH, C-3), 57.9 (C, C-17), 55.4 (CH, C-5), 50.6 (CH, C-9), 49.3 (CH, C-18), 46.6 (CH, C-19), 42.5 (C, C-14), 40.8 (C, C-8), 38.9 (CH₂, C-1), 38.7 (C, C-4), 38.1 (CH, C-13), 37.2 (C, C-10), 36.3 (CH₂, C-22), 34.3 (CH₂, C-7), 31.7 (CH₂, C-16), 30.3 (CH₂, C-21), 29.7 (CH₂, C-15), 28.0 (CH₃, C-23), 25.4 (CH₂, C-12), 23.6 (CH₂, C-2), 20.8 (CH₂, C-11), 19.3 (CH₃, C-30), 18.1

(CH₂, C-6), 16.2 (CH₃, C-26), 16.0 (CH₃, C-25), 15.4 (CH₃, C-24), 14.7 (CH₃, C-27), 14.2 (CH₃, C-6'); calcd for C₃₆H₅₂NaO₅ [M+Na]⁺ 587.3712, found 587.3738.

Preparation of 28-O-(3',4',5'-trimethoxy)-benzoylbetulinic anhydride (9). A solution of 1 (25.0 mg), 3,4,5-trimethoxybenzoic acid (34.8 mg), DCC (50.0 mg) and 4-pp (1.0 mg) in anhy. EtOAc (1.5 mL) was stirred at 25 °C for 72 h (TLC control). The reaction mixture was filtered, filtrate was evaporated under reduced pressure and the rsulting residue was chromatographed over a column of silica gel (2.0 g) made up in toluene/acetone (95:5) and eluted with the same solvent mixture to give 9 (24.5 mg, 69%) as an amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ 7.26 (2H, s, H-3', H-7'), 4.73 (1H, brd, J = 2.1 Hz, Ha-29), 4.61 (1H, brt, J = 2.1 Hz, Hb-29), 3.91 (3H, s, OMe), 3.88 (6H, s, 2*OMe), 3.16 (1H, dd, J = 11.5, 5.0 Hz, H-3), 3.03 (1H, dt, J = 5.0, 11.2 Hz, H-19), 2.33 (1H, m, Ha-16), 2.32 (1H, m, H-13), 2.09 (1H, m, Ha-22), 2.05 (1H, m, Ha-21), 1.71 (1H, m, Ha-12), 1.67 (3H, s, H₃-30), 1.65–1.63 (3H, m, Ha-1, Ha-15, H-18), 1.57 (2H, m, H₂-2), 1.54 (2H, m, Hb-16, Hb-22), 1.49 (1H, m, Ha-6), 1.46 (1H, m, Hb-21), 1.42 (1H, m, Ha-11), 1.36 (3H, m, Hb-6, H₂-7), 1.28–1.22 (3H, m, H-9, Hb-11, Hb-15), 1.02 (1H, m, Hb-12), 0.98 (3H, s, H₃-27), 0.96 (3H, s, H₃-26), 0.94 (3H, s, H₃-23), 0.85 (1H, m, Hb-1), 0.80 (3H, s, H₃-25), 0.74 (3H, s, H₃-24), 0.66 (1H, d, J = 8.7 Hz, H-5); ¹³C NMR (100 MHz, CDCl₃) δ 171.1 (C, C-28), 159.6 (C, C-5'), 162.4 (C, C-2'), 153.1 (C, C-1', C-4', C-6'), 149.8 (C, C-20), 143.5(C, C-5'), 110.0 (CH₂, C-29), 107.6 (CH, C-3', C-7'), 78.9 (CH, C-3), 61.0 (CH₃, OMe), 58.2 (C, C-17), 56.2 (CH₃, OMe), 55.4 (CH, C-5), 50.6 (CH, C-9), 49.3 (CH, C-18), 46.6 (CH, C-19), 42.5 (C, C-14), 40.8 (C, C-8), 38.9 (CH₂, C-1), 38.7 (C, C-4), 38.1 (CH, C-13), 37.2 (C, C-10), 36.2 (CH₂, C-22), 34.3 (CH₂, C-7), 31.9 (CH₂, C-16), 30.3 (CH₂, C-21), 29.8 (CH₂, C-15), 27.9 (CH₃, C-23), 25.4 (CH₂, C-12), 23.6 (CH₂, C-2), 20.8 (CH₂, C-11), 19.4 (CH₃, C-30), 18.3 (CH₂, C-6), 16.1 (CH₃, C-26), 16.0 (CH₃, C-25), 15.3 (CH₃, C-24), 14.7 (CH₃, C-27); calcd for C₄₀H₅₈NaO₇ [M+Na]⁺ 673.4080, found 673.4086.

Preparation of 3-O-acetylmethyl betulinate (10). To a solution of **7** (10.0 mg) in pyridine (500 μ L) was added Ac₂O (50 μ L) and stirred at 25 °C. After 16 h (TLC control), EtOH was

added to the reaction mixture and evaporated under reduced pressure. The residue thus obtained was chromatographed over a column of silica gel using hexanes/CH₂Cl₂ (60:40) followed by hexanes/CH₂Cl₂ (50:50). Fractions eluted with hexanes/CH₂Cl₂ (50:50) were combined to give **7** (10.5 mg, 96%) as a white solid. The spectroscopic data (NMR and LRMS) of **7** were identical with those reported.^{1,3}

Preparation of betulonic acid (11). To a solution of **1 (**20.0 mg) in *N*,*N*-dimethylformamide (400.0 μ L), Cr₂O₃ (20.0 mg) and conc. H₂SO₄ (3.0 μ L) were added and stirred at 25 °C. After 12 h (TLC control), the reaction mixture was diluted with EtOAc (15.0 mL) and washed with brine (3 x 5 mL), dried over anhy. Na₂SO₄ and evaporated under reduced pressure. The resulting residue was chromatographed over a column of silica gel using CH₂Cl₂/MeOH (99:1) as eluant to afford **11** (19.2 mg, 96%) as a white solid. The spectroscopic data (NMR and LRMS) of **11** were identical with those reported.⁴

Preparation of methyl betulonate (12). A solution of excess CH_2N_2 in Et_2O was added to a solution of **3** (10.0 mg) in Et_2O (2.5 mL) and stirred at 25 °C for 1 h (TLC control). The reaction mixture was evaporated under reduced pressure to afford **12** (10.2 mg, 99%) as a white solid. The spectroscopic data (NMR and LRMS) of **12** were identical with those reported.⁴

Preparation of 20(29)-epoxybetulinic acid (14). To a solution of **1** (10.0 mg) in CH_2CI_2 (2.5 mL) at 0 °C was added *m*-CPBA (8.0 mg) and stirred at 0 °C for 5 min and then at 25 °C for 4h (TLC control). The reaction mixture was diluted with NaHSO₃ and extracted with CH_2CI_2 . The combined organic extracts were washed with brine, dried over anhy. Na₂SO₄, evaporated under reduced pressure and the resulting residue was chromatographed over a column of silica gel using CH_2CI_2 as eluant to give **14** (7.0 mg, 68%) as a white solid. The spectroscopic data (NMR and LRMS) of **14** were identical with those reported.⁶

Preparation of 20(29)-epoxymethyl betulinate (15). To a solution of **14** (30.0 mg) in CH_2CI_2 (5.0 mL) at 0 °C was added *m*-CPBA (25.0 mg) and stirred at 0 °C for 5 min and then at 25 °C for 4h (TLC control). The reaction mixture was diluted with NaHSO₃ and extracted with

 CH_2Cl_2 . The combined organic extracts was washed with brine, dried over anhy. Na_2SO_4 , evaporated under reduced pressure and the residue thus obtained was chromatographed over a column of silica gel using $CH_2Cl_2/MeOH$ (98:2) as eluant to afford **15** (22.0 mg, 71%) as a white solid. The spectroscopic data (NMR and LRMS) of **15** were identical with those reported.⁷

Preparation of 3-O-acetyl-20(29)-epoxymethyl betulinate (16). To a solution of **15** (10.0 mg) in pyridine (500 μ L) was added Ac₂O (50 μ L) and stirred at 25 °C. After 16 h, EtOH was added to the reaction mixture and evaporated under reduced pressure. The residue thus obtained was chromatographed over a column of silica gel using hexanes/CH₂Cl₂ (1:1) to yield **16** (10.5 mg, 97%) as a white solid. The spectroscopic data (NMR and LRMS) of **16** were identical with those reported.⁷

Preparation of 3,28-di-O-tetrahydropyranylbetulin (17) and 28-O-

tetrahydropyranylbetulin (32). To a solution of betulin (**2**, 100.0 mg) in THF (2.5 mL) was added 3,4-dihydro-2*H*-pyran (DHP, 200.0 μ L) and *para*-toluenesulfonic acid (*p*-TSA, 0.5 mg) and stirred at 25 °C for 1.5 h (TLC control). The reaction mixture was evaporated under reduced pressure and the resulting residue was chromatographed over a column of silica gel (5.0 g) made up in CH₂Cl₂ and eluted with CH₂Cl₂. Fractions having similar TLC profiles were combined and evaporated to give **17** (60.5 mg, 45%) and **32** (42.7 mg, 37%) as amorphous solids.

3,28-Di-O-tetrahydropyranylbetulin (17). ¹H NMR (400 MHz, CDCl₃) δ 4.64 (1H, brd, *J* = 2.1 Hz, Ha-29), 4.53 (1H, brt, *J* = 2.1 Hz, Hb-29), 3.90 (1H, d, *J* = 11.0 Hz, Ha-28), 3.81 (2H, m), 3.50 (1H, d, *J* = 11.0 Hz, Hb-28), 3.44 (2H, m), 3.42 (2H, m), 3.18 (1H, dd, *J* = 11.9, 5.0 H-3), 2.43 (1H, m, H-H-19), 1.67 (3H, s, H₃-30), 1.00 (3H, s), 0.94 (3H, s), 0.85 (3H, s), 0.80 (3H, s), 0.76 (3H, s), 0.65 (1H, d, J = 9.4 Hz, H-5).

The spectroscopic data (NMR and LRMS) of 32 were identical with those reported.⁴

Acetylation of 28-O-tetrahydropyranylbetulin (32). To a solution of 32 (40.0 mg) in pyridine (1.0 mL) was added Ac₂O (200.0 μ L) and stirred at 25 °C for 5 h (TLC control). The

reaction mixture was diluted with EtOH and evaporated under reduced pressure and the resulting residue was passed through a short column of silica gel to afford 3-O-acetyl-28-O-tetrahydropyranylbetulin (**18**, 40.9 mg, 95%) as an amorphous solid. The spectroscopic data (NMR and LRMS) of **18** were identical with those reported.⁴

Preparation of 3-O-acetylbetulin (19). To a solution of **18** (20.0 mg) in EtOH (1.0 mL) was added *p*-TSA (1.0 mg) and stirred at 25 °C for 6 h (TLC control). The reaction was quenched with a saturated solution of aqueous NaHCO₃ (5.0 mL) and extracted with EtOAc (3 x 5.0 mL). The combined organic extracts was washed with brine, dried over anhy. Na₂SO₄ and evaporated under reduced pressure. The resulting residue was chromatographed over a column of silica gel using CH₂Cl₂ as eluant to provide **19** (16.5 mg, 90%) as an amorphous solid. The spectroscopic data (NMR and LRMS) of **19** were identical with those reported.⁴

Preparation of 3-O-cyclopropanoyl betulin (20). A solution of 32 (20.0 mg),

cyclopropanecarboxylic acid (10.0 mg), DCC (27.0 mg) and 4-pp (1.0 mg) in anhy. EtOAc (1.0 mL) was stirred at 25 °C for 16 h (TLC control). The reaction mixture was filtered, the filtrate was evaporated under reduced pressure and the resulting residue was chromatographed over a column of silica gel. The product (21.0 mg) thus obtained was dissolved in EtOH (1.0 mL), stirred with *p*-TSA (2.0 mg) at 25 °C for 6 h (TLC control), quenched with a solution of saturated aqueous NaHCO₃ (5.0 mL), and extracted with EtOAc (3 x 5.0 mL). The combined organic extracts was washed with brine, dried over anhy. Na₂SO₄ and evaporated under reduced pressure. The resulting residue was then chromatographed over a column of silica gel using CH₂Cl₂ as eluant to give **20** (17.2 mg, 89%) as an amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ 4.65 (1H, brd, *J* = 2.1 Hz, Ha-29), 4.56 (1H, brt, *J* = 2.1 Hz, Hb-29), 4.43 (1H, dd, *J* = 10.4, 5.2 Hz, H-3), 3.77 (1H, d, *J* = 11.0 Hz, Ha-28), 3.30 (1H, d, J = 11.0 Hz, Hb-28), 2.35 (1H, dt, *J* = 5.6, 10.8 Hz, H-19), 1.98–1.80 (H, m, Ha-16, Ha-21, Ha-22), 1.66 (3H, s, H₃-30), 1.63–1.46 (9H, m, Ha-1, H₂-2, Ha-6, Ha-12, H-13, Ha-15, H-18, H-2'), 1.44–1.30 (5H, m, Hb-6, H₂-7, Ha-11, Hb-21), 1.28–1.22 (3H, m, H-9, Hb-11, Hb-16), 1.00 (3H, s, H₃-23), 0.96 (2H, m, Ha-3',

Ha-4'), 0.95 (3H, s, H₃-27), 0.82 (9H, s,H₃-24, H₃-25, H₃-26), 0.76 (1H, d, J = 8.7 Hz, H-5); ¹³C NMR (100 MHz, CDCl₃) δ 174.6 (C, C-1'), 150.5 (C, C-20), 109.7 (CH₂, C-29), 80.6 (CH, C-3), 60.5 (CH₂, C-28), 55.4 (CH, C-5), 50.3 (CH, C-9), 48.7 (CH, C-18), 47.8 (CH, C-19), 47.7 (C, C-17), 42.7 (C, C-14), 40.9 (C, C-8), 38.3 (CH₂, C-1), 37.9 (C, C-4), 37.3 (CH, C-13), 37.0 (C, C-10), 34.1 (CH₂, C-7), 33.9 (CH₂, C-22), 29.7 (CH₂, C-16), 29.1 (CH₂, C-21), 27.9 (CH₃, C-23), 27.0 (CH₂, C-15), 25.1 (CH₂, C-12), 23.7 (CH₂, C-2), 20.8 (CH₂, C-11), 19.0 (CH₃, C-30), 18.1 (CH₂, C-6), 16.5 (CH₃, C-26), 16.1 (CH₃, C-25), 15.9 (CH₃, C-24), 14.7 (CH₃, C-27), 13.3, (CH, C-1'), 8.1 (2*CH₂, C-3', C-4'); calcd for C₃₃H₅₄NaO₃ [M+Na]⁺ 533.3971, found 533.3967.

Preparation of 28-O-acetylbetulin (21) and 3,28-di-O-acetylbetulin (22). To a solution of **2** (100.0 mg) in pyridine (2.0 mL) was added Ac₂O (45 μ L) and stirred at 25 °C for 5 h (TLC control). The reaction mixture was diluted with EtOH and evaporated under reduced pressure. The resulting residue was chromatographed over a column of silica gel (4.0 g) made up in hexanes/CH₂Cl₂ (1:1) and eluted with hexanes/CH₂Cl₂ (1:1) followed by hexanes/CH₂Cl₂ (1:3). The fractions eluted with hexanes/CH₂Cl₂ (1:1) were combined and evaporated to give **22** (17.6, 15%) as an amorphous solid and those eluted with hexanes/CH₂Cl₂ (1:3) were combined and evaporated to give **21** (90.1, 82%) as an amorphous solid. The spectroscopic data (NMR and LRMS) of **21** and **22** were identical with those reported.⁴

Preparation of ((1*R*,3a*S*,5a*R*,5b*R*,9*S*,11a*R*)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl) icosahydro-3a*H*-cyclopenta[a]chrysen-3a-yl)methyl 5-methylfuran-2carboxylate [28-*O*-(5-methyl-2-furoyl)betulin (23). A solution of 2 (50.0 mg), 5-methyl-2furoic acid (15.6 mg), DCC (30.0 mg) and 4-pp (ca 1.0 mg) in anhy. EtOAc was stirred at 25 °C. After 16 h (TLC control), the reaction mixture was filtered, and the filtrate was evaporated under reduced pressure. The resulting residue was chromatographed over a column of silica gel (2.0 g) made up in EtOAc/hexanes (5:95) and eluted with the same solvent to afford **23** (42.8 mg, 69%) as an amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ 7.03 (1H, d, *J* = 3.7 Hz, H-3'), 6.08 (1H, d, *J* = 3.7 Hz, H-4'), 4.68 (1H, brd, *J* = 1.8 Hz, Ha-29), 4.57 (1H, brt, *J* = 1.8 Hz, Hb-29), 4.45 (1H, d, J = 11.4 Hz, Ha-28), 4.02 (1H, d, J = 11.4 Hz, Hb-28), 3.16 (1H, dd, J = 11.9, 4.2 Hz, H-3), 2.48 (1H, dt, J = 5.8, 11.1 Hz, H-19), 2.36 (3H, s, H₃-6'), 1.99 (1H, m, Ha-21), 1.90 (1H, m, Ha-16), 1.84 (1H, m, Ha-22), 1.69 (1H, m, H-13), 1.67 (3H, s, H₃-30), 1.65 (2H, m, Ha-1, Ha-12), 1.60 (1H, m, H-18), 1.57–1.52 (2H, m, H₂-2), 1.49 (1H, m, Ha-6), 1.40 (2H, m, Ha-11, Ha-15), 1.36 (5H, m, Hb-6, H₂-7, Ha-11, Hb-21), 1.27 (1H, m, Hb-16), 1.24 (2H, m, H-9, Hb-11), 1.11 (1H, m, Hb-22), 1.03 (2H, m, Hb-12, Hb-15), 1.02 (3H, s, H₃-26), 0.96 (3H, s, H₃-27), 0.94(3H, s, H₃-23), 0.80 (3H, s, H₃-25), 0.85 (1H, m, Hb-1), 0.80 (3H, s, H₃-25), 0.74 (3H, s, H₃-24), 0.66 (1H, d, J = 9.1 Hz, H-5); ¹³C NMR (100 MHz, CDCl₃) δ 159.3 (C, C-1'), 157.2 (C, C-5'), 150.2 (C, C-20), 143.1 (C, C-2'), 119.0 (CH, C-3'), 109.9 (CH₂, C-29), 108.3 (CH, C-4'), 78.9 (CH, C-3), 62.9 (CH₂, C-28), 55.3 (CH, C-5), 50.4 (CH, C-9), 48.8 (CH, C-18), 47.7 (CH, C-19), 46.8 (C, C-17), 42.7 (C, C-14), 40.9 (C, C-8), 38.8 (C, C-4), 38.7 (CH₂, C-1), 37.6 (CH, C-13), 37.1 (C, C-10), 34.7 (CH₂, C-22), 34.2 (CH₂, C-7), 29.8 (CH₂, C-16), 29.6 (CH₂, C-21), 27.9 (CH₃, C-23), 27.4 (CH₂, C-2), 27.0 (CH₂, C-15), 25.2 (CH₂, C-12), 20.8 (CH₂, C-11), 19.1 (CH₃, C-30), 18.3 (CH₂, C-6), 16.1 (CH₃, C-26), 16.0 (CH₃, C-25), 15.3 (CH₃, C-24), 14.7 (CH₃, C-27), 14.0 (CH₃, C-6'); calcd for C₃₆H₅₄NaO₄ [M+Na]⁺ 573.3920, found 573.3927.

Preparation of ((1*R*,3a*S*,5a*R*,5b*R*,9*S*,11a*R*)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)icosahydro-3a*H*-cyclopenta[a]chrysen-3a-yl)methyl thiophene-2carboxylate [28-*O*-(2-thiophenecarboxyloyl)betulin (24). A solution of 2 (50.0 mg), 2thiophenecarboxylic acid (15.8 mg), DCC (30.0 mg) and 4-pp (ca 1.0 mg) in anhy. EtOAc was stirred at 25 °C. After 16 h (TLC control), the reaction mixture was filtered, filtrate was evaporated under reduced pressure and the resulting residue was chromatographed over a column of silica gel (2.0 g) made up in EtOAc/hexanes (5:95) and eluted with the same solvent to give **24** (44.2 mg, 71%) as an amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (1H, dd, *J* = 3.8, 1.3 Hz, H-5'), 7.53 (1H, dd, *J* = 4.9, 1.3 Hz, H-3'),7.08 (1H, dd, *J* = 4.9, 3.8 Hz, H-4'), 4.69 (1H, brd, *J* = 1.7 Hz, Ha-29), 4.58 (1H, brt, *J* = 1.7 Hz, Hb-29), 4.47 (1H, dd, *J* = 11.0, 1.8 Hz, Ha-28), 4.04 (1H, d, J = 11.0, 1.0 Hz, Hb-28), 3.16 (1H, dd, J = 11.1, 5.0 Hz, H-3), 2.49 (1H, dt, J = 5.5, 11.1 Hz, H-19), 2.02 (1H, m, Ha-21), 1.94 (1H, m, Ha-16), 1.87 (1H, m, Ha-22), 1.72 (1H, m, Ha-15), 1.69 (1H, m, H-13), 1.68 (3H, s, H₃-30), 1.67 (2H, m, Ha-1, Ha-12), 1.62 (1H, m, H-18), 1.57–1.52 (2H, m, H₂-2), 1.49 (1H, m, Ha-6), 1.40 (2H, m, Ha-11, Hb-21), 1.38 (3H, m, Hb-6, H₂-7), 1.29 (1H, m, Hb-16), 1.24 (1H, m, Ha-9), 1.21 (1H, m, Hb-11), 1.13 (1H, m, Hb-22), 1.04 (2H, m, Hb-12, Hb-15), 1.03 (3H, s, H₃-26), 0.97 (3H, s, H₃-27), 0.94 (3H, s, H₃-23), 0.85 (1H, m, Hb-1), 0.81 (3H, s, H₃-25), 0.80 (3H, s, H₃-25), 0.74 (3H, s, H₃-24), 0.66 (1H, d, J = 9.1 Hz, H-5); ¹³C NMR (100 MHz, CDCl₃) δ 162.7 (C, C-1'), 150.1 (C, C-20), 134.0 (C, C-2'), 133.2 (CH, C-5'), 132.2 (CH, C-3'), 127.4 (CH, C-4'), 109.9 (CH₂, C-29), 78.9 (CH, C-3), 63.5 (CH₂, C-28), 55.3 (CH, C-5), 50.3 (CH, C-9), 48.8 (CH, C-18), 47.8 (CH, C-19), 46.7 (C, C-17), 42.8 (C, C-14), 40.9 (C, C-8), 38.9 (C, C-4), 38.7 (CH₂, C-1), 37.7 (CH, C-13), 37.2 (C, C-10), 34.7 (CH₂, C-22), 34.2 (CH₂, C-7), 29.9 (CH₂, C-16), 29.7 (CH₂, C-21), 28.0 (CH₃, C-23), 27.4 (CH₂, C-6), 16.1 (CH₃, C-26), 16.0 (CH₃, C-25), 15.4 (CH₃, C-24), 14.8 (CH₃, C-27); calcd for C_{35H₅₂NaO₃S [M+Na]⁺ 575.3535, found 575.3529.}

Preparation of 3*β***-hydroxy-lup-20(29)-en-28-yl-1***H***-imidazole-1-carboxylate [28-***O***-(1***H***imidazole-1-carbonyloxy)betulin (25). To a solution of 2** (50.0 mg) in CH₂Cl₂ (2.0 mL) was added CDI (17.0 mg) and stirred at 25 $_{0}$ C for 16 h (TLC control). The reaction mixture was evaporated under reduced pressure and the resulting residue was chromatographed over a column of silica gel (1.0 g) using EtOAc as eluant to give 25 (40.2 mg, 66%) as an amorphous solid. The spectroscopic data (NMR and LRMS) of **25** were identical with those reported.²

Preparation of ((1*R*,3a*S*,5a*R*,5b*R*,9*S*,11a*R*)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)icosahydro-3a*H*-cyclopenta[a]chrysen-3a-yl)methyl methyl carbonate [28-O-methoxycarbonylbetulin] (26). To a solution of 25 (20.0 mg) in anhy. MeOH (1.0 mL) was added NaOMe (ca 0.5 mg) and stirred at 25 °C for 5 h (TLC control). The reaction mixture was evaporated under reduced pressure and the residue was chromatographed over a column of silica gel (1.0 g) using hexanes/CH₂Cl₂ (1:1) as eluant to give 26 (15.8 mg, 85%) as an amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ 4.67 (1H, brd, J = 1.6 Hz, Ha-29), 4.57 (1H, brt, J = 1.6 Hz, Hb-29), 4.32 (1H, dd, J = 10.8, 1.9 Hz, Ha-28), 3.89 (1H, d, J = 10.8, 1.0 Hz, Hb-28), 3.77 (3H, s, OMe), 3.16 (1H, dd, J = 11.5, 4.8 Hz, H-3), 2.41 (1H, dt, J = 5.9, 11.0 Hz, H-19), 1.96 (1H, m, Ha-21), 1.86 (1H, m, Ha-16), 1.80 (1H, m, Ha-22), 1.69 (1H, m, Ha-15), 1.68 (3H, s, H₃-30), 1.62 (3H, m, Ha-1, Ha-12, H-13), 1.57 (3H, m, H₂-2, H-18), 1.48 (1H, m, Ha-6), 1.36 (2H, m, H_a-11, Hb-21), 1.37 (3H, m, Hb-6, H₂-7), 1.24 (2H, m, H-9, Hb-16), 1.18 (1H, m, Hb-11), 1.05 (1H, m, Hb-22), 1.04 (1H, m, Hb-15), 1.03 (1H, m, Hb-12), 1.01 (3H, s, H₃-26), 0.95 (3H, s, H₃-27), 0.94 (3H, s, H₃-23), 0.85 (1H, m, Hb-1), 0.81 (3H, s, H₃-25), 0.80 (3H, s, H₃-25), 0.74 (3H, s, H₃-24), 0.66 (1H, d, J = 9.1 Hz, H-5); ¹³C NMR (100 MHz, CDCl₃) δ 156.3 (C, C-1'), 150.0 (C, C-20), 109.9 (CH₂, C-29), 78.9 (CH, C-3), 66.6 (CH₂, C-28), 55.2 (CH, C-5), 54.7 (CH₃, OMe), 50.3 (CH, C-9), 48.8 (CH, C-18), 47.7 (CH, C-19), 46.5 (C, C-17), 42.7 (C, C-14), 40.8 (C, C-8), 38.8 (C, C-4), 38.7 (CH₂, C-1), 37.6 (CH, C-13), 37.1 (C, C-10), 34.3 (CH₂, C-22), 34.1 (CH₂, C-7), 29.5 (CH₂, C-16), 27.9 (CH₃, C-23), 27.9 (CH₂, C-21), 27.4 (CH₂, C-2), 27.0 (CH₂, C-15), 25.1 (CH₂, C-12), 20.7 (CH₂, C-11), 19.1 (CH₃, C-30), 18.2 (CH₂, C-6), 16.1 (CH₃, C-26), 16.0 (CH₃, C-25), 15.3 (CH₃, C-24), 14.7 (CH₃, C-27); calcd for C₃₂H₅₂NaO₄ [M+Na]⁺ 523.3763, found 523.3759.

Preparation of 3,28-di-*O*-*tert*-butyldimethylsilylbetulin (27). To a solution of **2** (50.0 mg) in anhy. CH₂Cl₂ (1.5 mL) was added *t*-BDMSCI (35.0 mg) and 4-pp (12.0 mg) and stirred at 25 ^oC for 16 h (TLC control). The reaction mixture was transferred to a column of silica gel (1.0 g) and eluted using CH₂Cl₂/hexanes (1:1) as eluant and evaporated to afford **27**⁹ (52.5 mg, 70%) as a gum. ¹H NMR (400 MHz, CDCl₃) *δ* 4.65 (1H, brd, *J* = 1.6 Hz, Ha-29), 4.55 (1H, brt, *J* = 1.6 Hz, Hb-29), 3.64 (1H, d, *J* = 9.9 Hz, Ha-28), 3.23 (1H, d, *J* = 9.9 Hz, Hb-28), 3.13 (1H, dd, *J* = 11.9, 4.9 Hz, H-3), 2.37 (1H, td, *J* = 5.8, 10.5 Hz, H-19), 1.92 (1H, m, Ha-21), 1.88 (1H, m, Ha-16), 1.87 (1H, m, Ha-22), 1.66 (3H, s, H₃-30), 1.63–1.50 (6h, m), 1.49–1.30 (5H, m), 1.28–0.99 (7H, m), 0.98 (3H, s), 0.95 (3H, s), 0.88 (9H, s, -C(CH₃)₃), 0.86 (9H, s, -C(CH₃)₃), 0.85 (3H, s),

0.80 (3H, s), 0.70 (3H, s), 0.64 (1H, d, *J* = 9.3 Hz, H-5), 0.02 (6H, s, Si(CH₃)₂), 0.01 (6H, s, Si(CH₃)₂).

Preparation of 28-O-acetyl-3-oxobetulin (28). To a solution of **21** (20.0 mg) in CH_2CI_2 (1.5 mL) was added pyridinium chlorochromate (20.0 mg) and stirred at 25 °C for 4 h (TLC control). The reaction mixture was introduced to a column of silica gel using CH_2CI_2 as eluant and evaporated to afford **28** (14.8 mg, 74%) as an amorphous solid. The spectroscopic data (NMR and LRMS) of **28** were identical with those reported.⁴

Preparation of betulinaldehyde (29) and betulonaldehyde (30). To a solution of 2 (100.0 mg) in CH_2CI_2 (5.0 ML) at 0°C was added pyridinium chlorochromate (80.0 mg) and stirred at 0 °C for 2 h (TLC control). The reaction mixture was introduced to a column of silica gel (2.0 g), eluted with CH_2CI_2 and evaporated to give 29 (29.5 mg, 30%) and 30 (28.3 mg, 29%) as amorphous solids. The spectroscopic data (NMR and LRMS) of 29 and 30 were identical with those reported.⁴

Preparation of 20(29)-epoxybetulin (31). To a solution of **2** (100.0 mg) in CH_2Cl_2 (10.0 mL) was added *m*-CPBA (80.0 mg) and stirred at 25 °C for 3 h (TLC control). The reaction mixture was concentrated and chromatographed over a clumn of silica gel (2.0 g) made up in CH_2Cl_2 and eluted with CH_2Cl_2 followed by $CH_2Cl_2/MeOH$ (99:1) to afford **31** (90.0 mg, 89%) as an amorphous solid. The spectroscopic data (NMR and LRMS) of **31** were identical with those reported.⁷

 Table S1. Details of statistical analyses for all figures.

Figure	Assay	Statistical	Post-hoc analysis	Number of subjects
panel		test;	(adjusted p-value)	
		findings		
Figure 1	% Change in	One-way	DMSO 0.1% vs. 1	Normalized average
	average	ANOVA;	(20 µM): p<0.0001	peak response: mean ±
	response to 40	p<0.0001	DMSO 0.1% vs. 4:	SEM and (number of
	mM KCl		p<0.0001	cells)
			DMSO 0.1% vs. 5:	0.1% DMSO: 1 ± 0.032
			p<0.0001	(n=559)
			DMSO 0.1% vs. 6:	1 : 0.505 ±0.0336
			p<0.0001	(n=230)
			DMSO 0.1% vs. 7:	4 : 0.411 ± 0.0251
			p<0.0001	(n=180)
			DMSO 0.1% vs. 8:	5 : 0.607 ± 0.0627
			p<0.0001	(n=116)
			DMSO 0.1% vs. 9:	$\hat{6}$: 0.5039 ± 0.0950
			p<0.0001	(n=47)
			DMSO 0.1% vs. 10 :	7 : 0.547 ± 0.0192
			p=0.013	(n=179)
			DMSO 0.1% vs. 14:	8 : 0.355 ± 0.0270
			p<0.0001	(n=81)
			DMSO 0.1% vs. 16:	9 : 0.455 ± 0.0542
			p=0.0089	(n=42)
			DMSO 0.1% vs. 17:	10 : 0.8054 ± 0.0239
			p<0.0001	(n=124)
			DMSO 0.1% vs. 18:	14 : 0.303 ± 0.0272
			p<0.0001	(n=62)
			DMSO 0.1% vs. 19:	16 : 0.7846 ± 0.056
			p<0.0001	(n=104)
			DMSO 0.1% vs. 20:	17 : 0.653 ± 0.0477
			p<0.0001	(n=139)
			DMSO 0.1% vs. 21:	18 : 0.3827 ± 0.033
			p=0.0061	(n=55)
			DMSO 0.1% vs. 22:	19 : 0.578 ± 0.0325
			p<0.0001	(n=171)
			DMSO 0.1% vs. 23:	20 : 0.4044 ± 0.03655
			p<0.0001	(n=113)
			DMSO 0.1% vs. 24:	21 : 0.8189 ± 0.0525
			p<0.0001	(n=171)
			DMSO 0.1% vs. 25:	22 : 0.574 ± 0.0452
			p<0.0001	(n=115)
			DMSO 0.1% vs. 26:	23 : 0.5356 ± 0.0832
			p<0.0001	(n=82)
			DMSO 0.1% vs. 27:	24 : 0.4255 ± 0.0305
			p=0.0005	(n=97)
			DMSO 0.1% vs. 31:	25 : 0.739 ± 0.0273
			p=0.005	(n=365)
				26 : 0.7062 ± 0.0608
				(n=128)

				27 : 0.6717 ± 0.079 (n=60) 31 : 0.8144 ± 0.04818 (n=166)
Figure 2B	Peak total calcium current density	One-way ANOVA, Turkey's test	DMSO 0.1% vs. 8 (20 μM): p=0.0026 DMSO 0.1% vs. 18 (20 μM) p=0.4535 8 (20 μM) vs. 18 (20 μM) p=0.065	DMSO 0.1% (-70.4 ± 6.266, n=13) 8 (-31.65 ± 3.24, n=12) 18 (-58.28 ± 11.86, n=12)
Figure 3B	Peak N-type calcium current	Students' t- test	DMSO (0.1%) vs. 8 : p=0.0050	DMSO 0.1% (-43.93 ± 7.518, n=11) 8 (-18.77 ± 2.654, n=11)
Figure 4B	Peak T-type calcium current	Students' t- test	DMSO (0.1%) vs 8 : p=0.0042	DMSO 0.1% (-60.08 ± 5.02, n=13) 8 (-35.26 ± 5.714, n=9)
	Cell size (pF)	Students' t- test	DMSO (0.1%) vs 8 : p=0.0617	DMSO 0.1% (18.7 ± 1.527, n=13) 8 (24.57 ± 2.814, n=9)
Figure 5A	Peak L-type	Students' t- test	CaV1.2, DMSO (0.1%) vs 8 : 0.2824 CaV1.3, DMSO (0.1%) vs 8 : 0.0658	CaV1.2 DMSO 0.1% (- 35.19 ± 5.98, n=10) 8 (-25.458 ± 6.43 n=10) CaV1.3 DMSO 0.1% (- 111.2 ± 25.115, n=10) 8 (-54.626 ± 14.26, n=10)
Figure 5B	Peak N-type	Students' t- test	CaV2.2, DMSO (0.1%) vs 8 : <0.0001	CaV2.2 DMSO 0.1% (- 76.55 ± 26.89, n=11) 8 (-8.67 ± 7.19 n=12)
Figure 5C	Peak T-type	Students' t- test	CaV3.1, DMSO (0.1%) vs 8 : 0.9187 CaV3.2, DMSO (0.1%) vs 8 : 0.0004 CaV3.3, DMSO (0.1%) vs 8 : 0.2541	CaV3.1 DMSO 0.1% (- 52.47 \pm 7.02, n=10) 8 (-53.43 \pm 6.01, n=10) CaV3.2 DMSO 0.1% (- 38.58 \pm 4.23 n=19) 8 (-20.59 \pm 1.73, n=19) CaV3.3 DMSO 0.1% (- 34.55 \pm 3.83 n=10) 8 (-42.43 \pm 5.48, n=10)
Figure 6A	Paw withdrawal threshold (g), i.t. injection	2-way ANOVA	Vehicle - 8 i.t. 2 µg in 5 µl vs. Pre-SNI: Predrug: p>0.9999 0.5 h: p>0.9999 1 h: p=0.9970 2 h: p=0.0762 3 h: p=0.0061 4 h: p=0.1873	3 h vehicle control (18.42 ± 8.225, n=6) 8 2 µg in 5 µl (1.917 ± 0.6804, n=5)

			5 h: p=0.8189	
Figure 6B	Area under the curve, i.t. injection	Mann- Whitney test	p=0.0303	DMSO 0.1% (18.4 ± 8.189, n=6) 8 (0.9895 ± 1.131, n=5)

^a p values are indicated. Values are mean ± SEM; n, indicates number of subjects.

$$s_{1}^{29} = 0$$

$$s_{2}^{29} = 0$$

$$s_{1}^{20} = 0$$

$$s_{1$$

$$30 \frac{20^{29}}{110} \frac{110^{21}}{110^{21}} \frac{100^{21}}{100^{21}} \frac{110^{21}}{100^{21}} \frac{100^{21}}{100^{21}} \frac{110^{21}}{100^{21}} \frac{100^{21}}{100^{21}} \frac$$

27 R₁ = OtBDMS, R₂ = H, R₃= tBDMS,
$$\Delta^{20,29}$$

28 R₁,R₂ = O, R₃ = Ac, $\Delta^{20,29}$
31 R₁ = OH, R₂ = R₃ = H, 20(29)epoxy

Figure S1. Structures of betulinic acid (1) and betulin (2) analogues.

Figure S2. ¹H NMR spectrum (400 MHz) of 3-O-cyclopropanoyl-betulinic acid (4) in CDCl₃

Figure S3. ¹³C NMR spectrum (100 MHz) of 3-O-cyclopropanoyl-betulinic acid (4) in CDCl₃

Figure S4. HSQC spectrum (400 MHz) of 3-O-cyclopropanoyl-betulinic acid (4) in CDCl₃

Figure S5. HMBC spectrum (400 MHz) of 3-O-cyclopropanoyl-betulinic acid (4) in CDCl₃

Figure S6. ¹H NMR spectrum (400 MHz) of 3-O-methoxycarbonyl-betulinic acid (6) in CDCl₃

Figure S7. ¹³C NMR spectrum (100 MHz) of 3-O-methoxycarbonyl-betulinic acid (6) in CDCl₃

Figure S9. ¹³C NMR spectrum (100 MHz) of 28-*O*-5-methyl-2-furoyl-betulinic anhydride (8) in CDCl₃

Figure S10. ¹H–¹H COSY spectrum (400 MHz) of 28-*O*-5-methyl-2-furoyl-betulinic anhydride (8) in CDCl₃

Figure S11. HSQC spectrum (400 MHz) of 28-*O*-5-methyl-2-furoyl-betulinic anhydride (8) in CDCl₃

Figure S12. HMBC spectrum (400 MHz) of 28-*O*-5-methyl-2-furoyl-betulinic anhydride (8) in CDCl₃

Figure S13. ¹H NMR spectrum (400 MHz) of 28-*O*-(3',4',5'-trimethoxy)-benzoyl-betulinic anhydride (9) in CDCl₃

Figure S14. ¹³C NMR spectrum (100 MHz) of 28-*O*-(3',4',5'-trimethoxy)-benzoyl-betulinic anhydride (**9**) in CDCl₃

Figure S15. HSQC spectrum (400 MHz) of 28-*O*-(3',4',5'-trimethoxy)-benzoyl-betulinic anhydride (9) in CDCl₃

Figure S17. ¹H NMR spectrum (400 MHz) of 3,28-di-*O*-tetrahydropyranyl-betulin (17) in CDCl₃

Figure S18. ¹H NMR spectrum (400 MHz) of 3-O-cyclopropanoyl-betulin (20) in CDCl₃

Figure S19. ¹H NMR spectrum (400 MHz) of 3-O-cyclopropanoyl-betulin (20) in CDCl₃

Figure S20. ¹H NMR spectrum (400 MHz) of 28-O-(5-methyl-2-furoyl)betulin (23) in CDCl₃

Figure S21. ¹³C NMR spectrum (100 MHz) of 28-O-(5-methyl-2-furoyl)betulin (23) in CDCl₃

Figure S22. HSQC spectrum (400 MHz) of 28-O-(5-methyl-2-furoyl)betulin (23) in CDCl₃

Figure S23. HMBC spectrum (400 MHz) of 28-O-(5-methyl-2-furoyl)betulin (23) in CDCl₃

Figure S24. ¹H NMR spectrum (400 MHz) of 28-*O*-(2-thiophenecarboxyloyl)betulin (24) in CDCl₃

Figure S25. ¹³C NMR spectrum (100 MHz) of 28-*O*-(2-thiophenecarboxyloyl)betulin (24) in CDCl₃

Figure S26. HSQC spectrum (400 MHz) of 28-*O*-(2-thiophenecarboxyloyl)betulin (24) in CDCl₃

Figure S27. HMBC spectrum (400 MHz) of 28-*O*-(2-thiophenecarboxyloyl)betulin (24) in CDCl₃

Figure S28. ¹H NMR spectrum (400 MHz) of 28-O-methoxycarbonyl-betulin (26) in CDCl₃

Figure S29. ¹³C NMR spectrum (100 MHz) of 28-O-methoxycarbonyl-betulin (26) in CDCl₃

Figure S30. HSQC spectrum (400 MHz) of 28-O-methoxycarbonyl-betulin (26) in CDCl₃

Figure S31. HMBC spectrum (400 MHz) of 28-O-methoxycarbonyl-betulin (26) in CDCl₃

Figure S33. Acute treatment with betulinic acid analog **8** does not affect T-type currents expressed in HEK cells. Representative traces before (black) and after (pink) application of 20 μ M of NPC-1-11 recorded from HEK cells transiently expressing CaV3.1, CaV3.2 or CaV3.3 channels as indicated. Currents were evoked from -100 to -30 mV for 100 ms.

Figure S34. Raw behavior data of the effects of a single administration (0.4 μ g/ μ l, i.t.) Analog **8** in ALGOGramTM. (A) Acute and tonic pain area: in healthy rats, nociceptive threshold (g) and

latency (sec) were determined using the paw pressure test and the tail flick test. The cut off was 680 g and 10 sec respectively. For the acetic acid test and formalin test, the number of abdominal cramps and paw licking time (sec) were measured. (B) Neuropathic pain area: In the Bennet model of peripheral mononeuropathy, paw pressure test was employed to assess nociceptive threshold (g; cut off: 680 g). For oxaliplatin-induced neuropathy, paw immersion test was used to measure the reaction time (sec). (C) Inflammatory pain area: In carrageenan-induced mechanical hyperalgesia, paw pressure test was applied to measure nociceptive threshold (g; cut off: 680 g). For the kaolin-induced arthritis model, gait score was reported. (D) Post-operative pain area: For the Brennan model of incisional pain, paw withdrawal threshold was measured with electronic Von Frey test. (E) Visceral pain area: Trinitrobenzene sulfonic acid (TNBS) induced chronic colonic hypersensitivity and colonic distension threshold was assessed (mmHg; cut off: 75 mmHg)

Supplementary References

(1) Otsuka H, Fugioka S, Komiya T, Goto M, Hiramatsu Y, Fujimura H. Studies on antiinflammatory agents V. A new anti-imflammatory constituents of Pyracantha crenulata Roem. Chem Pharm Bull 1981;29:3099–3104.

(2) Santos RC, Salvador JAR, Marín S, Cascante M. Novel semisynthetic derivatives of betulin and betulinic acid with cytotoxic activity. Bioorg Med Chem 2009;17:6241–6250.

(3) Monaco P, Previtera L. Isoprenoids from the leaves of Quercus suber. J Nat Prod 1984;47:673–676.

(4) Pohjala L, Alakurtti S, Ahola T, Yli-Kauhaluoma J, Tmmela P. Betulin-derived compounds as inhibitors of alpha virus replication. J Nat Prod 2009;72:1917–1926.

(5) Fujioka T, Kashiwada Y. Anti-AIDS agents, 11. Betulinic acid and platinic acid as anti-HIV principles from Syzigium claviflorum, and the anti-HIV activity of structurally related triterpenoids. J Nat Prod 1994;57:243–247.

(6) Genet C, Strehle A, Schmidt C, Boudjehal G, Lobstein A, Schoonjans K, Souchet M, Auwerx J, Saladin R, Wagner A. Structure-activity relationship study of betulinic acid, A novel and selective TGR5 agonist, and its synthetic derivatives: potential impact in diabetes. J Med Chem 2010;53:178–190.

(7) González AG, Bertolotto EAF, Ravelo AG. Major components of Maytenus aquifolium and partial synthesis of 3-oxo-20-hydroxy-lupan-28-oic acid. Rev Latinoamer Quim 1986;17:51–53.

(8) Li TS, Zhang ZH, Jin TS, Li YL. A mild and practical procedure for tetrahydopyranylation of alcohols and catalyzed by anhydrous ferrous sulfate. Chin Chem Lett 1998;9:241–244.

(9) Zhang K, Chang L, An Q, Wang X, Zuo Z. Dehydroxymethylation of alcohols enabled by cerium photocatalysis. J Am Chem Soc 2019;141:10556–10564.