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6 Appendix

6.1 Supplementary Methods

6.1.1 Details on MRI acquisition

Acquisition
Scanner

Voxel-size
(mm x mm x
mm)

TR
(ms)

TE
(ms)

Sessions/
subjects

T1wanatomical

TrioTim 1x1x1 2400 31 60/30

1x1.02x1.02 2400 31 1/1

1x1x1 2400 32 1010/590

Biograph
mMR

1x1x1 2400 21 2/2

1x1.05x1.05 2300 30 44/42

Missing 1x1x1 missing missing 2/1

T2wanatomical

TrioTim 1x1x1 3200 454 2/2

1x1x1 3200 455 616/616

RS-fMRI

TrioTim 4x4x4 2500 27 11/7

4x4x4 2200 30 8/8

3.3x3.3x3.3 2200 27 1228/625

Biograph
mMR

4x4x4 2200 27 80/40

Missing missing missing missing 4/1

Table S1 Number of scans by parameter combination. TR for fMRI signifies the
time-resolution, while for T1w and T2w it is the time between excitation pulses. Only fMRI
scans lasting more than 2 minutes were kept. All 662 subjects had at least one fMRI scan
lasting at least 6 minutes.
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6.1.1 Details on MRI preprocessing1

Results included in this manuscript come from data preprocessed using fMRIPrep 1.4.1
(RRID:SCR_016216; Esteban, Blair, et al. 2018; Esteban, Markiewicz, et al. 2018), which is
based on Nipype 1.2.0 (RRID:SCR_002502; K. Gorgolewski et al. 2011; K. J. Gorgolewski et
al. 2018).

6.1.1.1 Anatomical data preprocessing

T1-weighted (T1w) images were corrected for intensity non-uniformity (INU) with
`N4BiasFieldCorrection` (Tustison et al. 2010), distributed with ANTs 2.2.0
(RRID:SCR_004757; Tustison et al. 2010; Avants et al. 2008). The T1w-reference was then
skull-stripped with a Nipype implementation of the `antsBrainExtraction.sh` workflow (from
ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal
fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted
T1w using `fast` (FSL 5.0.9) (RRID:SCR_002823; Tustison et al. 2010; Avants et al. 2008;
Zhang, Brady, and Smith 2001). A T1w-reference map was computed after registration of the
T1w images (after INU-correction) using `mri_robust_template` (FreeSurfer 6.0.1) (Reuter,
Rosas, and Fischl 2010). Brain surfaces were reconstructed using `recon-all` (FreeSurfer
6.0.1) (RRID:SCR_001847; Reuter, Rosas, and Fischl 2010; Dale, Fischl, and Sereno 1999),
and the brain mask estimated previously was refined with a custom variation of the method
to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter
of Mindboggle (RRID:SCR_002438; Klein et al. 2017). Volume-based spatial normalization
to one standard space (MNI152NLin2009cAsym) was performed through nonlinear
registration with `antsRegistration` (ANTs 2.2.0), using brain-extracted versions of both T1w
reference and the T1w template. The following template was selected for spatial
normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c (Fonov et al.
2009) (RRID:SCR_008796, TemplateFlow ID: MNI152NLin2009cAsym). Where available,
T2w-images were included for surface reconstruction.

6.1.1.2 Functional data preprocessing

For each BOLD run, the following preprocessing was performed. First, a reference
volume and its skull-stripped version were generated using a custom methodology of
fMRIPrep. The BOLD reference was then co-registered to the T1w reference using
`bbregister` (FreeSurfer) which implements boundary-based registration (Greve and Fischl
2009). Co-registration was configured with nine degrees of freedom to account for distortions
remaining in the BOLD reference. Head-motion parameters with respect to the BOLD
reference (transformation matrices, and six corresponding rotation and translation
parameters) are estimated before any spatiotemporal filtering using `mcflirt` (FSL 5.0.9)
(Jenkinson et al. 2002). The BOLD time-series (including slice-timing correction) were
resampled onto their original, native space by applying a single, composite transform to
correct for head-motion and susceptibility distortions. These resampled BOLD time-series
will be referred to as preprocessed BOLD in original space, or just preprocessed BOLD. The
BOLD time-series were resampled into standard space, generating a preprocessed BOLD

1 The description in this section was automatically created by fMRIPrep and adapted
where needed.
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run in MNI152NLin2009cAsym space. Several confounding time-series were calculated
based on the preprocessed BOLD: framewise displacement (FD), DVARS and three
region-wise global signals. FD and DVARS are calculated for each functional run, both using
their implementations in Nipype (following the definitions by (Power et al. 2014). The three
global signals are extracted within the CSF, the WM, and the whole-brain masks.

All resamplings can be performed with a single interpolation step by composing all the
pertinent transformations (i.e. head-motion transform matrices, susceptibility distortion
correction when available, and co-registrations to anatomical and output spaces). Gridded
(volumetric) resamplings were performed using `antsApplyTransforms` (ANTs), configured
with Lanczos interpolation to minimize the smoothing effects of other kernels (Lanczos
1964). Many internal operations of fMRIPrep use Nilearn 0.5.2 (RRID:SCR_001362;
Abraham et al. 2014), mostly within the functional processing workflow. For more details of
the pipeline, see the section corresponding to workflows in fMRIPrep's documentation .2

6.1.2 Deviation from preregistration

This analysis has been preregistered (Liem et al. 2019). While we have largely followed
the plan, the analysis deviates in several minor points:

● Subjects were only considered for the study if they had at least three clinical sessions
(not two as preregistered). Extracting the slopes of cognitive decline from two
sessions resulted in very noisy slopes. As a result, the sample size is not 849 as
preregistered, but 662. As our learning curve experiments demonstrate, the resulting
sample size is sufficient in the present context.

● After further discussion, we added two features that have not been preregistered to
the non-brain feature set: i) the number of sessions prior to the baseline session (to
account for retest effects), and ii) the cognitive diagnosis at baseline (healthy, mild
cognitive impairment, dementia). Both features did not show high importance in the
permutation importance analysis.

● The preregistered structural features set included 331 features from global,
subcortical, and cortical (volume and thickness) markers. After finding that the
reduced structGS feature set (35 global and subcortical markers) performs equally
well, we conducted the analyses with the more parsimonious structGS modality.

● After further discussion, the preregistered dimensionality reduction approach for the
functional connectivity data seemed suboptimal. It averages positive and negative
values, which might result in the cancellation of positive and negative connectivity
within a network. The updated approach downsampled the connectivity matrix using
a PCA.

● In the preregistration, two hyperparameters were planned to be used for tree pruning
(max_depth = [5, 10, 20, 40, 50, None], where None leads to fully grown trees and
min_samples_leaf = [1, 4, 10]). After further discussion, we decided to remove this
double parametrization and only tune max_depth. Additionally, a currently ongoing
independent project suggested that lower values of max_depth might be worth
investigating in more detail. Hence, we added, max_depth = [3, 7, 15] to the
hyperparameter tuning. Since the hyperparameters did not have a large influence on

2 https://fmriprep.readthedocs.io/en/latest/workflows.html
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the result and those added values did not render the best performance we deem this
change inconsequential.

● The results of the main analysis suggested further validation analyses (brain-age,
extreme group classification). Those were not preregistered. However, they are very
similar to the main analysis (only the models were adapted to the question: ridge
regression for the brain-age analysis; random forest classifier for the extreme group
classification with the criterion to measure the quality of an RF-split tuned with ["gini",
"entropy"]).
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6.1.3 List of features

Modality # features
modality

Name Test/Variables Information # features

non-brain 66 demographic
information

Age, sex, education 3

clinical
assessments

MMSE Sum score 1

CDR 6 items, global and SOB
scores

8

FAQ 10 items and sum score 11

NPI-Q Symptom presence and
severity sum scores

2

GDS Sum score 1

neuropsychology WMS-R Logical memory (LOGIMEM,
MEMUNITS, MEMTIME)
Digit span (DIGIF,
DIGIFLEN, DIGIB,
DIGIBLEN)

7

Word fluency ANIMALS, VEG 2

TMT Part A (TRAILA, TRAILARR,
TRAILALI), Part B (TRAILB,
TRAILBRR, TRAILBLI),
TRAILBnorm =
TRAILB/TRAILA

7

WAIS-R Digit Symbol 1

BNT BOSTON 1

APOE ε2, ε3, and ε4 allele count 3

cognitive diagnosis healthy control, MCI, or
dementia

1

health information cardio/cerebro-vascular health,
diabetes, hypercholesterolemia,
smoking, and family history of
dementia

17

N sessions before
baseline

1

structGS 35 subcortical volume accumbens, amygdala, caudate,
hippocampus, pallidum, putamen,
thalamus

Volume of left and right 14

global
measurements

L + R mean cortical thickness; L +
R lateral, 3rd, 4th ventricles; L + R
total cortical volume; L + R cerebral
white matter volume; L + R
cerebellar white matter and cortical
volume; total subcortical gray
matter volume, total gray matter
volume, corpus callosum volume (5
parcels)

21

func 100 functional
connectivity

300 cortical, cerebellar, and
subcortical ROIs

reduced to 100 PCA
components

100

Table S2. Input features
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6.2 Supplementary Results

6.2.1 Predictive targets

Figure S1. Distribution of predictive targets (cognitive slopes of CDR and MMSE).

6.2.2 Predictive performance (full results)

Figure S2. Adding structural data to non-brain data improves prediction of cognitive decline. Test
performance (R2, coefficient of determination) across splits. Targets: cognitive decline measured via
CDR (Clinical Dementia Rating, top) and MMSE (Mini-Mental State Examination, bottom). Input
modalities: non-brain, structGS (global and subcortical structural volumes), struct (structGS + cortical
volume and thickness), func (functional connectivity). Left panel represents combinations of input
modalities (e.g., first line is non-brain + structGS). The number represents the median, the dashed
vertical line marks the median of the best-performing combination of modalities (within a target). This
figure is an extension of Figure 2 and also includes brain modalities on their own.

6



Predicting future cognitive decline from non-brain and multimodal brain imaging data in healthy and pathological aging

7



Predicting future cognitive decline from non-brain and multimodal brain imaging data in healthy and pathological aging

outperforming
non-brain

(% of splits)

mean difference SD difference

modality / target
CDR

change
MMSE
change

CDR
change

MMSE
change

CDR
change

MMSE
change

structGS 19 5 -0.09 -0.13 0.1 0.09
struct 17 7 -0.09 -0.12 0.1 0.09
func 0 0 -0.36 -0.31 0.08 0.08

non-brain + structGS 92 78 0.06 0.02 0.04 0.04
non-brain + struct 75 59 0.04 0.01 0.06 0.05
non-brain + func 25 31 -0.02 -0.01 0.03 0.03

non-brain + structGS +
func 78 57 0.04 0.01 0.05 0.04

Table S3. Comparison of test performance vs non-brain predictions (% of splits for which the test
prediction R2 is outperforming the non-brain prediction; Nsplits = 1000). Mean and SD difference show
the mean and standard deviation of the modality’s performance vs. the non-brain prediction. Best
performing model (gray): the CDR prediction from non-brain + structGS is outperforming the non-brain
prediction in 91% of splits.

outperforming
null-models
(% of splits)

median difference SD difference

modality / target
CDR

change
MMSE
change

CDR
change

MMSE
change

CDR
change

MMSE
change

non-brain 100 100 0.42 0.36 0.09 0.09
structGS 100 99 0.31 0.21 0.08 0.07
struct 100 100 0.34 0.24 0.08 0.07
func 91 73 0.01 0.01 0.01 0.01
non-brain + structGS 100 100 0.48 0.39 0.08 0.09
non-brain + struct 100 100 0.47 0.38 0.09 0.09
non-brain + func 100 100 0.42 0.35 0.08 0.07
non-brain + structGS +
func 100 100 0.47 0.37 0.08 0.08

Table S4. Comparison of test performance vs null-models (% of splits for which the test prediction R2

is outperforming the null-model prediction). Best performing model (gray): the CDR prediction from
non-brain + structGS is outperforming the non-brain prediction in 100% of splits.
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Figure S3. Scatter plot of true vs predicted trajectories of cognitive change for the non-brain +
structGS model. Mean prediction across splits. CDR: positive values = cognitive decline, MMSE:
negative values = cognitive decline.

6.2.3 Hyperparameter tuning of the random forest regression model

9
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Figure S4. Tuning curves of the random forest regression hyperparameters max tree depth (0
represents fully grown trees) and criterion (MSE: mean squared error, MAE: mean absolute error).
Note that the y-axis is trimmed and the results vary in a rather narrow range.

6.2.4 Learning curves demonstrate sufficient sample size

Figure S5. Learning curve plotting the models’ performance across an increasing training sample
size.
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6.2.5 Age prediction

Figure S6. Predictive performance in brain-age prediction. Input modalities: non-brain, structGS
(global and subcortical structural volumes), func (functional connectivity). The number represents the
median, the dashed vertical line marks the median of the best-performing combination of modalities.
This figure is an extension of Figure 4 and also includes brain modalities on their own.

6.2.6 Extreme group prediction

Figure S7. Predictive performance in predicting extreme groups of cognitive decline (stable vs decline;
F1-score: harmonic mean of the precision and recall). Input modalities: non-brain, structGS (global
and subcortical structural volumes), func (functional connectivity). The number represents the median,
the dashed vertical line marks the median of the best-performing combination of modalities, the red
solid line represents the non-informative baseline score. For this scenario, the baseline score was
calculated to be 0.66. See supplementary text for a derivation.
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A baseline F1-score for binary classification can be readily derived. Starting from the definition of the
F1-score, with precision P and recall R

𝐹
1

= 2 ·  𝑃 ·  𝑅 / (𝑃 + 𝑅)

If we randomly assign the positive class based on a coin-flipping procedure with probability q, and our
sample has positive incidence p and n total samples, we can show that (see Grüne 2020).
𝑇𝑃 = 𝑛𝑝𝑞,  𝑇𝑁 =  𝑛(1 − 𝑞)(1 − 𝑝),  𝐹𝑃 = 𝑛(1 − 𝑝)𝑞 ,  𝐹𝑁 = 𝑛𝑝(1 − 𝑞) 
𝑃 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) = 𝑛𝑝𝑞/(𝑛𝑝𝑞 + 𝑛(1 − 𝑝)𝑞) = 𝑝
𝑅 = 𝐹𝑃/(𝑇𝑃 + 𝐹𝑁) = 𝑛𝑝𝑞/(𝑛𝑝𝑞 + 𝑛𝑝(1 − 𝑞)) = 𝑞

Therefore, for this baseline score,
𝐹

1
= 2 ·  𝑝 ·  𝑞 / (𝑝 + 𝑞)

Under balanced classes, as in our example, 𝑝 = 0. 5
𝐹

1
=  𝑞 / (0. 5 + 𝑞)

Under this non-informative regime, F1 is maximized when , i.e., all samples are assigned to the𝑞 = 1
positive class, resulting in
𝐹

1
=  1 / (0. 5 + 1) = 1/1. 5 = 0. 66
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