

Supplementary Materials for

Clock genes and environmental cues coordinate *Anopheles* pheromone synthesis, swarming, and mating

Guandong Wang*, Joel Vega-Rodríguez*, Abdoulaye Diabate*, Jingnan Liu*, Chunlai Cui, Charles Nignan, Ling Dong, Fang Li, Cheick Oumar Ouedrago, Abdoul Malik Bandaogo, Péguédwindé Simon Sawadogo, Hamidou Maiga, Thiago Luiz Alves e Silva, Tales Vicari Pascini, Sibao Wang†‡, Marcelo Jacobs-Lorena†‡

*These authors contributed equally to this work.

†These authors contributed equally to this work.

‡Corresponding author. Email: sbwang@cemps.ac.cn (S.W.); ljacob13@jhu.edu (M.J.-L.)

Published 22 January 2021, *Science* **371**, 411 (2021) DOI: 10.1126/science.abd4359

This PDF file includes:

Materials and Methods Figs. S1 to S10 Tables S1 to S3 Captions for Movies S1 to S3 References

Other Supplementary Material for this manuscript includes the following:

(available at science.sciencemag.org/content/371/6527/411/suppl/DC1)

MDAR Reproducibility Checklist (.pdf) Movies S1 to S3 (.mp4)

Materials and Methods

Mosquito rearing

An. stephensi (Dutch strain) and An. gambiae s.s. (Keele strain) were reared using standard rearing procedures in standard laboratory conditions, at 27 ± 1 °C and 80 ± 5 % relative humidity, with a 12 h/12 h light/dark cycle (11 h ~200 lux full light, 11 h darkness, 1 h dawn and 1 h dusk transitions). Larvae were fed on cat food pellets and ground fish food supplement. 400-500 newly emerged mosquitoes were placed in a mosquito cage (25 cm × 19 cm × 19 cm) and maintained on 10% (wt/vol) sucrose.

An. coluzzii used in the semi-field study was obtained from a colony established in September 2017 at the Institut de Recherche en Sciences de la Santé (IRSS) in Bobo Dioulasso. An. coluzzii gravid female mosquitoes were collected in human dwellings in Vallée du Kou (11°24"N; 4°24"W), a village located at 30 km north of Bobo-Dioulasso and surrounded by 1,200 ha of irrigated rice fields. Female mosquitoes were placed individually in oviposition cups containing tap water. After oviposition, mosquito species was molecularly identified by SINE-PCR (42) for detecting the insertion of $S200 \times 6.1$, which is present in An. coluzzii and absent in An. gambiae (s.l.). The primers are shown in table S3. Larvae were fed with Tetramin Baby Fish Food (Tetrawerke, Melle, Germany). Early morning, the newly emerged males and females were separated. Mosquitoes were provided with 5% glucose solution. Insectarium conditions were 27 ± 0.5 °C, $70 \pm 10\%$ relative humidity, with a 12 h/12 h LD cycle (11 h ~200 lux full light, 11 h darkness, 1 h dawn and 1 h dusk transitions).

Field mosquito collection from swarms and inhabited houses.

Anopheles coluzzii mosquitoes were collected in July in Bobo-Dioulasso, Burkina Faso in 2011. Mosquitoes, mostly males, were collected in swarms using sweeping net during dusk. The indoor resting males with antennal fibrillae becoming erect were collected in inhabited houses using vacuum aspiration just prior to swarming time. The collected mosquitoes were placed in tubes containing RNAlater (Ambion, Austin, TX, USA) to prevent RNA degradation. Mosquito species was molecularly identified by SINE-PCR (42).

Laboratory reared mosquito sampling.

To test gene expression in different tissues, day-5 post emergence, male and female mosquitoes (n=20 per group) were dissected to collect different tissues including head, thorax, abdomen, midgut, hindgut, Malpighian tubules, ovary, testis and fat body. To examine the gene rhythmic expression in male heads at 3-4 d post emergence, 20 male mosquitoes were collected every 4 h for 48 h. To examine the gene rhythmic expression in dsRNA-treated mosquitoes, day-3 post emergence, cold-anesthetized four-day adult male mosquitoes were injected into hemocoel with 69 nl of a 3 μ g/ μ l *tim* and *per* dsRNA solution, using a Nanoject II microinjector (Drummond). Control mosquitoes were injected with ds*GFP* dsRNA.

RNA isolation from mosquito heads or other tissues

Total RNA from 50 male mosquito heads was isolated using TRIzol Reagent (Invitrogen) and Phase Lock GelHeavy (Eppendorf) according to the manufacturer's instructions. To remove melanin pigments, the melanotic RNA was purified by overnight incubation at 4°C with the cationic detergent cetyl-trimethylammonium bromide (CTAB) and urea as previously described (43). The treated RNA was then suspended in 7 M guanidine hydrochloride to eliminate the CTAB by ionic exchange and precipitated by addition of two volumes of ethanol. The RNA was dissolved in RNase-free water.

Total RNA from other mosquito tissues except heads was isolated using RNAiso Plus (TaKaRa) and treated with Recombinant DNase I (TaKaRa) according to the manufacturer's instructions.

Microarray analysis

Probe sequences, microarray construction, probe preparation, and microarray hybridizations were performed as previously described (44) with some modifications. Both swarm male heads and indoor resting male heads were treated as experimental samples. Laboratory reared 2~6-dayold virgin An. gambiae s.s. male heads were used as reference samples (control). Three biological replicates were performed for each group. Cy5-labeled control and Cy3-labeled experimental cRNA probes were generated from 200 ng of RNA using Agilent Technologies Low Input Quick Amp Labeling Kit according to the manufacturer's instructions. Probe hybridization to the microarray slides was performed with 2 µg cRNA probes. Microarray slides were scanned using an Axon GenePix 4200AL scanner at 10-µm pixel size (Axon Instruments, Union City, California, USA). The scanned images were analyzed using feature extraction software (Agilent). gProcessedSignal and rProcessedSignal from Agilent feature extraction output files were imported into Partek and quantile normalized and log2 transformed. The normalized signal was further baseline corrected using the Cy5 labeled reference sample. Paired t-test was performed for each group and significant genes were detected using the criteria: P < 0.01 and the cutoff value for gene regulation at 0.8 in log2 scale (1.74 fold change) (45). The microarray data was assembled in the Minimum Information About a Microarray Experiment (MIAME)-compliant format and is available in the public Gene Expression Omnibus (GEO) database under accession GSE150971.

Real-time quantitative PCR Analysis.

First-strand cDNA was synthesized from total RNA using PrimeScript RT reagent Kit after removing genomic DNA (Takara) following the manufacturer's instructions. Gene expression was assessed by quantitative real time-PCR analysis with the Thermo Scientific PikoReal 96 Real-Time PCR system (Thermo Fisher) using the AceQ qPCR SYBR Green Master Mix (Vazyme). PCR involved an initial denaturation at 95°C for 5 min, 40 cycles of 10 sec at 94°C, 30 sec at 60°C, and a final extension at 60°C for 30 sec. The housekeeping ribosomal protein S7 gene *AsS7* (ASTE004816) was used as an endogenous control. The primers are shown in Table S3.

dsRNA-mediated gene silencing in adult mosquitoes.

To produce the double-stranded RNA, the coding region fragments of *per*, *tim*, *desat1*, *ASTE000498*, *CPR30*, *CYP325G1* genes were amplified from *An. stephensi* or *An. gambiae s.s.* cDNA with forward and reverse primers containing the T7 promoter sequence at their 5' ends (TAATACGACTCACTATAGGG) (Table S3). The PCR products were purified with Cycle-Pure Kit (OMEGA) and used as the template to synthesize the dsRNA *in vitro* using the MEGAscript RNAi kit (Ambion, Life Technologies). The synthesized dsRNA was purified and eluted with the elution buffer supplied with the kit and concentrated to 3 μg/μl using a Microcon YM-100 filter (Millipore). The dsRNA for enhanced green fluorescent protein eGFP was synthesized and used as negative control for the non-specific dsRNA effects.

For gene silencing, cold-anesthetized 3-day-old mosquitoes were injected with 69 nL of a 3 μ g/ μ l dsRNA solution of each gene into the hemocoel using a Nanoject II micro injector (Drummond). Control mosquitoes were injected with ds*GFP*. Each treatment was replicated three times with 20 mosquitoes per replicate, and the experiments were repeated two or three times. The RNAi silencing efficiency in the mosquito head and other tissues after 3 days of injection was determined by qPCR analysis.

Mating behavior test in laboratory small cages

To test the role of *per* and *tim* during mating, *An. gambiae s.s.* and *An. stephensi* virgin males were injected in thoracic cavity with Per or Tim dsRNA. Virgin males were injected with eGFP dsRNA as control. Each treatment was replicated three times with 20 male mosquitoes per replicate, and the experiments were repeated three times. Three days later, 20 injected males were pooled with 20 virgin females in a small cage (25 cm × 19 cm × 19 cm) and maintained overnight in standard rearing conditions to allow for mating. The next day, female spermathecae were dissected and examined by microscopy for sperm insemination as an indicator of mating activity. Insemination rates or mating frequency was calculated as a percentage of the number of inseminated females divided by the number of dissected females.

Mating behavior test under semi-field conditions

To determine the role of *per* and *tim* in semi-field conditions, we performed swarming and mating experiments in Mosquito Spheres (21) located in the Vallée du Kou in the Bama district, Burkina Faso. A total of 150 *An. coluzzii* one-day-old virgin males were injected with either dsRNA for *per*, *tim* or *eGFP* (control). Three days post injection, ~100 injected males and 100 virgin females were released into a compartment of the Mosquito Sphere at 18:15 p.m. and maintained together to determine swarming and mating behavior under semi-field conditions. Swarming behavior was induced in the Mosquito Sphere by placing a swarm marker (1 m² black sheet) in the center of the chamber. Mosquito swarming was observed for ~40 minutes (until 19:15) and the following parameters were collected as previously described (46): swarm size (is the estimated number of males that participated in swarming activity), swarm height (maximum,

middle and minimum), and the number of mating couples. Females were recaptured with a mouth aspirator immediately after swarming and mating activity, provided with 5% glucose solution and taken to the laboratory to dissect the spermathecae for the presence of sperm, as an assessment of insemination status.

Locomotor activity recording

Mosquito flight activity was monitored with a Locomotor Activity Monitor 25 (LAM 25) system (TriKinetics, Waltham, MA, USA) by placing individual adult mosquitoes in 25×150 mm clear plastic tubes. Adult male mosquitoes were injected with *per* or *tim* dsRNA . Control mosquitoes were injected with ds*GFP*. Two days later, individual mosquitoes were introduced into a plastic tube with access to 10% sucrose provided. Mosquitoes were maintained at 27 ± 0.5 °C, $80 \pm 5\%$ relative humidity under a 12 h light/dark cycle. Flight locomotor activity per minute was monitored all day by recording breaks in a series of infrared beams.

Extraction of cuticular hydrocarbons.

Cuticular hydrocarbons were extracted from 80 mosquitos in 800 μ L hexane for 5 min in 15 mL conical glass centrifuge tubes. Extracts were concentrated under a N2 stream. The concentrated extracts were immediately dissolved in 30 μ L hexane before their injection into the high-resolution Agilent GS/TOF MS. All samples were analyzed within 48 h of preparation.

Gas Chromatograph/Quad-Time of Flight Mass Spectral analysis.

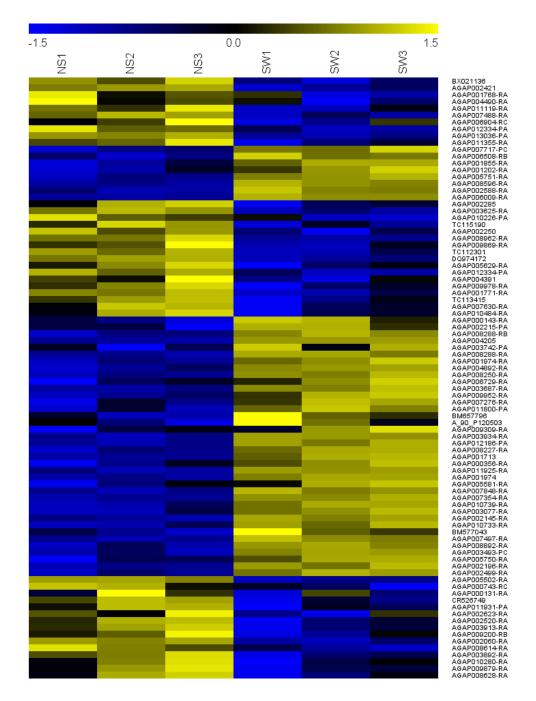
GC/MS analysis was performed on a HP-5MS column (Agilent, 30 m \times 0.25 mm i.d., 0.25 μ m film thickness, 5% phenyl methyl siloxane stationary phase) using an Agilent 7890B GC system coupled to a novel high-resolution Agilent 7200 Q-TOF MS. The GC oven temperature was programmed from an initial temperature of 80 °C held for 2 min, ramped at 20 °C/min to 200°C, and then 5 °C/min to 320 °C. The carrier gas was helium (purity > 99.999%) at a constant flow rate of 1.0 mL/min.

The QTOF Mass spectra were recorded at 5 scans per second with a mass-to-charge ratio 30 to 550 m/z mass acquisition ranges. Electron energy was kept at 70 eV, and the QTOFMS was operated in 2 GHz-EDR mode (2 GHz extended dynamic range) in order to extend the linear dynamic range. Data acquisition and evaluation were carried out using Agilent MassHunter Data Acquisition, Quantitative Analysis and Qualitative Analysis programs (version B07.00, Agilent Technologies, CA), respectively. The peaks were identified based upon comparison with standards and the National Institute of Standards and Technology library (NIST, version 14) library. The peak area of each CHC component was calculated as a proportion of the total area of all detected peaks for each sample. A student's *t*-test was used to compare differences in the relative percentages of each CHC component between mosquitoes injected with *dsdesat1* and ds*GFP* dsRNAs.

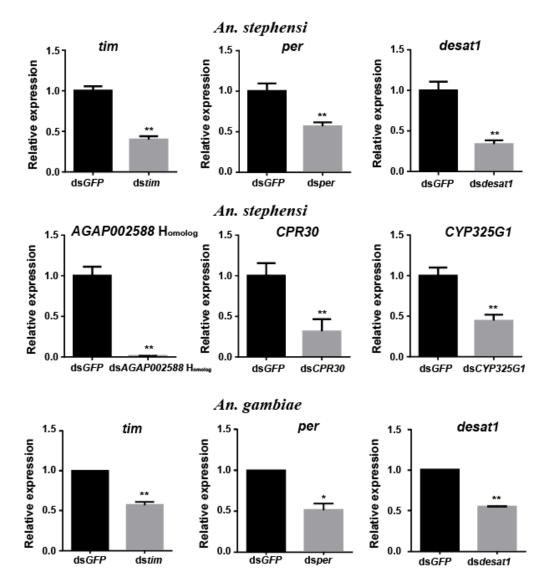
Effect of tricosane and heptacosane on mating activity

Tricosane and heptacosane were dissolved in n-hexane at a concentration of 75 μ g/mL, and applied on the abdomen of two-day-old male An. stephensi mosquitoes using paintbrushes. The solvent n-hexane was used as control. Each treatment was replicated three times with 20 mosquitoes per replicate, and the mating activity assays were repeated three times. Treated male mosquitoes were maintained on 10% sucrose at 27 ± 0.5 °C and 80 ± 5 % relative humidity, with a 12 h/12 h day-night cycle. Two days later, 20 treated male mosquitoes and 20 virgin female mosquitoes were introduced into a cage and allowed to mate overnight. Female spermathecae were then dissected and examined for insemination status. Insemination rates were calculated as a percentage of the number of inseminated females divided by the number of dissected females.

Effect of light and temperature on mosquito mating activity


To investigate the effect of temperature on mosquito mating activity, newly emerged male and female mosquitoes were separated and maintained at 27 °C and $80 \pm 5\%$ relative humidity under LD cycles. Three days later, males and females were mixed, and kept at 19 °C, 27 °C and 34 °C, respectively. Each treatment had three mosquito cups, and each cup contained 20 males and 20 females. Mosquitoes were allowed to mate overnight, and female spermathecae were then dissected and examined for insemination status.

To investigate the effect of light on mosquito mating activity, newly emerged male and female mosquitoes were separated and maintained at 27 °C and $80 \pm 5\%$ relative humidity under LD cycles. Three days later, the males and females were mixed, and maintained under both LD (light-off at night) and LL (light-on at night). Each treatment had three mosquito cups, and each cup contained 20 males and 20 females. The mosquitoes were allowed to mate overnight, and then female spermathecae were dissected and examined for insemination status.

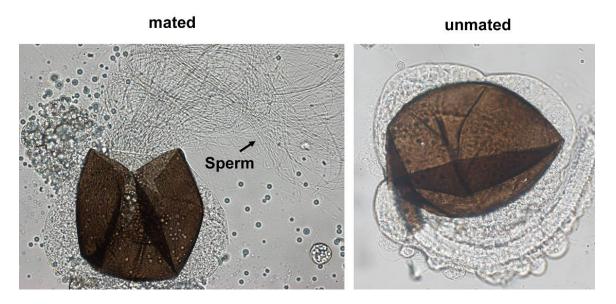
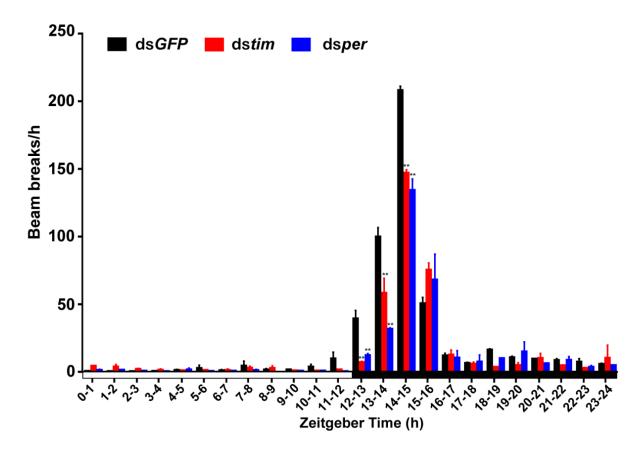
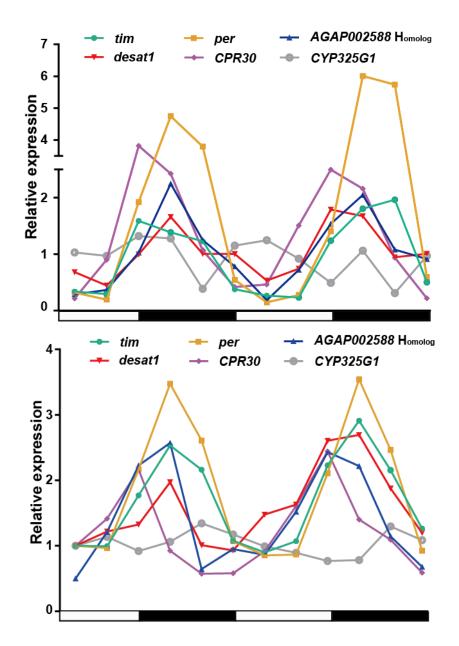

Statistical analysis.

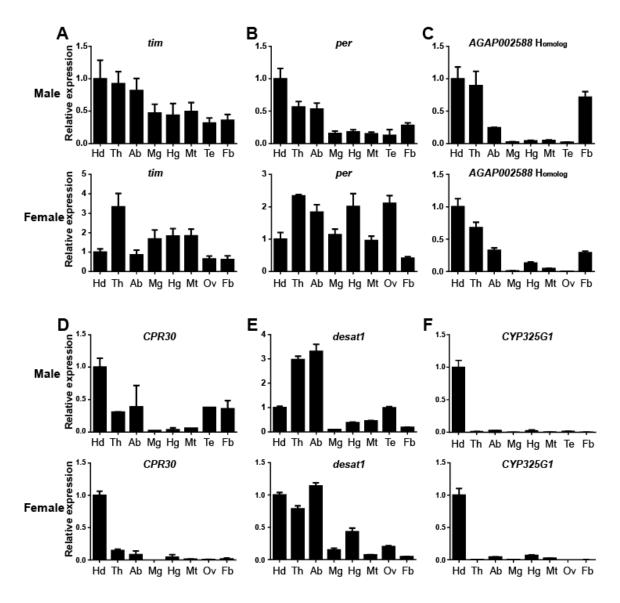
Statistical analyses were performed using GraphPad Prism version 5.00 for Windows (GraphPad Software). Statistical significances were determined by Student's t-test or one-way ANOVA. A value of P < 0.05 was considered to be statistically significant.

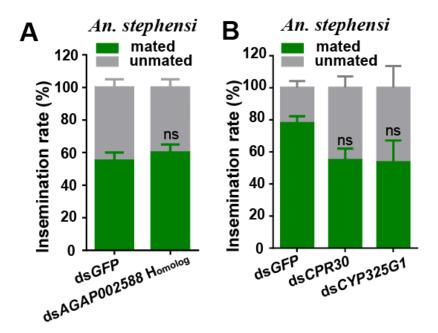
Accession number. The microarray data was assembled in the Minimum Information About a Microarray Experiment (MIAME)-compliant format and is available in the public Gene Expression Omnibus (GEO) database under accession GSE150971.

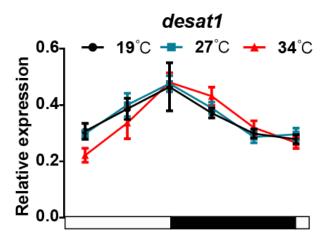
Fig. S1. Hierarchical cluster analysis of differentially expressed genes in male heads between swarming and non-swarming *An. coluzzii* mosquitoes. NSW, non-swarming; SW, swarming mosquitoes. Numbers following 'NSW' and 'SW' indicate results of independent biological repeats.

Fig. S2. Silencing efficiency of *tim*, *per*, *desat1*, *AGAP002588* Homolog, *CPR30* and *CYP325G1* in the head of *male An. stephensi* and *An. gambiae s.s.* mosquitoes (n = 20) injected with 70 ng of ds *GFP* or double-stranded RNA of the indicated genes. Error bars indicate SEM. **P < 0.01.


Fig. S3. Sperm in a mated female spermatheca. Arrow points to sperm.


Fig. S4. *An. stephensi* virgin male mosquito cumulative flight activity. Twenty-four-hour distribution of mosquito flight activity measured by infrared beam breaks of *An. stephensi* virgin male mosquitoes injected with ds*GFP*, ds*tim*, ds*per* or ds*desat1* (Fig. 3C). The white and black bars below the graphs denote when lights were on and off, respectively. Values show the total activity within each hourly time bin (mean \pm SEM) from 16 mosquitoes. **P < 0.01 (Student's t test). The experiments were repeated three times.


Fig. S5. Transcriptional profiles of differentially-expressed genes in the head of male *An. stephensi* **mosquitoes under LD conditions.** Male head expression profiles were determined by qPCR in mosquitoes maintained in 12/12 h LD cycles (white/black bars). The clock genes (*per*, *tim*), and the clock-controlled genes *desat1*, *AGAP002588* Homolog, *CPR30*, but not *CYP325G1*, are rhythmically expressed in the male mosquito head under LD cycles. The housekeeping gene *RPS7* (AsS7) was used as the internal control for qRT-PCR. Twenty mosquitoes were evaluated at each time point. Data were normalized to median fold change, and SD error bars were omitted for viewing purposes. The two panels show the results of two biological repeats.

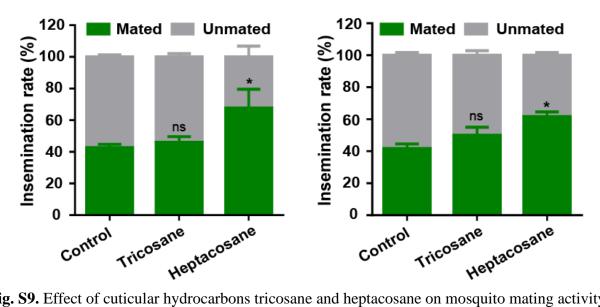

Fig. S6. Transcription levels of *per*, *tim*, *desat1*, *AGAP002588* Homolog, the cuticle protein gene *CPR30*, *and* the *P450* mitochondrial gene *CYP325G1* in tissues of virgin *An. stephensi*. males and females. Bars represent SEM. Hd, head; Th, thorax; Ab, abdomen; Mg, midgut; Hg, hindgut; Mt, Malpighian tubule; Te, testis; Ov, ovary; Fb, fat body.

Fig. S7. Effect of *AGAP002588* Homolog, *CPR30* and *CYP325G1* knockdown on male mating activity. (A-B) Silencing of *AGAP002588* Homolog, *CPR30* or *CYP325G1* genes in virgin male mosquitoes does not significantly affect the rate of female insemination. Presence of sperm in the female spermathecae was examined 12 h after mosquito courtship. 20 female mosquitoes were evaluated for each group.

Fig. S8. Effect of temperature on *desat1* transcript abundance in the *An. stephensi* male head. Newly emerged male mosquitoes were maintained at 27 °C under LD cycling. Three days later, mosquitoes were switched to LD cycling at 19 °C, 27 °C and 34 °C. *desat1* transcript abundance in male heads was measured by qRT-PCR. Relative expression refers to *desat1/S7* values.

Fig. S9. Effect of cuticular hydrocarbons tricosane and heptacosane on mosquito mating activity. Perfuming *Anopheles* virgin males with tricosane does not alter mating activity, whereas males perfumed with heptacosane resulted in a significant increase of female insemination. This figure shows the results of two additional biological repeats of the experiment shown in Fig. 4D. Error bars indicate SEM. *P < 0.05 (Student's t test).

Fig. S10. A schematic model of mosquito swarming and mating showing that these activities are governed by the clock genes, light and temperature. The molecular feedback loop is formed by the negative feedback of PER and TIM on their own transcription (17). The clock genes *per* and *tim* are markedly upregulated in the head of swarming male mosquitoes and modulate male swarming and mating activity. The *desat1* gene, which is upregulated and rhythmically expressed in male heads, regulates the production of cuticular hydrocarbons. Of these, heptacosane enhances mating activity. Moreover, temperature and light affect mating activity and are important environmental cues for entraining the circadian clock in *Anopheles* mosquitoes. Light is perceived by the blue-light-sensitive photoreceptor Cryptochrome CRY1 that resets the molecular oscillator by triggering the light-induced degradation of TIM, PER and CRY2 (22).

Table S1. Quantitative real-time RT-PCR validation of the microarray analysis.

Gene ID	Fold change array data (SW/NSW)	Fold change by qRT-PCR	Gene function
AGAP008288	4.26	4.81	TIM (Timeless)
AGAP001856	9.31	6.43	PER (Period)
AGAP001202	4.15	2.49	organic cation transporter
AGAP008892	4.62	3.77	unknown
AGAP007497	4.97	2.89	CuSOD1 (copper-zinc superoxide dismutase 1)
AGAP001713	6.08	5.88	desat1 (acyl-CoA desaturase 1)
AGAP003493	3.79	3.59	sugar transporter
AGAP003934	4.09	2.91	cln3/battenin
AGAP000356	4.08	2.21	venom allergen
AGAP006009	25.14	9.69	CPR30 (cuticle protein)
AGAP002215	2.33	1.11	HEAT repeat-containing protein 5B-like
AGAP002588	26.80	37.88	unknown
AGAP008596	5.45	5.82	long-chain-fatty-acidCoA ligase ACSBG
AGAP002196	2.17	1.36	CYP325G1 (cytochrome P450)
AGAP011925	3.28	6.23	patatin-like phospholipase domain containing 5
AGAP012334	0.43	0.46	high mobility group protein D, isoform C
AGAP001774	0.22	1.56	allatostatin receptor
AGAP005751	6.67	3.59	glucosyl/glucuronosyl transferase

Table S2. Identity of cuticular hydrocarbon peaks of male adult *Anopheles stephensi* mosquitoes (related to Fig. 6A).

Peak	Retention	Full compound	Peak	Retention	Full compound
No.	time	name	No.	time	name
1	10.569	cis-vaccenic acid	9	21.503	nonacosane
2	10.704	n-hexadecanoid	10	21.882	2-
3	13.965	acid tricosane	11	22.667	methylnonadecane triacontane
4	14.888	tetracosane	12	23.907	hentriacontanol
5	16.377	pentacosane	13	25.409	dotriacontane
6	17.634	hexacosane	14	26.904	tritriacontane
7	18.985	heptacosane	15	29.077	tetratriacontane
8	20.179	octacosane	16	31.126	hexatriacontane

Table S3. Primers used in this study.

Primers	5'-3' sequences	Applification
S200 X6.1F	TCGCCTTAGACCTTGCGTTA	Diagnostic PCR
S200 X6.1R	CGCTTCAAGAATTCGAGATAC	detection of S200 X6.1
		locus
AG-S7F	AGAACCAGCAGACCACCATC	qPCR of AgS7
AG-S7R	GCTGCAAACTTCGGCTATTC	•
AGAP002588F	TATTCTGCCCACTGGAATCA	qPCR of <i>AGAP002588</i>
AGAP002588R	CAACGTGTGAATGCCACATA	•
AGAP005751F	TGTTGATAAGGGCGTTCTTG	qPCR of <i>AGAP005751</i>
AGAP005751R	TGTGGAGGTTCCGATATTGA	•
AGAP007497F	CCCGTACATCAATCTGTTCG	qPCR of <i>AGAP007497</i>
AGAP007497R	GGAAGGAGATCGGGTTGTTA	•
AGAP008892F	GTGGTGAAAGAGGTCCCAGT	qPCR of <i>AGAP008892</i>
AGAP008892R	AACATTTCCGCTACCACCTC	•
AGAP001202F	GCCAGAGCTTCATTTCCTTC	qPCR of <i>AGAP001202</i>
AGAP001202R	TAGCCTCCTCGAGTGTGTTG	•
AGAP003934F	CAACACGTTCTATCGCATCC	qPCR of <i>AGAP003934</i>
AGAP003934R	CACCGGTAGATCACAGATCG	•
AGAP000356F	GGCCGGATGATACAGAAGAT	qPCR of <i>AGAP000356</i>
AGAP000356R	CTGCCAAATTCGCTAACTCA	•
AGAP001774F	AGACATGCAGCTTCCTCGAA	qPCR of <i>AGAP001774</i>
AGAP001774R	CCACATGTACAGGACGCTGA	•
AGAP002215F	CCAGTCGCTCAACTTCATCG	qPCR of <i>AGAP002215</i>
AGAP002215R	CGATCAGTGGCGTAATCTGC	•
AGAP003934F	GCGATTGGTTTACAGGGCAA	qPCR of <i>AGAP003934</i>
AGAP003934R	GCACAAACACCCGAACAGAT	•
AGAP008596F	CCATCTCGAACGCACAGAAG	qPCR of <i>AGAP008596</i>
AGAP008596R	CTTGTTCTTTTCCGCCACGA	
AGAP011925F	AGACAGCTTGCAAAAGAGGC	qPCR of <i>AGAP011925</i>
AGAP011925R	ACGAGTTGGAAAGGGAGGAG	•
AGAP012334F	ATGTTCGGGGCCTTACTTCA	qPCR of <i>AGAP012334</i>
AGAP012334R	GGAATACTGGGACTGGGGAC	-
AGAP006009F	TCCGTGTGTACCGTCTAACC	qPCR of <i>CRP30</i>
AGAP006009R	GCTTCCATCGACGTTGTTGT	
AGAP002196F	TCTCGAGAAGGCAGACGTTT	qPCR of CYP325G1
AGAP002196R	AAAGATCGCCACAAAGCTGG	
dsAG-perF	TAATACGACTCACTATAGGGTACCGTACA	dsRNA synthesis of
	ATCCCGAGTGC	<i>Ag-per (AGAP001856)</i>
dsAG-perR	TAATACGACTCACTATAGGGGGTGGTGGA	
	CATTTTGTGTG	
AG-perF	CGATAGCGGACGTGTTTGC	qPCR of <i>Ag-per</i>
AG-perR	AGCGTGTCGTCGGAGAATTG	(AGAP001856)
dsAG-timF	TAATACGACTCACTATAGGGAACCCGCAG	dsRNA synthesis of
	ATCAACAGC	Ag-tim (AGAP008288)
dsAG-timR	TAATACGACTCACTATAGGGGGCACGATG	•
	TCGTTCTTGAC	
AG-timF	ACATAGTGACGCTCGTGCAGTAC	qPCR of Ag-tim
AG-timR	GTCCTCTGGTTTGGGCGAAT	(AGAP008288)

AS-STR AS-STF AS-STF TCGGTTCCAAGGTGATCAAAGC dSAS-timF TAATACGACTCACTATAGGGCTATGCGAG CAGTTGGAACA dsAS-timR TAATACGACTCACTATAGGGCTATGCT CGGCTGAAACA AS-timR GTTTCAGCCGAGCATACTGA AS-timR CAATATCCGGTAGCGTTGTG dsAS-perF TAATACGACTCACTATAGGGACGCGTC AACTACGAACC dSAS-perF TAATACGACTCACTATAGGGACGCGTC AS-perF CTAGACTCACTATAGGGACGACCGTC AS-perR CACACTCCCTATAGGGACGACCGTC AS-perR CACACTCCCTATAGGGAAGGCGAT AS-perR CACCATTCCGGATGGTTTAG dsASTE000498F TAATACGACTCACTATAGGGAAGGTTACCACACACGACC ACGGCCGATCG ASTE000498F ASTE000498F ASTE000498R ATTGTGCTTCT CAGACTCACTATAGGGATGTTCACC ACGCCGATCG ASTE000498R ATTGTGCTTAAGCGGTGGTTG ASTE000498R ATTGTGCTTAAGCGATCGTC ACGCCGATCG ASTE000498R ATTGTGCTTAAGCGATCCACTATAGGGACGCCCC CAGCCGATCG ACGCCGATCG ACGCCGATCG ACGCCTCACTATAGGGATCCACCC ACGCCGATCC ACGCCTCACTATAGGGATCCACCC ACGCCTCACTATAGGGATCCACCC ACGCCTCACTATAGGGATCCACCC ACGCCTCACTATAGGGATCCACCC ACGCCTCACTATAGGGATCCACCC CAGCCTCACTATAGGGATCCCCC CAGCCGATCC CAGCCTCACTATAGGGACTCCACTCC			
dsAS-timF TAATACGACTCACTATAGGGCTATGCGAG CAGTITGGAACA dsAS-timR TAATACGACTCACTATAGGGCAGTATGCT CGGCTGAAACA AS-timF GTTTCAGCCGAGCATACTGA AS-tim AS-timR CAATATCCGGTAGCGTTGTG dsAS-perF TAATACGACTCACTATAGGGACGACCGTC ACTACTGA ACTACTGA ACTACTGA ACTACTGAACC ACTACTGACTATAGGGACGACCGTC ACTACTGAACC ACTACTGAACC ACTACTGAACC ACTACTGACACACACACGTC ACACACACGTC CTAGAGTTCGTGATCGGAAGACC ACACACACGTC CTAGAGTTCGTGATCGGAAG ACTCACTATAGGGACGACCGTC ACACACACGTC CTAGAGTTCGTGATCGGAA ACTCACTATAGGGACGACTCACTATAGGGACGACTCACTATAGGGACGACTCACTATAGGGATGTTCCATT TGTCCGTTCT ACACACACACGTC ACGCCCGATCG ACGCCCGATCGCTCACGC ACGCCCGATCGCTCACGC ACGCCCGATCGCTCACGC ACGCCCGATTGCCTTCGGTTACC ACGCCCGATTGCCTTCGGTTACC ACGCCCGATCGCTCACTATAGGGACTGGTCCT GATCCTTGCGTTACC ACGCCCGATCGCTCACGC ACGCCCGATCACACGC ACGCCCGATCACACGC ACGCCCGATCACACGC ACGCCCGATCACACGC ACGCCCGATCACACGC ACGCCCGATCACACGC ACGCCCGATCACACGC ACGCCCGATCCACTATAGGGCCATCCCACGC ACGCCCGATCCACGC ACGCCCACACGCCCACCTCCTGGTTCACCA ACGCCCGATCACACGCCACCCACCCCATCTGGATCCCTTCGGTTACC ACGCCTACACGCCCACCCCAC	AS-S7R		qPCR of As-S7
dsAS-timR TAATACGACTCACTATAGGCAGTATGCT CGGCTGAAACA AS-timF GTTTCAGCCGAGCATACTGA AS-timR CAATATCCGGTAGCGTTGTG dsAS-perF TAATACGACTCACTATAGGGACGACCGTC AACTACGAACC dsAS-perR TAATACGACTCACTATAGGGACGCGAT ACAAACACGTC AS-perF CTAGAGTTCGTGATCGGCAA AS-perR CACCATGTCGGATCGGCAA AS-perR CACCATGTCGGATCGGCAA AS-perR CACCATGTCGGATCGTTTAG dsASTE000498F TAATACGACTCACTATAGGGATGTTCCATT TGTCCGTTCT dsASTE000498R ASTE000498R ASRNA synthesis of desatl desatlR AGCCCGGATACAACGTACAG AGCATTACACTATAGGGCCATGCTCA TTCTGGACGTTCAC CYP325G1F CGACGCTACAGTCCCCAAGC CYP325G1 CYP325G1R CGACGCTACAGTCCCCACACG CYP325G1 CYP325G1R CGACGCTACAGTCTCCAAGC CYP325G1R CGACGCTACACTATAGGGCTTGCATTTG dsRNA synthesis of CPR30 CPR30R TAATACGACTCACTATAGGGAGTTGCT CPR30R CTTCTGACCGTCCGATTGTTCC CPR30R ASRNA synthesis of GFP dsGFPR TAATACGACTCACTATAGGGAGATGGTA GFP	AS-S7F		
AS-timR TAATACGACTCACTATAGGGCAGTATGCT CGGCTGAAACA AS-timR GTTTCAGCCGAGCATACTGA AS-timR CAATATCCGGTAGCGTTGTG dsAS-perF TAATACGACTCACTATAGGGACGACCGTC AACTACGAACC dsAS-perR TAATACGACTCACTATAGGGAAGGGCGAT ACAAACACGTC AS-perF CACACTATTAGGGAAGGGCGAT ACAACACGTC AS-perR CACCATGTCGGAGTGTTTAG dsASTE000498F TAATACGACTCACTATAGGGATGTTCCATT TGTCCGTTCT dsASTE000498F ATGGCCGACACCACCACCACGCC AAGCATCGCACTCACTATAGGGATGTTCCACC ACGCCCGATCG ASTE000498R ATTGTGCTCACTATAGGGTTAGCACC ACGCCCGATCG ASTE000498R ATTGTGCTTAAGCGATCGTG dseast1F TAATACGACTCACTATAGGGTTCCACCACCACGCCACGC	dsAS-timF		dsRNA synthesis of
AS-timF GTTTCAGCCGAGCATTACTGA qPCR of As-tim AS-timR CAATATCCGGTAGCGTTGTG dsAS-perF TAATACGACTCACTATAGGGACGACCGTC AACTACGAACC dsAS-perR TAATACGACTCACTATAGGGAAGGGCGAT ACAACACGTC AS-perF CTAGAGTTCGTGATCGGCAA AS-perR CACCATGTGGGATGGTTTAG dsASTE000498F TAATACGACTCACTATAGGGATGTTCCATT TGTCCGTTCT dsASTE000498F CAAGATCACTATAGGGATGTTCCATT ASTE000498F CAAGATCACTATAGGGTTAGCCAC ACGGCCGATCG ASTE000498F CAAGATTCTAGCGGTGGTTG ASTE000498F ATTGTGCTTAAGCGGTGGTTG ASTE000498F CAAGATCACTATAGGGTTAGCCAC ACGGCCGATCG ASTE000498F CAAGATTCTAGCGGTGGTTG ASTE000498F CAAGATCACTATAGGGTTCCACC ACGGCCGATCG ASTE000498F CAAGATCACTATAGGGTTCCACC ACGGCCGATCG ASTE000498F CAAGATCACTATAGGGTTCCACC ACGGCCGATCG ASTEO00498F CAAGATCTACTAGGGTTCCACC ACGGCCGATCG ASTEO00498F CAAGATCTACGGTTGGTTG dsCASTACATGATT dsdesat1F TAATACGACTCACTATAGGGTTCCAACGC AGCATTACATGATT dsdesat1R AGCCCGGATACAACGTCACC ACGTGATTGCCTTCCGGTTACC desat1R AGCCCGGATACAACGTACAG dsCYP325G1-F TAATACGACTCACTATAGGGCTGATTTGG dsCYP325G1-F TAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1F CGACGCTACACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1F CGACGCTACACAGC CYP325G1F CGACGCTACACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1F CGACGCTACCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1F CGACGCTACAGC CYP325G1P CGACGCTACCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1P CATACAGCCCCCAAGC CYP325G1P CGACGCTACCATATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1P CATACAGCCTCCCAAGC CYP325G1P CATACAGCTCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1P CAAACACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1P CAACACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCACCATTAGGGCCATGCTCA TTCTGGACGTCCCACTATAGGGCCATGCTCA CCPR30F TAATACCACTCACTATAGGGGCTTCACCA TTCTGGACGTCCCACTATAGGGGCTTCACCA TTGGACGGTATCC CPR30F ATGAAGCTCACTATAGGGACTGTCA CARGCGTATCC CPR30F TAATACGACTCACTATAGGGACTGTCA dsRNA synthesis of CPR30 dsCPR30F TAATACGACTCACTATAGGGACTGTCA ASRNA synthesis of CPR30 dsCPR30F TAATACGACTCACTATAGGGACTGTCACA TTCTGGACGGTCGATTTCGC CAAGGGCGAGGAGCTGT GCAAGGGCAGGAGCTGT GGFP			As-tim
AS-timF CAATATCCGGTAGCATACTGA AS-timR CAATATCCGGTAGCGTTGTG dsAS-perF TAATACGACTCACTATAGGGACGACCGTC AACTACGAACC dsAS-perR TAATACGACTCACTATAGGGAAGGGCGAT ACAAACACGTC AS-perF CTAGAGTTCGTGATCGGCAA AS-perR CACCATGTCGGATGGTTTAG dsASTE000498F TAATACGACTCACTATAGGGATGTTCCATT TGTCCGTTCT dsASTE000498R ATTGTGCTACTATAGGGTTATGCCAC ASTE000498R ATTGTGCTACTATAGGGTTATGCACC AAGCATTACAGCATCACTATAGGGTTCCACC ASTE000498R ATTGTGCTTAAGCGATCGTG dsdesat1F TAATACGACTCACTATAGGGTTCCAACCC AAGCATTACATGATT dsdesat1R TAATACGACTCACTATAGGGTTCCACC desat1F AGCCCGGATACCACTATAGGGTTCCACC desat1F AGCCCGGATCCCTATAGGGTTCCACCC AGCCGATCG ASTE000498R ATTGTGCTTCGGTTACC desat1R AGCCCGGATCGCTGTCCCCACCC AGCCGTACCTTCTCGCC desat1F AGCCCGGATACAACGTACCC AGCTGATTGCCTTCGGTTACC dsCYP325G1-F TAATACGACTCACTATAGGGCTGATTTGC dsCYP325G1-R TAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1-R TAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1-R TAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCAC CYP325G1-R TAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1-R TAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1-R TAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1-R TAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1-R TAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCAC CYP325G1-R TAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCG CYP325G1-R TAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCC CYP325G1-R TAATACGACTCACTATAGGGCCATGCTCA TTCTGGACGGTATCC CYP325G1-R TAATACGACTCACTATAGGGGCTTGCACA TTCTGGACGGTATCC CYP325G1-R TAATACGACTCACTATAGGGACTTCACA TTGGACGGTATCC CYP325G1-R TAATACGACTCACTATAGGGACTTCACA TTCGGACGGTATCC CYP325G1-R TAATACGACTCACTATAGGGACTTCACA TTCGGACGGTACAG CYP325G1-R TAATACGACTCACTATAGGGACTTCACA TTCTGGACGGACGTGT CYP326-CAGGGCAGACAGCTGT CYP326-CAGGACAGGTACACACACACACACACACA	dsAS-timR		
AS-timR dsAS-perF TAATACGACTCACTATAGGGACGACCGTC AACTACGAACC dsAS-perR TAATACGACTCACTATAGGGACGGCGAT ACAAACACGTC AS-perF CTAGAGTTCGTGATCGGCAA AS-per AS-perR CACATGTCGGTGATCGGCAA AS-per dsASTE000498F TAATACGACTCACTATAGGGATGTTCCATT TGTCCGTTCT dsASTE000498F ASTE000498F ASTE000498R ATGGTCTTAAGCGGTGGTTG AAGCATTACGACTCACTATAGGGTTCCACC AAGCATTACAGACTCACTATAGGGTTCCACCC AAGCATTACAGACTCACTATAGGGTCCT GATCCTTGTCGC desat1F ACGACTCACTATAGGGACTGGTCCT GATCCTTGTCGC desat1R AGCCCGGATACAACGTACAC dsCYP325G1-F TAATACGACTCACTATAGGGCTGATTTGG ATGGTCCTCGTGA CYP325G1-R TAATACGACTCACTATAGGGCTGATTTGG ATGGTCCTCGTGA CYP325G1-R TAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1F CGACGCTACAGTCCCCAAGC CYP325G1R CGACGCTACAGTCCCCAAGC CYP325G1R CGACGCTACAGTCCCCAAGC CYP325G1R CGACGCTACAGTCCCCAAGC CYP325G1R CGTTAATGCGGACGTTTCGTT dsCPR30F TAATACGACTCACTATAGGGCTTCACCA TTGGCCTGTTGG dsCPR30R TAATACGACTCACTATAGGGCTTCACCA TTGGACGGTACCC CPR30F ATGACGTCACTATATGCCGACTCACCA TTGGACGGTACCC CPR30R CTTCTGACCGTCCGATTTTCC CPR30R CTTCTGACCGTCCGATTTTTCC CPR30R CTTCTGACCGTCCGATTTTTCC CPR30R CTTCTGACCGTCCGATTTTTCC CPR30R CTTCTGACCGTCCGATTTTTCC CPR30R CTTCTGACCGTCCGATTTTTCC GCACGCTACACTCCACTATAGGGCTTCCAC AGRNA synthesis of CPR30 CTTCTGACCGTCCGATTTCTC CPR30R CTTCTGACCGTCCGATTTTTCC CPR30R CTTCTGACCGTCCGATTTCTCC CPR30R CTTCTGACCGTCCGATTTCTC dsRNA synthesis of GFP GCAAGGGCGAGGACTTT GFP dsGAFPR TAATACGACTCACTATAGGGAGTTACTTG dsRNA synthesis of GFP GCAAGGGCGAGGAGCTTT GFP dsGAFPR TAATACGACTCACTATAGGGAGTTACTTGT GCACGGTATCC CPR30R CTTCTGACCGTCCGATTCGTT GFP TAATACGACTCACTATAGGGAGTTACTTGT GCACGGGAGGAGCTGT GCACGGCGAGGAGCTGT GCACGGAGGAGCTGT AATACGACTCACTATAGGGAGTTACTTGT dsRNA synthesis of GFP		CGGCTGAAACA	
dsAS-perF TAATACGACTCACTATAGGGACGACCGTC ACTACGAACC dsAS-perR TAATACGACTCACTATAGGGAAGGCGAT ACAAACACGTC AS-perF CTAGAGTTCGTGATCGGCAA qPCR of As-per AS-perR CACCATGTCGGATGGTTTAG dsASTE000498F TAATACGACTCACTATAGGGATGTTCCATT TGTCCGTTCT dsASTE000498F CAAGATTGAGCGGTGGTTG ASTE000498R ATTGTGCTTAAGCGGTGGTG dsdesat1F TAATACGACTCACTATAGGGTTCCAACGC AAGCATTACAGTATAGAGGTTCCAACGC AAGCATTACAGATTCACTATAGGGTTCCAACGC AAGCATTACAGATT dsdesat1R TAATACGACTCACTATAGGGACTGGTCCT GATCCTTGTCGC desat1R AGCCCGGATACAACGTACACG dsCYP325G1-F TAATACGACTCACTATAGGGCTGATTTGG dsCYP325G1-F TAATACGACTCACTATAGGGCCATCCACTATAGGGCCATCCCACTATAGGGCCATCCTCGTTACC CYP325G1F CGACGCTACCACTATAGGGCCATCCCACTATAGGGCCATCCCACTATAGGGCCATCCCACTATAGGGCCATCCCCACTCCTGGATCCACTATAGGGCCATCCCCACTCCTGGATCCACTATAGGGCCATCCCCACTCCTGGATCCACTCACT	AS-timF	GTTTCAGCCGAGCATACTGA	qPCR of As-tim
dsAS-perR TAATACGACTCACTATAGGGAAGGCGAT ACAAACACGTC AS-perF CTAGAGTTCGTGATCGGCAA qPCR of As-per AS-perR CACCATGTCGGATGGTTTAG dsASTE000498F TAATACGACTCACTATAGGGATGTTCCATT TGTCCGTTCT ASTE000498F ASTE000498F CAAGATTGTAGCGATGGTTAGCAC ASTE000498F CAAGATTGTAGCGATGGTTGATGCAC ASTE000498F ATTGTGCTTAAGCGTTGTG dsdesat1F TAATACGACTCACTATAGGGTTCCACCACGC AGCGCTACGATCGT AGCATTACATGATT desat1 dsdesat1F TAATACGACTCACTATAGGGTTCCACCACGC AGCATTGCTTCT GATCCTTGTCGC desat1F ACGTGATTACATGGTTCCACC desat1R ACGCATCACTATAGGGATCGTC dscat1R ACGCCTCACTATAGGGATGTCCACGC ATGGTCCTCGTACC desat1R ACCCGGATACAACGTACAG dsCYP325G1-F TAATACGACTCACTATAGGGCTGATTTGG ATGGTCCTCGTGA dsCYP325G1-F TAATACGACTCACTATAGGGCTGATTTGG ATGGTCCTCGTGA CYP325G1F CGACGCTACACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1R CGTTAATGCGGACGCTTCCATTG CGACGCTACAGTCCTCCAAGC CYP325G1R CGTTAATGCGGACGTTTCGTT dsCPR30F TAATACGACTCACTATAGGGCTTCACTATGG CPR30F ATGAAGTTCC CPR30F ATGAAGTTCCC CPR30F ATGAAGTTTGCCGTTTTCC CPR30R CTTCTGACCGTCCATTTTCC CPR30R CTTCTGACCGTCCATTTTCC dsGFPF TAATACGACTCACTATAGGGATTGTTC dsGFPR TAATACGACTCACTATAGGGATTGTTACC dsGFPR TAATACGACTCACTATAGGGATTCACCA TTGGACGGTATCC CPR30R CTTCTGACCGTCTATTTTCC GAGGFPF TAATACGACTCACTATAGGGATTGTTCC dsGFPR TAATACGACTCACTATAGGGATTGTTAC dsRNA synthesis of CPR30 CTTCTGACCGTCCGATTGTTCC ASCPR30 dsRNA synthesis of GAGAGGCGAGGAGCTGT dsRNA synthesis of GFP	AS-timR	CAATATCCGGTAGCGTTGTG	
dsAS-perR AS-perF AS-perF CTAGAGTTCGTGATCGGCAA AS-perR CACCATGTCGGATGGTTTAG dsASTE000498F ASTE000498F ASTE000498R ATATACGACTCACTATAGGGTTGT ASTE000498R ASTE000498R ATGTGTGCTTAAGCGGTGGTTG ASTE000498R ASTE000498R ATGTGTGCTTAAGCGATCGTG dsdesat1F TAATACGACTCACTATAGGGTTCCAACGC AAGCATTACATGATT dsdesat1R AGCATTACATGATT desat1 ACGTGATTGCCTTCGGTTACC desat1 ACGTGATTGCCTTCGGTTACC desat1 AGCCCGGATACAACGTACAG dsCYP325G1-F TAATACGACTCACTATAGGGCTGATTTGG ATGGTCCTCGTGA dsCYP325G1-R TAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGGTTCA CYP325G1F CGACGCTACAGTCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1R CGTTAATGCGGACGTTTCGTT dsCPR30F TAATACGACTCACTATAGGGCCTTCACCA TTGGACGGTATCC CPR30F ATGAAGTTTGCCTGTATTTGC CPR30F ATGAAGTTTGCCTGATTTTGC CPR30F TAATACGACTCACTATAGGGCCTTCACCA TTGGACGGTATCC CPR30F TAATACGACTCACTATAGGGCCTTCACCA TTGGACGGTATCC CPR30F TAATACGACTCACTATAGGGCCTTCACCA TTGGACGGTATCC CPR30F TAATACGACTCACTATAGGGGCTTCACCA TTGGACGGTATCC CPR30F TAATACGACTCACTATAGGGGCTTCACCA TTGGACGGTATCC CPR30F TAATACGACTCACTATAGGGGCTTCACCA TTGGACGGTATCC CPR30F TAATACGACTCACTATAGGGGCTTCACCA TTGGACGGTATCC CPR30F TAATACGACTCACTATAGGGAGATGTGA GCAAGGGCGAGGAGGTGT dsRNA synthesis of CPR30 CPR30 GSRNA synthesis of CPR30 GPCR of CPR30 CPR30 dsRNA synthesis of GFP dsGFPR TAATACGACTCACTATAGGGAGATGGTGA GSRNA synthesis of GFP	dsAS-perF	TAATACGACTCACTATAGGGACGACCGTC	dsRNA synthesis of
ACAAACACGTC AS-perF CTAGAGTTCGGATCGGCAA AS-perR CACCATGTCGGATCGGCAA AS-perR CACCATGTCGGATGGTTTAG dsASTE000498F TAATACGACTCACTATAGGGATGTTCCATT			As-per
AS-perF AS-perR CACCATGTCGGATGGTTTAG dsASTE000498F TAATACGACTCACTATAGGGATGTTCCATT TGTCCGTTCT dsASTE000498R ASTE000498F ASTE000498F ASTE000498F ASTE000498R ASTE000498R ASTE000498R ASTE000498R ASTE000498R ASTE000498R ASTE000498R ASTEOTTCTAACGACTCACTATAGGGTTATGCCAC AAGATTGTAGCGATCGTG dsdesat1F TAATACGACTCACTATAGGGTTCCAACGC AAGCATTACATTA	dsAS-perR	TAATACGACTCACTATAGGGAAGGGCGAT	
AS-perR dsASTE000498F TAATACGACTCACTATAGGGATGTTCCATT TGTCCGTTCT dsASTE000498R TAATACGACTCACTATAGGGATGTCCACT ACGGCCGATCG ASTE000498R ASTE000498R ASTE000498R ASTE000498R ASTE000498R ASTE000498R ATTGTGCTTAAGCGGTGGTTG dsGesat1F TAATACGACTCACTATAGGGTTCCAACGC AAGCATTACATGATT dsdesat1R TAATACGACTCACTATAGGGATCGTCT GATCCTTGTCG desat1R AGCCCGGATACACTATAGGGACTGGTCCT GATCCTTGTCGC desat1R AGCCCGGATACAACGC desat1R AGCCCGGATACAACGTACAC dsCYP325G1-F TAATACGACTCACTATAGGGCTGATTTGG ATGGTCCTCGTGA dsCYP325G1-R CYP325G1-R CYP325G1-R CGACGCTACAGTCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1R CGTTAATGCGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1R CGTTAATCGGACGTTCGTT dsCPR30F TAATACGACTCACTATAGGGTTTGCATTTG CPR30R CTTCTGACCGTACTGTATTTGC CPR30R CTTCTGACCGTCCGATTGTTCG dsGFPR TAATACGACTCACTATATGGGACTTCACCA TTGGACGGTATCC CPR30R CTTCTGACCGTCCGATTGTTCG dsGFPR TAATACGACTCACTATAGGGAGATGGTGA GCAAGGGCGAGGAGGTTT CGFP dsGFPR TAATACGACTCACTATAGGGAGTTACTTG GARNA synthesis of CPR30 GRANA synthesis of CPR30 CPR30R CTTCTGACCGTCCGATTGTTCG dsRNA synthesis of CPR30 GRANA synthesis of CPR30 CPR30R CTTCTGACCGTCCGATTGTTCG dsRNA synthesis of CPR30 CFR30R TAATACGACTCACTATAGGGAGTTCACCA TTGGACGGTATCC CPR30 CTTCTGACCGTCCGATTGTTCG dsRNA synthesis of CPR30 CPR30R TAATACGACTCACTATAGGGAGATGGTGA GCAAGGGCGAGGAGCTGT GFP		ACAAACACGTC	
dsASTE000498F dsASTE000498R dsASTE000498R TAATACGACTCACTATAGGGATGTTCCATT TGTCCGTTCT ACGGCCGATCG ACGGCCGATCG ASTE000498F ASTE000498F ASTE000498R ATTGTGCTTAAGCGATCGTG dsCAAGATTGTAGCGATCGTG dsCYP325G1-F dsCYP325G1-F dsCPR30F dsCPR30R dsASTE000498F ATGATACGACTCACTATAGGGTTCCAACGC AAGCATTACATGATT dsRNA synthesis of desatl dsRNA synthesis of CYP325G1-F TAATACGACTCACTATAGGGCTGATTTGG ATGGTCCTCGTGA dsCYP325G1-F TAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1F CGACGCTACAGTCCTCCAAGC CYP325G1R dsCPR30F TAATACGACTCACTATAGGGTTTGCATTTG dsCPR30F TAATACGACTCACTATAGGGTTTGCATTTG TGTGCCTGTTGG dsCPR30R TAATACGACTCACTATAGGGCTTCACCA TTGGACGGTATCC CPR30F ATGAAGTTTGCGTTATTTGC dsRNA synthesis of CPR30 CPR30R CTTCTGACCGTCCGATTGTTCG dsRNA synthesis of GFP dsGFPR TAATACGACTCACTATAGGGAGTTGATT dsRNA synthesis of GFP	AS-perF	CTAGAGTTCGTGATCGGCAA	qPCR of <i>As-per</i>
dsASTE000498R TAATACGACTCACTATAGGGTTATGCCAC ACGGCCGATCG ASTE000498F CAAGATTGTAGCGGTGGTTG ASTE000498R ASTE000498R ASTE000498R ATTGTGCTTAAGCGATCGTG dsdesat1F TAATACGACTCACTATAGGGTTCCAACGC AAGCATTACATGATT dsdesat1R TAATACGACTCACTATAGGGACTGGTCCT GATCCTTGTCGC desat1F ACGTGATTGCCTTCGGTTACC desat1R AGCCCGGATACAACGTACAG dsCYP325G1-F TAATACGACTCACTATAGGGCTGATTTGG ATGGTCCTCGTGA CYP325G1-R TAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1F CGACGCTACAGTCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1F CGACGCTACAGTCCTCCAAGC CYP325G1R CGTTAATGCGGACGTTCGTT dsCPR30F TAATACGACTCACTATAGGGCTTGATTTG TTGGACGGTACC CPR30F ATGACGTTCTCGTGTATTTGC CPR30F ATGAAGTTTGCCTGTATTTGC CPR30R CTTCTGACCGTCCGATTGTTCC GCAAGGCCAGGAGAGTTGTCA GCAAGGGCCAGGAGAGCTGT dsCPPR30R TAATACGACTCACTATAGGGACGTTCACCA TTGGACGGTACC CPR30R CTTCTGACCGTCCGATTGTTCC GCAAGGCCAGGAGAGTTGTCC GCAAGGGCCAGGAGCTGT dsRNA synthesis of CPR30 CPR30R CTTCTGACCGTCCGATTGTTCC GCAAGGCCAGAGAGCTGT CTCTCTGACCGTCCCGATTGTTCC GCAAGGCCAGGAGCTGT AATACGACTCACTATAGGGAGATTGTCA GCAAGGCCAGGAGCTGT AATACGACTCACTATAGGGAGATTGTCA CTCTCTGACCGTCCCGATTGTTCC CPR30R CTTCTGACCGTCCCGATTGTTCC GCAAGGCCAGGAGCTGT AATACGACTCACTATAGGGAGATTGTCA GCAAGGCCAGGAGCTGT AATACGACTCACTATAGGGAGATTGCTCA GCAAGGCCAGGAGCTGT AATACGACTCACTATAGGGAGATTGCTCA GCAAGGCCAGGAGCTGT AATACGACTCACTATAGGGAGATTGCTCA GCAAGGCCAGGAGCTGT AATACGACTCACTATAGGGAGATTGCTCTCACA GCAAGGCCAGGAGCTGT AATACGACTCACTATAGGGAGATTACTTGT CPPCR of CPR30 CPR30 CPR30R ATGTCCTCACTATAGGGAGATTGCTCA AGRACTCACTATAGGGAGATTGCTCA AGRACTCACTATAGGGAGATTGCTCA CPPCR of CPR30 CPR30 CPR30R CTTCTGACCGTCCGATTGTTCC CPR30 CPR30R CTTCTGACCGTCCACTATAGGGAGATTGCTCACA CPR30 CPR30 CPR30R CTTCTGACCGTCCGATTGTTCC CPR30 CPR30 CPR30R CTTCTGACCGTCCGATTGTTCC CPR30 CPR3	AS-perR	CACCATGTCGGATGGTTTAG	
dsASTE000498R TAATACGACTCACTATAGGGTTATGCCAC ACGGCCGATCG ASTE000498F CAAGATTGTAGCGGTGGTTG qPCR of ASTE000498 ASTE000498R ATTGTGCTTAAGCGATCGTG dsdesat1F TAATACGACTCACTATAGGGTTCCAACGC AAGCATTACATGATT dsdesat1R TAATACGACTCACTATAGGGACTGGTCCT GATCCTTGTCGC desat1F ACGTGATTGCCTTCGGTTACC qPCR of desat1 dscYP325G1-F TAATACGACTCACTATAGGGCTGATTTGG ATGGTCCTCGTGA dsCYP325G1-R TAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1F CGACGCTACAGTCCTCCAAGC CYP325G1R CGTTAATGCGGACGTTCGTT dsCPR30F TAATACGACTCACTATAGGGTTTGCATTTG TGGCCTGTTGG CPR30R TAATACGACTCACTATAGGGCTTCACCA TTGGACGGTATCC CPR30R CTTCTGACCGTCCGATTTTGC dsCPR30R TAATACGACTCACTATAGGGCCTTCACCA TTCTGACGGTATCC CPR30R CTTCTGACCGTCCGATTTTCC dsCPR30R TAATACGACTCACTATAGGGCTTCACCA TTCTGACCGTCCCGATTGTTCC dsCPR30R TAATACGACTCACTATTGC CPR30R CTTCTGACCGTCCGATTGTTCC dsCPR30R TAATACGACTCACTATAGGGAGATGGTCA GCAAGGGCGAGGAGACTGTT dsCPR30R TAATACGACTCACTATAGGGAGATGGTCA GCAAGGGCGAGGAGAGTGTTC TAATACGACTCACTATAGGGAGATGGTCA dsRNA synthesis of CPR30 dsRNA synthesis of CPR30 dsRNA synthesis of CPR30 dsRNA synthesis of CPR30 TAATACGACTCACTATAGGGAGATGGTCA GCAAGGGCGAGGAGCTGT TAATACGACTCACTATAGGGAGATTGCTCA TTCTGACCGTCCGATTGTTCC TAATACGACTCACTATAGGGAGATTGCTCA TTCTGACCGTCCGATTGTTCC TAATACGACTCACTATAGGGAGATTGCTCA TAATACGACTCACTATAGGGAGATTGCTCA TAATACGACTCACTATAGGGAGATTGCTCA TAATACGACTCACTATAGGGAGATTGCTCA TAATACGACTCACTATAGGGAGATTGCTCA TAATACGACTCACTATAGGGAGATTGCTCA TAATACGACTCACTATAGGGAGATTGCTCACTACTACTACCACTACTATAGGGAGATTGCTCACCACTACTATAGGGAGATTGCTCACCACTACTATAGGGAGATTGCTCACCACTACTATAGGGAGATTACTTCT TAATACGACTCACTATAGGGAGATTACTTCTC	dsASTE000498F	TAATACGACTCACTATAGGGATGTTCCATT	dsRNA synthesis of
ASTE000498F ASTE000498R ASTE000498R dsdesat1F TAATACGACTCACTATAGGGTTCCAACGC AAGCATTACATGATT dsdesat1R TAATACGACTCACTATAGGGACTGTCCT GATCCTTGTCGC desat1R ACGTGATTGCCTTCGGTTACC desat1R ACGCGATACACGACTCACTATAGGGACTGTCCT GATCCTTGTCGC desat1R ACGCGGATACACGTACAG dsCYP325G1-F TAATACGACTCACTATAGGGCTGATTTGG ATGGTCCTCGTGA CYP325G1-R TAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1F CGACGCTACAGTCCTCCAAGC CYP325G1R CGTTAATGCGGACGTTTCGTT dsCPR30F TAATACGACTCACTATAGGGCTTTTGCATTTG TGTGCCTGTTGG CPR30R CTTCTGGACGTACC CPR30R CTTCTGACCGTTATTTGC CPR30R CTTCTGACCGTCCGATTTTGC CPR30R CTTCTGACCGTCCGATTTTGC CPR30R CTTCTGACCGTCCGATTTTGC CPR30R CTTCTGACCGTCCGATTTTTC CCACGCTCCGATTTTTC CCACGCTACACTATAGGGCTTCCCACCA TTGGACGGTATCC CPR30R CTTCTGACCGTCCGATTTTTC CPR30R CTTCTGACCGTCCGATTTTTC CCACGCTCCGATTTTTC CCACGCTCCGATTTTCC CPR30R CTTCTGACCGTCCGATTTTCC CPR30R CTTCTGACCGTCCGATTTTCC CPR30R CTTCTGACCGTCCGATTTTCC CACGCTCACTATAGGGAGATTGCTC CACGCTCACTATAGGGAGATTGCTC CACGCTCCGATTGTTCC CPR30R CTTCTGACCGTCCGATTGTTCC CPR30R CTTCTGACCGTCCGATTGTTCC CACGCTCACTATAGGGAGATTGCTCA CACGCTCACTATAGGGAGATTACTTGT CACGCTCACTATAGGGAGATTACTTGT CACGCTCACTATAGGGAGATTACTTGT CACGCTCACTATAGGGAGATTACTTGT CACGCTCACTATAGGGAGATTACTTTGT CACGCTCACTACTATAGGGAGATTACTTTGT CACGCTCACTACTATAGGGAGATTACTTTGT CACGCTCACTACTATAGGGAGATTACTTTGT CACGCTCACTACTATAGGGAGATTACTTTGT CACGCTCACTACTACTATAGGGAGATTACTTTGT CACGCTCACTACTACTATAGGGAG		TGTCCGTTCT	ASTE000498
ASTE000498F ASTE000498R ASTE000498R dsdesat1F TAATACGACTCACTATAGGGTTCCAACGC AAGCATTACATGATT dsdesat1R TAATACGACTCACTATAGGGACTCGT GATCCTTGTCGC desat1R AGCCGGATACAACGTACAG dsCYP325G1-F TAATACGACTCACTATAGGGCTGATTTGG ATGGTCCTCGTGA CYP325G1-R TAATACGACTCACTATAGGGCTGATTTGG ATGGTCCTCGTGA CYP325G1F CGACGCTACAGTCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1F CGACGCTACAGTCCTCCAAGC CYP325G1R CGTTAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1R CGTTAATGCGGACGTTTCGTT dsCPR30F TAATACGACTCACTATAGGGCTTCACTATTG TGGCCTGTTGG CPR30R CTTCTGACGTACTCACTATAGGGCTTCACCA TTGGACGGTATCC CPR30R CTTCTGACCGTCCGATTTTGC CPR30R CTTCTGACCGTCCGATTTTGC dsRNA synthesis of CPR30 CPR30R CTTCTGACCGTCTGTATTTGC CPR30R CTTCTGACCGTCTGATTTTGC dsGFPF TAATACGACTCACTATAGGGAGATGGTGA GCAAGGGCGAGGAGCTGT dsGFPR TAATACGACTCACTATAGGGAGATGGTGA GCAAGGGCGAGGAGCTGT CFP dsGFPR TAATACGACTCACTATAGGGAGATTGCTCA TTGGACGGTCCGATTTTCG TTTCTGACCGTCCGATTTTTCC CPR30R CTTCTGACCGTCCGATTGTTCC CPR30R CTTCTGACCGTCACTATAGGGAGATGGTGA CAAGGGCGAGGAGCTGT CFP	dsASTE000498R	TAATACGACTCACTATAGGGTTATGCCAC	
ASTE000498R dsdesat1F TAATACGACTCACTATAGGGTTCCAACGC dsRNA synthesis of AAGCATTACATGATT desat1R TAATACGACTCACTATAGGGACTGGTCCT GATCCTTGTCGC desat1F ACGTGATTGCCTTCGGTTACC qPCR of desat1 AGCCYP325G1-F TAATACGACTCACTATAGGGCTGATTTGG ATGGTCCTGGA TTCTGGAGGTTCA TTCTGGAGGTTCA TTCTGGAGGTTCA TTCTGGAGGTTCA TTCTGGAGGTTCA TTCTGGAGGTTCA TTCTGGAGGTTCA TAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1R CGTTAATGCGACGTTTCGTT dsCPR30F TAATACGACTCACTATAGGGTTTGCATTTG ASCPR30R TAATACGACTCACTATAGGGCTTCACCA TTCTGGACGTATCC QPCR of CPR30 CPR30R CTTCTGACCGTCTATTGC GAGGTTCCCACTATAGGGGCTTCACCA TTGGACGGTATCC QPCR of CPR30 CPR30R CTTCTGACCGTCTATTTGC QPCR of CPR30 CPR30R CTTCTGACCGTCCGATTGTTCG dsRNA synthesis of GCAAGGGCGAGGAGCTGT GFP dsGFPR TAATACGACTCACTATAGGGAGATGGTGA GSRNA synthesis of GCAAGGGCGAGGAGGTTCACTATAGGGAGATGGTGA GSRNA synthesis of GCAAGGGCGAGGAGGTGTTCGT GFP		ACGGCCGATCG	
dsdesat1F TAATACGACTCACTATAGGGTTCCAACGC dsRNA synthesis of desat1 dsdesat1R TAATACGACTCACTATAGGGACTGGTCCT GATCCTTGTCGC desat1F ACGTGATTGCCTTCGGTTACC qPCR of desat1 dsdesat1R AGCCCGGATACAACGTACAG dsCYP325G1-F TAATACGACTCACTATAGGGCTGATTTGG dsRNA synthesis of CYP325G1-R TAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCA TTCTGGAGGTTCA TTCTGGAGGTTCA CYP325G1 CGACGCTACAGTCCTCCAAGC QPCR of CYP325G1 CYP325G1F CGACGCTACAGTCCTCCAAGC QPCR of CYP325G1 CYP325G1R CGTTAATGCGGACGTTTCGTT dsCPR30F TAATACGACTCACTATAGGGTTTGCATTTG TGTGCCTGTTGG GSCPR30R TAATACGACTCACTATAGGGGCTTCACCA TTGGACGGTATCC CPR30F ATGAAGTTTGTCGCTGTATTTGC QPCR of CPR30 CPR30R CTTCTGACCGTCCGATTGTTCG dsGFPF TAATACGACTCACTATAGGGAGATGGTGA dsRNA synthesis of GCAAGGGCGAGGAGCTGT GFP dsGFPR TAATACGACTCACTATAGGGAGATGGTGA GSRNA synthesis of GCAAGGGCGAGGAGCTGT GFP	ASTE000498F	CAAGATTGTAGCGGTGGTTG	qPCR of ASTE000498
dsdesat1R TAATACGACTCACTATAGGGACTGGTCCT GATCCTTGTCGC desat1F ACGTGATTGCCTTCGGTTACC desat1R AGCCCGGATACAACGTACAG dsCYP325G1-F TAATACGACTCACTATAGGGCTGATTTGG dsCYP325G1-R TAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1F CGACGCTACAGTCCTCCAAGC CYP325G1R CGTTAATGCGGACGTTTCGTT dsCPR30F TAATACGACTCACTATAGGGTTTGCATTTG dsCPR30R TAATACGACTCACTATAGGGTTTCACCA TTGGACGGTACC CPR30F ATGACGTTCA CTR30F ATGACGCTTCACTATAGGGCTTCACCA TTGGACGGTATCC CPR30F ATGAAGTTTGTCGCTGTATTTGC CPR30R CTTCTGACCGTCCGATTGTTCG dsGFPF TAATACGACTCACTATAGGGAGATGGTGA GCAAGGGCGAGGAGCTTTCGT dsGFPR TAATACGACTCACTATAGGGAGATTGTCA GFP dsGFPR TAATACGACTCACTATAGGGAGATTACTTGT GCAAGGGCGAGGAGCTTCCC TAATACGACTCACTATAGGGAGATTGTCA GFP	ASTE000498R	ATTGTGCTTAAGCGATCGTG	
dsdesat1RTAATACGACTCACTATAGGGACTGGTCCT GATCCTTGTCGCqPCR of desat1desat1FACGTGATTGCCTTCGGTTACC GESATLAqPCR of desat1desat1RAGCCCGGATACAACGTACAGdsRNA synthesis of CYP325G1-FdsCYP325G1-FTAATACGACTCACTATAGGGCCATGCTCA ATGGTCCTCGTGACYP325G1dsCYP325G1-RTAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCAqPCR of CYP325G1CYP325G1FCGACGCTACAGTCCTCCAAGC CGTTAATGCGGACGTTTCGTTqPCR of CYP325G1dsCPR30FTAATACGACTCACTATAGGGGTTTGCATTTG TGGCCTGTTGGdsRNA synthesis of CPR30dsCPR30FATGAAGTTTGTCGCTGTATTTGC TTGGACGGTATCCqPCR of CPR30CPR30RCTTCTGACCGTCCGATTGTTCG GCAAGGGCGAGGAGCTGTdsRNA synthesis of GSRNA synthesis of GCAAGGGCGAGGAGCTGTdsGFPFTAATACGACTCACTATAGGGAGATGGTGA GCAAGGGCGAGGAGCTGTdsRNA synthesis of GFPdsGFPRTAATACGACTCACTATAGGGAGATTACTTGT	dsdesat1F	TAATACGACTCACTATAGGGTTCCAACGC	dsRNA synthesis of
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		AAGCATTACATGATT	desat1
desat1FACGTGATTGCCTTCGGTTACCqPCR of desat1desat1RAGCCCGGATACAACGTACAGdsRNA synthesis ofdsCYP325G1-FTAATACGACTCACTATAGGGCTGATTTGGdsRNA synthesis ofCYP325G1-RTAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCACYP325G1CYP325G1FCGACGCTACAGTCCTCCAAGCqPCR of CYP325G1CYP325G1RCGTTAATGCGGACGTTTCGTTdsRNA synthesis ofdsCPR30FTAATACGACTCACTATAGGGGTTTGCATTTGdsRNA synthesis ofCPR30FATGAAGTTGCGCTGTATTTGCqPCR of CPR30CPR30RCTTCTGACCGTCGATTGTCGqPCR of CPR30dsGFPFTAATACGACTCACTATAGGGAGATGGTGA GCAAGGGCGAGGAGCTGTdsRNA synthesis ofdsGFPRTAATACGACTCACTATAGGGAGATGGTGA GCAAGGGCGAGGAGCTGTdsRNA synthesis ofdsGFPRTAATACGACTCACTATAGGGAGATTGTTGT	dsdesat1R	TAATACGACTCACTATAGGGACTGGTCCT	
desat1RAGCCCGGATACAACGTACAGdsCYP325G1-FTAATACGACTCACTATAGGGCTGATTTGGdsRNA synthesis of CYP325G1dsCYP325G1-RTAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCAqPCR of CYP325G1CYP325G1FCGACGCTACAGTCCTCCAAGCqPCR of CYP325G1CYP325G1RCGTTAATGCGGACGTTTCGTTdsRNA synthesis of CPR30FdsCPR30RTAATACGACTCACTATAGGGGTTTCACCA TTGGACGGTATCCCPR30CPR30FATGAAGTTTGTCGCTGTATTTGCqPCR of CPR30CPR30RCTTCTGACCGTCCGATTGTTCGdsRNA synthesis of GCAAGGGCGAGGAGCTGTdsGFPFTAATACGACTCACTATAGGGAGATGGTGA GCAAGGGCGAGGAGCTGTdsRNA synthesis of GFPdsGFPRTAATACGACTCACTATAGGGAGATTGCTGA GCAAGGGCGAGGAGCTGTdsRNA synthesis of GFP		GATCCTTGTCGC	
dsCYP325G1-F TAATACGACTCACTATAGGGCTGATTTGG ATGGTCCTCGTGA dsCYP325G1-R TAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1F CGACGCTACAGTCCTCCAAGC CYP325G1R CGTTAATGCGGACGTTTCGTT dsCPR30F TAATACGACTCACTATAGGGTTTGCATTTG TGTGCCTGTTGG CPR30 dsRNA synthesis of CPR30 CPR30R TAATACGACTCACTATAGGGGTTTCACCA TTGGACGGTATCC CPR30F ATGAAGTTTGTCGCTGTATTTG CPR30R CTTCTGACCGTCCGATTGTTC dsGFPF TAATACGACTCACTATAGGGAGATGGTGA GCAAGGGCGAGGAGCTGT dsGFPR TAATACGACTCACTATAGGGAGATTGTC CPR30R CTTCTGACCGTCCGATTGTTCG CFP dsGFPR TAATACGACTCACTATAGGGAGATTGTTCA TTGFP TAATACGACTCACTATAGGGAGATTGTTCA TAATACGACTCACTATAGGGAGATTGTTCA TAATACGACTCACTATAGGGAGATTGTTCA TAATACGACTCACTATAGGGAGATTGTTCA TAATACGACTCACTATAGGGAGATTGTTCA TAATACGACTCACTATAGGGAGATTACTTGT TAATACGACTCACTATAGGGAGTTACTTGT TAATACGACTCACTATAGGGAGGTTACTTGT TAATACGACTCACTATAGGGAGGTTACTTGT TAATACGACTCACTATAGGGAGGTTACTTGT TAATACGACTCACTATAGGGAGGTTACTTGT TAATACGACTCACTATAGGGAGGTTACTTGT TAATACGACTCACTATAGGGAGGTTACTTGT TAATACGACTCACTATAGGGAGGTTACTTGT TAATACGACTCACTATAGGGAGGTTACTTGT TAATACGACTCACTATAGGGAGGTTACTTGT	desat1F	ACGTGATTGCCTTCGGTTACC	qPCR of <i>desat1</i>
dsCYP325G1-R TAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1F CYP325G1F CGACGCTACAGTCCTCCAAGC CYP325G1R CGTTAATGCGGACGTTTCGTT dsCPR30F TAATACGACTCACTATAGGGTTTGCATTTG CPR30F CPR30R ATGAAGTTTGTCGCTGTATTTGC CPR30R CTTCTGACCGTCCGATTTTGC CPR30R CTTCTGACCGTCCGATTTTTGC GSGPF TAATACGACTCACTATAGGGAGATGGTGA CPR30 CPR30R CTTCTGACCGTCCGATTGTTCG dsGFPF TAATACGACTCACTATAGGGAGATGGTGA GCAAGGGCGAGGAGCTGT TAATACGACTCACTATAGGGAGATTGTTCG TAATACGACTCACTATAGGGAGATTGTTCG TAATACGACTCACTATAGGGAGATTGTTCG TAATACGACTCACTATAGGGAGATTGTTCG TAATACGACTCACTATAGGGAGATTGTTCG TAATACGACTCACTATAGGGAGATTACTTGT TAATACGACTCACTATAGGGAGTTACTTGT TAATACGACTCACTATAGGGAGTTACTTGT TAATACGACTCACTATAGGGAGTTACTTGT	desat1R	AGCCCGGATACAACGTACAG	
dsCYP325G1-R TAATACGACTCACTATAGGGCCATGCTCA TTCTGGAGGTTCA CYP325G1F CGACGCTACAGTCCTCCAAGC CYP325G1R CGTTAATGCGGACGTTTCGTT dsCPR30F TAATACGACTCACTATAGGGTTTGCATTTG CPR30F CPR30R TAGAAGTTTGTCGCTGTATTTGC CPR30R CTTCTGACCGTCCGATTTTGC CPR30R CTTCTGACCGTCCGATTGTTCG dsGFPF TAATACGACTCACTATAGGGAGATGGTGA GCAAGGGCGAGGAGCTGT dsGFPR TAATACGACTCACTATAGGGAGATGGTGA GCAAGGGCGAGGAGCTGT TAATACGACTCACTATAGGGAGATTACTTGT GFP	dsCYP325G1-F	TAATACGACTCACTATAGGGCTGATTTGG	dsRNA synthesis of
TTCTGGAGGTTCA CYP325G1F CGACGCTACAGTCCTCCAAGC CYP325G1R CGTTAATGCGGACGTTTCGTT dsCPR30F TAATACGACTCACTATAGGGTTTGCATTTG TTGGACGGTATCC CPR30F CPR30R CTTCTGACCGTCGTATTTGC CPR30R CTTCTGACCGTCCGATTGTTGC dsRNA synthesis of CPR30 CPR30 qPCR of CPR30 qPCR of CPR30 dsGFPF TAATACGACTCACTATAGGGAGATGGTGA dsRNA synthesis of GFP dsGFPR TAATACGACTCACTATAGGGAGATTGTTGC GFP		ATGGTCCTCGTGA	CYP325G1
CYP325G1F CYP325G1R CGTTAATGCGGACGTTTCGTT dsCPR30F TAATACGACTCACTATAGGGTTTGCATTTG dsRNA synthesis of CPR30R TAATACGACTCACTATAGGGGTTTCACCA TTGGACGGTATCC CPR30F CPR30R CTTCTGACCGTCGTTTTGC dsRNA synthesis of CPR30 qPCR of CPR30 qPCR of CPR30 dsCPR30F ATGAAGTTTGTCGCTGTATTTGC qPCR of CPR30 CPR30R CTTCTGACCGTCCGATTGTTCG dsGFPF TAATACGACTCACTATAGGGAGATGGTGA GCAAGGGCGAGGAGCTGT dsGFPR TAATACGACTCACTATAGGGAGTTACTTGT dsGFPR	dsCYP325G1-R	TAATACGACTCACTATAGGGCCATGCTCA	
CYP325G1R dsCPR30F TAATACGACTCACTATAGGGTTTGCATTTG dsRNA synthesis of TGTGCCTGTTGG CPR30 dsCPR30R TAATACGACTCACTATAGGGGCTTCACCA TTGGACGGTATCC CPR30F ATGAAGTTTGTCGCTGTATTTGC CPR30R CTTCTGACCGTCCGATTGTTCG dsGFPF TAATACGACTCACTATAGGGAGATGGTGA GCAAGGGCGAGGAGCTGT dsGFPR TAATACGACTCACTATAGGGAGTTACTTGT dsGFPR TAATACGACTCACTATAGGGAGTTACTTGT dsGFPR		TTCTGGAGGTTCA	
dsCPR30F TAATACGACTCACTATAGGGTTTGCATTTG dsRNA synthesis of CPR30 CPR30R TAATACGACTCACTATAGGGGCTTCACCA TTGGACGGTATCC CPR30F ATGAAGTTTGTCGCTGTATTTGC qPCR of CPR30 CTTCTGACCGTCCGATTGTTCG dsGFPF TAATACGACTCACTATAGGGAGATGGTGA GCAAGGGCGAGGAGCTGT GFP dsGFPR TAATACGACTCACTATAGGGAGTTACTTGT	CYP325G1F	CGACGCTACAGTCCTCCAAGC	qPCR of <i>CYP325G1</i>
dsCPR30R TAATACGACTCACTATAGGGGCTTCACCA TTGGACGGTATCC CPR30F ATGAAGTTTGTCGCTGTATTTGC qPCR of CPR30 CPR30R CTTCTGACCGTCCGATTGTTCG dsGFPF TAATACGACTCACTATAGGGAGATGGTGA GSRNA synthesis of GCAAGGGCGAGGAGCTGT dsGFPR TAATACGACTCACTATAGGGAGTTACTTGT	CYP325G1R	CGTTAATGCGGACGTTTCGTT	
dsCPR30R TAATACGACTCACTATAGGGGCTTCACCA TTGGACGGTATCC CPR30F ATGAAGTTTGTCGCTGTATTTGC qPCR of CPR30 CPR30R CTTCTGACCGTCCGATTGTTCG dsGFPF TAATACGACTCACTATAGGGAGATGGTGA GSRNA synthesis of GCAAGGGCGAGGAGCTGT dsGFPR TAATACGACTCACTATAGGGAGTTACTTGT	dsCPR30F	TAATACGACTCACTATAGGGTTTGCATTTG	dsRNA synthesis of
TTGGACGGTATCC CPR30F ATGAAGTTTGTCGCTGTATTTGC qPCR of CPR30 CPR30R CTTCTGACCGTCCGATTGTTCG dsGFPF TAATACGACTCACTATAGGGAGATGGTGA GCAAGGGCGAGGAGCTGT GFP dsGFPR TAATACGACTCACTATAGGGAGTTACTTGT		TGTGCCTGTTGG	CPR30
CPR30F ATGAAGTTTGTCGCTGTATTTGC qPCR of CPR30 CPR30R CTTCTGACCGTCCGATTGTTCG dsGFPF TAATACGACTCACTATAGGGAGATGGTGA dsRNA synthesis of GCAAGGGCGAGGAGCTGT GFP dsGFPR TAATACGACTCACTATAGGGAGTTACTTGT	dsCPR30R	TAATACGACTCACTATAGGGGCTTCACCA	
CPR30R CTTCTGACCGTCCGATTGTTCG dsGFPF TAATACGACTCACTATAGGGAGATGGTGA dsRNA synthesis of GCAAGGGCGAGGAGCTGT GFP dsGFPR TAATACGACTCACTATAGGGAGTTACTTGT		TTGGACGGTATCC	
dsGFPF TAATACGACTCACTATAGGGAGATGGTGA dsRNA synthesis of GCAAGGGCGAGGAGCTGT GFP dsGFPR TAATACGACTCACTATAGGGAGTTACTTGT	CPR30F	ATGAAGTTTGTCGCTGTATTTGC	qPCR of <i>CPR30</i>
GCAAGGGCGAGGAGCTGT GFP dsGFPR TAATACGACTCACTATAGGGAGTTACTTGT	CPR30R	CTTCTGACCGTCCGATTGTTCG	
dsGFPR TAATACGACTCACTATAGGGAGTTACTTGT	dsGFPF	TAATACGACTCACTATAGGGAGATGGTGA	dsRNA synthesis of
			GFP
ACAGCTCGTCCATGCCG	dsGFPR	TAATACGACTCACTATAGGGAGTTACTTGT	
		ACAGCTCGTCCATGCCG	

Note: As, Anopheles stephensi; Ag, An. gambiae s.s..

Movie S1.

Silencing of *per* affects male mating flight activity around ZT13-14, when peak mating activity of ds*GFP*-treated *An. stephensi* mosquitoes occurs in the small cage.

Movie S2.

Silencing of *tim* affects male mating flight activity around ZT13-14, when peak mating activity of ds*GFP*-treated *An. stephensi* mosquitoes occurs in the small cage.

Movie S3.

Silencing of *desat1* affects male mating flight activity around ZT13-14, when peak mating activity of ds*GFP*-treated *An. stephensi* mosquitoes occurs in the small cage.

References and Notes

- 1. World Health Organization (WHO), World malaria report 2018 (2018); www.who.int/malaria/publications/world-malaria-report-2018/report/en/.
- 2. E. Chanda, B. Ameneshewa, M. Bagayoko, J. M. Govere, M. B. Macdonald, Harnessing integrated vector management for enhanced disease prevention. *Trends Parasitol.* **33**, 30–41 (2017). doi:10.1016/j.pt.2016.09.006 Medline
- 3. H. Ranson, N. Lissenden, Insecticide resistance in African *Anopheles* mosquitoes: A worsening situation that needs urgent action to maintain malaria control. *Trends Parasitol.* **32**, 187–196 (2016). doi:10.1016/j.pt.2015.11.010 Medline
- 4. G. Harrison, *Mosquitos, Malaria, and Man: A History of the Hostilities Since 1880* (Dutton, 1978).
- 5. C. Cui, Y. Wang, J. Liu, J. Zhao, P. Sun, S. Wang, A fungal pathogen deploys a small silencing RNA that attenuates mosquito immunity and facilitates infection. *Nat. Commun.* **10**, 4298 (2019). doi:10.1038/s41467-019-12323-1 Medline
- 6. A. Diabate, F. Tripet, Targeting male mosquito mating behaviour for malaria control. *Parasit. Vectors* **8**, 347 (2015). doi:10.1186/s13071-015-0961-8
 Medline
- 7. A. Diabaté, A. S. Yaro, A. Dao, M. Diallo, D. L. Huestis, T. Lehmann, Spatial distribution and male mating success of *Anopheles gambiae* swarms. *BMC Evol. Biol.* 11, 184 (2011). doi:10.1186/1471-2148-11-184 Medline
- 8. P. S. Sawadogo, M. Namountougou, K. H. Toé, J. Rouamba, H. Maïga, K. R. Ouédraogo, T. Baldet, L. C. Gouagna, P. Kengne, F. Simard, C. Costantini, G. Gibson, A. Diabaté, R. S. Lees, J. R. Gilles, K. R. Dabiré, Swarming behaviour in natural populations of *Anopheles gambiae* and *An. coluzzii*: Review of 4 years survey in rural areas of sympatry, Burkina Faso (West Africa). *Acta Trop.* **132**, S42–S52 (2014). doi:10.1016/j.actatropica.2013.12.011 Medline
- 9. S. Butail, N. Manoukis, M. Diallo, J. M. Ribeiro, T. Lehmann, D. A. Paley, Reconstructing the flight kinematics of swarming and mating in wild mosquitoes. *J. R. Soc. Interface* **9**, 2624–2638 (2012). doi:10.1098/rsif.2012.0150 Medline
- 10. J. A. Downes, Swarming and mating flight of diptera. *Annu. Rev. Entomol.* **14**, 271–298 (1969). doi:10.1146/annurev.en.14.010169.001415
- 11. E. W. Kaindoa, H. S. Ngowo, A. Limwagu, G. Mkandawile, J. Kihonda, J. P. Masalu, H. Bwanary, A. Diabate, F. O. Okumu, New evidence of mating swarms of the malaria vector, *Anopheles arabiensis* in Tanzania. *Wellcome Open Res.* 2, 88 (2017). doi:10.12688/wellcomeopenres.12458.1 Medline

- 12. N. C. Manoukis, A. Diabate, A. Abdoulaye, M. Diallo, A. Dao, A. S. Yaro, J. M. Ribeiro, T. Lehmann, Structure and dynamics of male swarms of *Anopheles gambiae*. *J. Med. Entomol.* **46**, 227–235 (2009). doi:10.1603/033.046.0207 Medline
- 13. B. S. Assogba, L. Djogbénou, J. Saizonou, A. Diabaté, R. K. Dabiré, N. Moiroux, J. R. Gilles, M. Makoutodé, T. Baldet, Characterization of swarming and mating behaviour between *Anopheles coluzzii* and *Anopheles melas* in a sympatry area of Benin. *Acta Trop.* 132, S53–S63 (2014). doi:10.1016/j.actatropica.2013.09.006 Medline
- 14. J. D. Charlwood, M. D. R. Jones, Mating in the mosquito, *Anopheles gambiae* s.I. II. Swarming behaviour. *Physiol. Entomol.* **5**, 315–320 (1980). doi:10.1111/j.1365-3032.1980.tb00241.x
- 15. P. Gabrieli, E. G. Kakani, S. N. Mitchell, E. Mameli, E. J. Want, A. Mariezcurrena Anton, A. Serrao, F. Baldini, F. Catteruccia, Sexual transfer of the steroid hormone 20E induces the postmating switch in *Anopheles gambiae*. *Proc. Natl. Acad. Sci. U.S.A.* **111**, 16353–16358 (2014). doi:10.1073/pnas.1410488111 Medline
- 16. J. M. Hurley, J. J. Loros, J. C. Dunlap, Circadian oscillators: Around the transcription-translation feedback loop and on to output. *Trends Biochem. Sci.* **41**, 834–846 (2016). doi:10.1016/j.tibs.2016.07.009 Medline
- 17. Y. Zhang, P. Emery, in *Insect Molecular Biology and Biochemistry*, L. Gilbert, Ed. (Academic Press, 2012), pp. 513–551.
- 18. T. Sakai, N. Ishida, Circadian rhythms of female mating activity governed by clock genes in *Drosophila. Proc. Natl. Acad. Sci. U.S.A.* **98**, 9221–9225 (2001). doi:10.1073/pnas.151443298 Medline
- 19. B. G. J. Knols, H. C. Bossin, W. R. Mukabana, A. S. Robinson, Transgenic mosquitoes and the fight against malaria: Managing technology push in a turbulent GMO world. *Am. J. Trop. Med. Hyg.* **77**, 232–242 (2007). doi:10.4269/ajtmh.2007.77.232 Medline
- L. Facchinelli, L. Valerio, R. S. Lees, C. F. Oliva, T. Persampieri, C. M. Collins, A. Crisanti, R. Spaccapelo, M. Q. Benedict, Stimulating *Anopheles gambiae* swarms in the laboratory: Application for behavioural and fitness studies.
 Malar. J. 14, 271 (2015). doi:10.1186/s12936-015-0792-2 Medline
- 21. A. Niang, C. Nignan, B. Serge Poda, S. P. Sawadogo, K. Roch Dabiré, O. Gnankiné, F. Tripet, O. Roux, A. Diabaté, Semi-field and indoor setups to study malaria mosquito swarming behavior. *Parasit. Vectors* **12**, 446 (2019). doi:10.1186/s13071-019-3688-0 Medline
- 22. P. Lamba, D. Bilodeau-Wentworth, P. Emery, Y. Zhang, Morning and evening oscillators cooperate to reset circadian behavior in response to light input. *Cell Rep.* **7**, 601–608 (2014). doi:10.1016/j.celrep.2014.03.044 Medline

- 23. C. Wicker-Thomas, I. Guenachi, Y. F. Keita, Contribution of oenocytes and pheromones to courtship behaviour in *Drosophila*. *BMC Biochem.* **10**, 21 (2009). doi:10.1186/1471-2091-10-21 Medline
- 24. A. R. Polerstock, S. D. Eigenbrode, M. J. Klowden, Mating alters the cuticular hydrocarbons of female *Anopheles gambiae* sensu stricto and *Aedes aegypti* (Diptera: Culicidae). *J. Med. Entomol.* **39**, 545–552 (2002). doi:10.1603/0022-2585-39.3.545 Medline
- 25. G. J. Blomquist, J. A. Tillman-Wall, L. Guo, D. R. Quilici, P. Gu, C. Schal, in *Insect Lipids: Chemistry, Biochemistry and Biology*, D. W. Stanley-Samuelson, D. R. Nelson, Eds. (Univ. Nebraska Press, 1993), pp. 317–351.
- 26. F. Bousquet, T. Nojima, B. Houot, I. Chauvel, S. Chaudy, S. Dupas, D. Yamamoto, J. F. Ferveur, Expression of a desaturase gene, *desat1*, in neural and nonneural tissues separately affects perception and emission of sex pheromones in *Drosophila*. *Proc. Natl. Acad. Sci. U.S.A.* **109**, 249–254 (2012). doi:10.1073/pnas.1109166108 Medline
- 27. R. R. H. Anholt, P. O'Grady, M. F. Wolfner, S. T. Harbison, Evolution of reproductive behavior. *Genetics* **214**, 49–73 (2020). doi:10.1534/genetics.119.302263 Medline
- 28. S. Das, G. Dimopoulos, Molecular analysis of photic inhibition of blood-feeding in *Anopheles gambiae*. *BMC Physiol.* **8**, 23 (2008). doi:10.1186/1472-6793-8-23 Medline
- 29. A. D. Sheppard, S. S. C. Rund, G. F. George, E. Clark, D. J. Acri, G. E. Duffield, Light manipulation of mosquito behaviour: Acute and sustained photic suppression of biting activity in the *Anopheles gambiae* malaria mosquito. *Parasit. Vectors* **10**, 255 (2017). doi:10.1186/s13071-017-2196-3 Medline
- 30. A. C. Honnen, J. L. Kypke, F. Holker, M. T. Monaghan, Artificial light at night influences clock-gene expression, activity, and fecundity in the mosquito *Culex pipiens* f. *molestus*. *Sustainability* **11**, 6220 (2019). doi:10.3390/su11226220
- 31. S. S. Rund, J. E. Gentile, G. E. Duffield, Extensive circadian and light regulation of the transcriptome in the malaria mosquito *Anopheles gambiae*. *BMC Genomics* **14**, 218 (2013). doi:10.1186/1471-2164-14-218 Medline
- 32. S. P. Sawadogo, C. Costantini, C. Pennetier, A. Diabaté, G. Gibson, R. K. Dabiré, Differences in timing of mating swarms in sympatric populations of *Anopheles coluzzii* and *Anopheles gambiae s.s.* (formerly *An. gambiae* M and S molecular forms) in Burkina Faso, West Africa. *Parasit. Vectors* 6, 275 (2013). doi:10.1186/1756-3305-6-275 Medline
- 33. S. S. Rund, S. J. Lee, B. R. Bush, G. E. Duffield, Strain- and sex-specific differences in daily flight activity and the circadian clock of *Anopheles*

- *gambiae* mosquitoes. *J. Insect Physiol.* **58**, 1609–1619 (2012). doi:10.1016/j.jinsphys.2012.09.016 Medline
- 34. A. Martin Anduaga, N. Evantal, I. L. Patop, O. Bartok, R. Weiss, S. Kadener, Thermosensitive alternative splicing senses and mediates temperature adaptation in *Drosophila*. *eLife* **8**, e44642 (2019). doi:10.7554/eLife.44642 Medline
- 35. J. Majercak, D. Sidote, P. E. Hardin, I. Edery, How a circadian clock adapts to seasonal decreases in temperature and day length. *Neuron* **24**, 219–230 (1999). doi:10.1016/S0896-6273(00)80834-X Medline
- 36. C. Wicker-Thomas, Pheromonal communication involved in courtship behavior in Diptera. *J. Insect Physiol.* **53**, 1089–1100 (2007). doi:10.1016/j.jinsphys.2007.07.003 Medline
- 37. L. J. Cator, B. J. Arthur, L. C. Harrington, R. R. Hoy, Harmonic convergence in the love songs of the dengue vector mosquito. *Science* **323**, 1077–1079 (2009). doi:10.1126/science.1166541 Medline
- 38. M. P. Su, M. Andrés, N. Boyd-Gibbins, J. Somers, J. T. Albert, Sex and species specific hearing mechanisms in mosquito flagellar ears. *Nat. Commun.* **9**, 3911 (2018). doi:10.1038/s41467-018-06388-7 Medline
- 39. M. Gendrin, A swiss army knife to cut malaria transmission. *Cell Host Microbe* **22**, 577–579 (2017). doi:10.1016/j.chom.2017.10.016 Medline
- 40. X. Sun, X. Zhang, G. Wu, X. Li, F. Liu, Z. Xin, J. Zhang, *n*-Pentacosane acts as both contact and volatile pheromone in the tea weevil, *Myllocerinus aurolineatus*. *J. Chem. Ecol.* **43**, 557–562 (2017). doi:10.1007/s10886-017-0857-5 Medline
- 41. C. Kent, R. Azanchi, B. Smith, A. Chu, J. Levine, A model-based analysis of chemical and temporal patterns of cuticular hydrocarbons in male *Drosophila melanogaster*. *PLOS ONE* **2**, e962 (2007). doi:10.1371/journal.pone.0000962

 Medline
- 42. F. Santolamazza, E. Mancini, F. Simard, Y. Qi, Z. Tu, A. della Torre, Insertion polymorphisms of SINE200 retrotransposons within speciation islands of *Anopheles gambiae* molecular forms. *Malar. J.* **7**, 163 (2008). doi:10.1186/1475-2875-7-163 Medline
- 43. M. S. Lagonigro, L. De Cecco, P. Carninci, D. Di Stasi, T. Ranzani, M. Rodolfo, M. Gariboldi, CTAB-urea method purifies RNA from melanin for cDNA microarray analysis. *Pigment Cell Res.* **17**, 312–315 (2004). doi:10.1111/j.1600-0749.2004.00155.x Medline
- 44. Y. Dong, R. Aguilar, Z. Xi, E. Warr, E. Mongin, G. Dimopoulos, *Anopheles gambiae* immune responses to human and rodent *Plasmodium* parasite species. *PLOS Pathog.* **2**, e52 (2006). doi:10.1371/journal.ppat.0020052 Medline

- 45. I. V. Yang, E. Chen, J. P. Hasseman, W. Liang, B. C. Frank, S. Wang, V. Sharov, A. I. Saeed, J. White, J. Li, N. H. Lee, T. J. Yeatman, J. Quackenbush, Within the fold: Assessing differential expression measures and reproducibility in microarray assays. *Genome Biol.* 3, research0062 (2002). doi:10.1186/gb-2002-3-11-research0062 Medline
- 46. S. B. Poda, C. Nignan, O. Gnankiné, R. K. Dabiré, A. Diabaté, O. Roux, Sex aggregation and species segregation cues in swarming mosquitoes: Role of ground visual markers. *Parasit. Vectors* **12**, 589 (2019). doi:10.1186/s13071-019-3845-5 Medline

