Data Supplement

Interdependent nuclear co-trafficking of ASPP1 and p53 aggravates cardiac ischemia/reperfusion injury

Ying Yang ^{a, e, 1}, Yang Zhang ^{a, 1}, Jiqin Yang ^a, Manman Zhang ^a, Tao Tian^a, Yuan Jiang ^{a, f}, Xuening Liu^a, Genlong Xue ^a, Xingda Li ^a, Xiaofang Zhang ^a, Shangxuan Li ^a, Xiang Huang ^a, Zheng Li ^a, Yang Guo ^a, Lexin Zhao ^a, Hairong Bao ^a, Zhiwen Zhou ^a, Jiahui Song ^a, Guohui Yang ^a, Lina Xuan ^a, Hongli Shan ^{a, d, *}, Zhiren Zhang^c, Yanjie Lu ^{a, *}, Baofeng Yang ^{a, *}, Zhenwei Pan ^{a, b, c, *}

^a Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education),
 College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P. R. China;
 ^b Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019 Research Unit 070, Harbin, Heilongjiang 150086, P. R. China;
 ^c NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China;

^d Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China;

^e Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China;

^f Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.

Methods

Animals

To avoid the influence of estrogen fluctuations in the female mice, the male mice (C57BL/6 background) (7-8 weeks old, 22-25 g) were used to assure consistence of results in this study³⁹⁻⁴¹. All mice were maintained in a temperature-controlled facility with 12 h light/dark cycle at 23 ± 3 °C and 30-70% humidity. All animal experiments were approved by the Ethic Committees of College of Pharmacy, Harbin Medical University (IRB3005821) and in accordance with the Guide for the Care and Use of Laboratory in Harbin Medical University. The experimenters were blind to treatment/genotype grouping information during the experiment and quantification. No mice were excluded from the study unless died. Group sizes were determined according to our previous experience with establishment of mouse model of myocardial ischemia and reperfusion⁴². Briefly, the number of mice in each group was determined based on power calculations for the primary parameter (infarct area) with mean differences and standard deviations taken from pilot data at power 80% with a standard level of significance of 0.05.

Generation of ASPP1 transgenic mice and knockout mice

Cardiomyocyte-specific ASPP1 overexpression transgenic (TG) mice and ASPP1 conventional knockout (KO) mice were generated by Cyagen Biosciences Co., Ltd (China). To generate ASPP1(TG) mice, the ASPP1 cDNA was amplified and cloned into a vector containing a murine α -myosin heavy chain (α -MHC) promoter. The transgenic expression vector was then injected into mouse fertilized eggs by microinjection. The ASPP1(KO) mice was constructed by CRISPR/Cas9 strategy. Briefly, gRNA1 (matching forward strand of gene: 5'-GAGTTACAGACATGTGGTGCTGG-3'), gRNA2 (matching reverse strand of gene: 5'-TCTAGCTTCTCTGTGGTACAGGG-3') and Cas9 expression plasmids were designed to

delete the second exon of ASPP1. Genomic PCR of tail DNA was performed to detect genotype of offspring of ASPP1(TG) mice (forward: 5' -AGTGATGAACAAAGGCACCG-3', reverse: 5'-AGCCAGAAGTCAGATGCTCAAGG-3') and ASPP1(KO) mice (forward 1: 5'-TGTGGGTTCCCCTGTCAAACTC-3', forward 2: 5'-GTTGAACTTAGGAAGGAGATGGC-3', reverse 1: 5'-CGTCCAGAAGAACTGAGCTAAC-3'). All mice were compared with non-transgenic or wild-type gender-matched littermates.

Construction of adeno-associated virus (AAV9) carrying p53 shRNA

To induce cardia-specific knockdown of p53, we commissioned Cyagen Biosciences Co., Ltd (China) to construct the shRNA of p53 (sense: 5'-GGACAGCCAAGUCUGUUAU-3', antisense: 5'-AUAACAGACUUGGCUGUCC-3') packaged by adeno-associated virus (AAV9). The AAV9 virus was injected into 6 weeks old mice through the tail vein at a dose of 1×10^{10} PFU per animal. Two weeks after injection, experimental interventions were carried out.

Cardiac ischemia/reperfusion injury

Cardiac I/R injury was induced by 45 min ischemia, followed by 24 h reperfusion. Briefly, male mice (7-8 weeks old, 22-25 g) were anesthetized with 2% avertin (0.1 ml/10 g) intraperitoneally (i.p.). The anesthetized mice were intubated and ventilated using a rodent ventilator with a tidal volume of 200 μ l and a frequency of 110 breaths per minute (R415; RWD life science, China). Then, the skin surface of the left chest was disinfected and a thoracotomy through 3, 4 intercostal area was performed to expose the heart. The left anterior descending coronary artery (LAD) was occluded by tying a slipknot with 7-0 silk suture 1-2 mm from the lower edge of the left atrium. After 45 min, the slipknot was released to allow 24 h reperfusion.

For sham group mice, the operation followed the same procedure without ligation.

TTC staining

To determine the infarct size, we excised and sliced the cardiac tissue into 1 mm thick slices. Then rapidly incubated slices in 2% 2,3,5-triphenyltetrazolium chloride (TTC, Solarbio, China) at 37°C. After 15 min of incubation, the reaction was terminated by 4% paraformaldehyde (PFA). The infarct area was determined by stereomicroscope (Zeiss Stemi 508, Germany) and measured by computerized planimetry (Image pro-plus 6.0).

Echocardiography

To determine the cardiac function of mice (7-8 weeks old, 22-25 g), the M-mode echocardiography of heart were acquired by Vevo2100 Imaging System (VisualSonics, Toronto, Canada) equipped with a 10-MH2 phased-array transducer. Briefly, after removing the hair from the chest of mice using NairTM depilatory cream (Church & Dwight Co., Inc., Princeton, NJ, USA), the mice were smeared with medical ultrasonic couplant (Tianjin Yajie Medical Material Co., Ltd., Tianjin, China). Two-dimensional targeted M-mode traces were recorded from the parasternal short-axis view at the level of the mid-papillary muscles and from the parasternal long-axis view at the level of immediately under of the papillary muscle. A minimum of six consecutive cardiac cycles were obtained, and the left ventricular systolic diameter (LVID, s), left ventricular diastolic diameter (LVID, d), left ventricular end diastolic volume (LVEDV), and left ventricular end systolic volume (LVESV)/LVEDV×100% and fractional shortening (FS) as (LVIDd-LVIDs)/LVIDd×100%. The data are presented as the average of measurements of three consecutive beats.

Isolation of adult mouse cardiomyocytes

Adult male mice (7-8 weeks old, 22-25 g) were anesthetized by intraperitoneal injection of 2% avertin (0.1 ml/10g body weight). After 15 minutes, hearts were rapidly separated, and the aorta was cannulated on a constant-flow Langendorf apparatus at 37°C. The heart was digested by perfusion with Tyrode's solution containing Type II collagenase (1 mg/ml), protease (0.02 mg/ml), and bovine serum albumin (BSA, 1mg/ml). Tyrode's solution contained (mM): NaCl 123, KCl 5.4, HEPES 10, NaH₂PO₄ 0.33, MgCl₂ 1.0, and glucose 10; pH adjusted to 7.4 with NaOH. When the tissue turned softening, perfusion was stopped and the left ventricle was dissected and gently dispersed to obtain isolated cardiomyocytes. To obtain cardiomyocytes from ischemia/reperfusion region, we carefully dissected the free wall of left ventricle experienced ischemia/reperfusion based on the color (pale) and position (below the suture around the coronary artery). The cardiomyocytes were then equilibrated in Tyrode's solution with 200 μ M CaCl₂ and 1% BSA. Cardiomyocytes were long rod-shape or rectangular under the microscope. All solutions were gassed with 95% O₂ and 5% CO₂ and warmed to 37±0.5°C.

Serum creatine kinase isoenzyme MB detection

Male mice (7-8 weeks old, 22-25 g) were anesthetized with 2% avertin (0.1 ml/10 g) intraperitoneally (i.p.). After anesthetization, blood was collected from the inferior vena cava and allowed to stand at room temperature for 1h. Then, centrifuged the blood at 1000 g for 20 min to obtain the serum. Serum creatine kinase isoenzyme MB (CKMB) was detected by mouse CKMB Elisa Kit (E-EL-M0355, Elabscience, China) according to the protocol. The finally optical density (OD) was read at 450 nm.

Neonatal mouse cardiomyocytes culture and treatment

Neonatal mice (1-3 days) were used to isolate primary neonatal mouse ventricular cardiomyocytes (NMVCs). Briefly, after the skin surface disinfection with 75% alcohol, mice hearts were collected in the clean bench. Then, ventricular tissues were isolated and digested by 0.25% trypsin (Beyotime, China). The obtained cells were centrifuged at 1500 g for 5 min and resuspended by high glucose DMEM (Biological Industries, Israel) complete medium containing 10% fetal bovine serum (Biological Industries, Israel) and 1% penicillin/streptomycin (Beyotime, China). After 2 h's incubation (5% CO₂, 95% humidified air, 37°C), NMVCs were isolated and incubated for another 48 h under the same condition. To induce hypoxia/reoxygenation (H/R) injury, NMVCs were incubated with hypoxic condition (5% CO₂, 95% N₂, 37°C) for 12 h, followed by common condition (5% CO₂, 95% humidified air, 37°C) for 24 h.

Cell transfection

ASPP1 cDNA were inserted into GV141 vector with T7 promoter and XhoI/KpnI by Shanghai Genechem Co., Ltd (China). Full length p53, N-terminal (the binding fragment of ASPP1 does not have NLS, 1-288 aa) of p53 and C-terminal (NLS of p53, 310-381 aa) of p53 cDNA were inserted into GV141 vector with T7 promoter and XhoI/KpnI, and were all tagged with flag epitope by Shanghai Genechem Co., Ltd (China). Transfection of plasmids was carried out by mixing with LipofectamineTM 2000 reagent (Invitrogen, America). To induce gene knockdown, small interference RNAs (siRNAs) were designed by Suzhou Genepharma Co., Ltd (China). The sequences of siRNAs for mouse ASPP1 were: 5'-GCAAGAUCAUGAAUGGCAATT-3' and 5'-UUGCCAUUCAUGAUCUUGCTT-3' (siASPP1-1); 5'-

GCUGCUGUGGGUCCUUAUATT-3' and 5'-UAUAAGGACCCACAGCAGCTT-3'

(siASPP1-2); 5'-GCAAAGGGCCACCUCCCAUTT-3' and 5'-AUGGGAGGUGGCCCUUUGCTT-3' (siASPP1-3). The sequences of siRNAs for mouse p53 were: 5'-GGACAGCCAAGUCUGUUAUTT-3' and 5'-AUAACAGACUUGGCUGUCCTT-

3' 5'-GACCUAUCCUUACCAUCAUTT-3' 5'-(sip53-1); and AUGAUGGUAAGGAUAGGUCTT-3' (sip53-2); 5'-CCACUUGAUGGAGAGUAUUTT-3' and 5'-AAUACUCUCCAUCAAGUGGTT-3' (sip53-3). The sequences of siRNAs for mouse ASPP2 were: 5'-GGACUAUACCCAAGAAUUATT-3' and 5'-UAAUUCUUGGGUAUAGUCCTT-3'. The sequences of siRNAs for mouse iASPP were: 5'-GCAUGGGACUGAUGCACTT-3' 5'-GUGCAUCAGUCCCAUGCTT-3'. and The sequences of siRNAs for mouse importin-β1 were: 5'-GGGAAGUCAAGAACUAUGUTT-3' and 5'-ACAUAGUUCUUGACUUCCCTT-3'. The sequences of siRNAs for mouse E2F1 were: 5'-AUCUGACCACCAAACGCUUTT-3' and 5'-AAGCGUUUGGUGGUCAGAUTT-3'. The sequences of siRNAs for mouse p63 were: 5'-CACAGACCACGCACAGAAUTT-3' 5'-AUUCUGUGCGUGGUCUGUGTT-3' 5'and (sip63-1); AGAUGUUGCUGAAGAUCAATT-3' and 5-UUGAUCUUCAGCAACAUCUTT-3' (sip63-2); 5'-CAGUAUGUAGAAGAUCCUATT-3' and 5'-UAGGAUCUUCUACAUACUGTT (sip63-3); The sequences of siRNAs for p73 5'mouse were: GGAACAGAAUUUACCACCATT-3' and 5'-UGGUGGUAAAUUCUGUUCCTT-3' (sip73-1); 5'-GCCUUUGGUUGACUCCUAUTT-3' and 5'-AUAGGAGUCAACCAAAGGCTT-3' (sip73-2); 5'-GCAUCUACCACCUGCAGAATT-3' 5'and UUCUGCAGGUGGUAGAUGCTT-3' (sip73-3). The sequences of negative control (NC)/siRNA of control (siCTRL) were: 5'-UUCUCCGAACGUGUCACGUTT-3' and 5'-

8

ACGUGACACGUUCGGAGAATT-3'. Transfection of siRNAs was performed by mixing with X-treme gene siRNA transfection reagent (Roche, Switzerland). Efficiency of small interfering RNA (siRNA) for ASPP2, iASPP, importin- β 1 and E2F1 were shown in **Supplementary Figure 8**.

Serum lactate dehydrogenase detection

Serum lactate dehydrogenase (LDH) was determined by LDH Detection Kit (A020-1 Nanjing Jiancheng Bioengineering Institute, China) according to the manufacturer's instructions. For in vitro assay, LDH levels of culture medium and cell lysates were detected. Relative cell death was calculated based on the ratio of released LDH into the medium. The finally OD of reaction was read at 450 nm.

TUNEL staining

The apoptosis of cells was determined by TUNEL assay (11684817910, Roche, Switzerland). The cells were fixed with 4% PFA at room temperature. After 1 h of fixation, blocking solution $(3\% H_2O_2: CH_3OH = 1: 9)$ was added and allowed to stand at room temperature for 10 min. To permeate the membrane of cells, permeabilization buffer (0.1% Triton X-100, 0.1% sodium citrate) was added and allowed to stand for 4 min at 4°C. The cells were then incubated with 50 µl TUNEL reaction mixture for 1 h at 37°C without light. Finally, nuclei were labeled with 4,6-diamidino-2-phenylindole (DAPI) (Beyotime, China) for 15 min at room temperature without light. Photos were taken using a laser scanning confocal microscope (Handbuch LSM 880, Carl Zeiss, Germany).

JC-1 staining

Mitochondrial membrane potential ($\Delta \psi m$) was detected by Mitochondrial Membrane Potential

Assay Kit with JC-1 (Beyotime, China). To label the cells, 250 μ l DMEM medium and 250 μ L of JC-1 staining working solution (50 μ l JC1 200× in 8 ml ddH₂O) were added and incubated at 37°C for 20 min. After incubation, cells were washed twice with pre-cooled JC-1 staining buffer (1×). Photos were taken using a laser scanning confocal microscope (Handbuch LSM 880, Carl Zeiss, Germany).

Caspase-3 activity assay

Caspase-3 activity assay Kit (ab39383, Abcam, America) were used to examine caspase-3 activity of cardiac tissues according to the manufacturer's instructions. Briefly, heart tissues were incubated with 50 ul lysis buffer on ice for 10 min, and then were add with 50 μ l 2×reaction buffer (containing 10 mM DTT). DEVD-AFC substrate (5 μ l, 1 mM) was mixed with each sample and allowed to stand at 37°C for 1-2 h. Samples were read in a fluorometer equipped with a 400-nm excitation filter and 505 nm emission filter.

Caspase-3 activity assay kit (5723, Cell Signaling Technology, America) was used to determine caspase-3 activity of cultured cardiomyocytes. Briefly, cells were incubated with lysis buffer on ice for 5 min, followed by 20 times of 3 s ultrasound/6 s pause cycle ultrasonication. Samples were obtained by centrifugation (10 min, 13000 g) at 4°C and then incubated with 20 µl substrate buffer at 37°C for 1-2 h without light. The samples were read in a fluorometer equipped with a 380 nm excitation filter and 460 nm emission filter.

Western blot

To obtain the total protein, tissue or cultured cells were lysed in RIPA buffer (Beyotime, China) containing 1% protease inhibitor (Roche, Switzerland) for 1 h in an ice bath. Protein samples were obtained by centrifugation (20 min, 13000 g) at 4°C. The samples were determined and

quantified by BCA Protein Assay Kit (Beyotime, China). Then, protein samples (80 μ g each) were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (7.5% - 12%) and transferred to nitrocellulose membranes. After 2 h of blocking in 5% milk, the nitrocellulose membranes were incubated with primary antibodies overnight at 4°C. After washing with PBST (0.05% Tween in phosphate-buffered saline), the membranes were incubated with the secondary anti-rabbit or anti-mouse (1:10000, LI-COR, Lincoln, USA) polyclonal antibody at room temperature for 50 min without light. The membranes were scanned and analyzed by Odyssey infrared scanning system (LI-COR, American). β -actin was used as an internal control. The antibodies used were ASPP1 (1:1000, A4355, Sigma, America), p53 (1:1000, 2524S, Cell Signaling Technology, America), Bcl2 (1:1000, 3498S, Cell Signaling Technology, America), Bax (1:5000, 60267-1-Ig, Proteintech, America), E2F1 (1:1000, A2067, ABclonal, China), Flag tag (1:500, 8146S, Cell Signaling Technology, America), p63 (1:500, A19652, ABclonal, China), p73 (1:500, A2670, ABclonal, China), and β -actin (1:5000, 66009-1-Ig, Proteintech, America).

Co-immunoprecipitation

To determine the interaction between proteins, PierceTM CO-Immunoprecipitation Kit (Thermo fisher, America) was used. Cultured cells were lysed in lysis buffer containing 1% protease inhibitor (Roche, Switzerland) for 20 min in an ice bath. Protein samples were obtained by centrifugation (15 min, 13000 g) at 4°C. After incubated with control agarose resin for 1 h at a 4°C table concentrator, the final protein samples were obtained by centrifugation (1 min, 1000 g) at 4°C. The antibodies (10 μ g) were pretreated by incubating with AminoLink Plus coupling resin for 1 h at room temperature, and then added to protein samples and incubate overnight at

4°C. After 3 times washing, co-immunoprecipitation products were obtained with elution buffer. The co-immunoprecipitation products were analyzed by Western blot. The antibodies used for co-immunoprecipitation were ASPP1 (HPA006394, Sigma-Aldrich, America) and p53 (A19585, ABclonal, China).

Real-time quantitative PCR

Total RNA samples of tissues and cells were extracted by TRIzol reagent (Invitrogen, Carlsbad, America). RNA samples were reverse transcribed using the Trans-Script All-in-one First-strand cDNA Synthesis Supermix for qPCR Kit (TransGen Biotech, China). Real-time quantitative PCR (qRT-PCR) was performed by SYBR Green Master (Roche, Switzerland). The relative RNA level was analyzed by using $2^{-\Delta\Delta ct}$ method, and β -actin was used as an internal control. The primer pairs were synthesized by Invitrogen and listed in **Table S6**.

Immunostaining

Cells were fixed with 4% PFA for 15 min at room temperature. Then, 0.5% Triton X-100 was added and allowed to stand for 1 h at room temperature. After 2 h of blocking with 10% normal goat serum at 37°C, cells were incubated with or without (negative control) primary antibodies primary antibodies overnight at 4°C. After washing with PBS, cells were incubated with the secondary antibody at room temperature for 1 h without light, successively. Finally, nuclei were labeled with DAPI (Beyotime, China) for 15 min at room temperature without light. Photos were taken using a laser scanning confocal microscope (Handbuch LSM 880, Carl Zeiss, Germany). The antibodies used for immunostaining assay were: ASPP1 (1:100, HPA006394, Sigma-Aldrich, America) followed by DyLight 488 (anti-rabbit) (1:1000, 35552, Thermo Fisher, America); p53 (1:100, AF1355, R&D, America) followed by DyLight 594 (anti-goat)

(1:500, A23430, AmyJet, China); ASPP2 (1:50, sc-53861, Santa, America), iASPP (1:50, sc-398566, Santa, America) and Flag tag (1:500, 8146S, Cell Signaling Technology, America) followed by DyLight 488 (anti-mouse) (1:1000, 35502, Thermo Fisher, America). p63 (1:50, sc-25268, Santa, America), p73 (1:50, sc-56190, Santa, America) followed by DyLight 594 (anti-mouse) (1:1000, 35510, Thermo Fisher, America). The fluorescent secondary antibody only (negative control) was used to validate antibody specificity and distinguish genuine target staining from background as presented in **Supplemental Figure 9**.

Statistical analysis

All statistical calculations were performed using Prism software (version 8.3.0, GraphPad, America). Data are expressed as mean \pm SD. In data statistics, all data sets were tested for normality by D'Agostino & Pearson test ($n \ge 8$) and Shapiro-Wilk test (n < 8). For normally distributed data, two-tailed Student's *t* test was used to compare two groups; one-way analysis of variance (ANOVA) followed by Tukey's post-hoc multi-comparison test was used to compare differences among multiple groups; statistical analyses comparing two genotypes (WT and ASPP1(TG) or WT and ASPP1(KO)), two manipulations (sham and I/R) was done using a two-way analysis of variance (ANOVA) followed by Tukey's post-hoc multicomparison test. For non-normally distributed or small sample size (n < 6) data, the Mann-Whitney test (two-tailed) was used for two groups, and Kruskal-Wallis, followed by false discovery rate (FDR) method of Benjamini and Hochberg test was used for multiple groups. A value of P < 0.05 was considered statistically significant. No experiment-wide/across-test multiple test correction was applied and only within-test corrections were made. The representative image was selected from one of the repeated experiments that best matched the mean value. Detailed statistical analysis information including normalization procedures, precise P values, sample sizes, and named statistical tests is described in **Supplementary Table** 7 and 8 in the Supplementary Materials.

Supplementary Figure 1. Immunostaining assay was used to analyze the co-localization of ASPP1 and p53 in isolated adult cardiomyocytes of non-ischemic area and ischemic area from I/R mice (Mann-Whitney U test). n = 5. Scale bar = 20 μ m.

Supplementary Figure 2. The effects of ASPP1 knockdown on p63 (A) and p73 (B) nuclear translocation in NMVCs by immunostaining (Kruskal-Wallis, followed by false discovery rate (FDR) method of Benjamini and Hochberg test). n = 5. Scale bar = 20 μ m. ns, not significant.

16

Supplementary Figure 3. The nuclear translocation of ASPP2 or iASPP is not coupled with p53. (A, B) Immunostaining was performed to analyze the effect of knockdown of ASPP2 and iASPP on p53 nuclear translocation in NMVCs (Mann-Whitney U test). n = 5. Scale bar = 20 μ m. ns, not significant. (C, D) Effect of importin- β 1 knockdown on ASPP2 and iASPP nuclear translocation in NMVCs (Mann-Whitney U test). n = 5. Scale bar = 20 μ m. ns, not significant. (C, D) Effect of importin- β 1 knockdown on ASPP2 and iASPP nuclear translocation in NMVCs (Mann-Whitney U test). n = 5. Scale bar = 20 μ m. ns, not significant.

Supplementary Figure 4. Generation of ASPP1 transgenic overexpression mice. (A) Strategy for the generation of cardiomyocyte-specific ASPP1 overexpression transgenic mice. (B) Cardiac function of wild type (WT) and ASPP1 transgenic (TG) mice by echocardiography (EF, Student *t* test; FS, Mann-Whitney *U* test). n = 14 for WT, n = 20 for ASPP1 (TG) mice. ns, not significant. (C) Base line heart weight, body weight, and heart weight/body weight (HW/BW) of WT and ASPP1 (TG) mice (Student *t* test). n = 6. ns, not significant.

Supplementary Figure 5. Generation of ASPP1 knockout mice. (A) Strategy for the generation of ASPP1 knockout mice. (B) Cardiac function of WT and ASPP1 knockout (KO) mice by echocardiography (Student *t* test). n = 9 for WT, n = 12 for ASPP1(KO) mice. ns, not significant. (C) Base line heart weight (Student *t* test), body weight (Mann-Whitney *U* test), and heart weight/body weight (HW/BW) (Student *t* test) of WT and ASPP1 (KO) mice. n = 6. ns, not significant.

Supplementary Figure 6. Overexpression of p53 does not affect the protective effects of ASPP1 knockdown in NMVCs under H/R stimulation. (A) The efficiency of p53 overexpression plasmid in NMVCs by Western blot (Student *t* test). n = 6. (B) LDH release from NMVCs (One-way ANOVA, followed by Tukey post hoc multi-comparisons test). n = 6. ns, not significant. (C) Caspase-3 activity in NMVCs by ELISA assay (One-way ANOVA, followed by Tukey post hoc multi-comparisons test). n = 6. ns, not significant. (D-E) The protein levels of Bcl2 and Bax detected by Western blot (Kruskal-Wallis, followed by false discovery rate (FDR) method of Benjamini and Hochberg test). n = 5. ns, not significant.

Supplementary Figure 7. p63 and p73 produced no effects on ASPP1 induced NMVCs injury under H/R stimulation. (A) The efficiency of small interfering RNA (siRNA) of p63 in NMVCs by Western blot (Mann-Whitney U test). n = 5. (B) LDH level in culture medium (One-way ANOVA, followed by Tukey post hoc multi-comparisons test). n = 6. ns, not significant. (C) Caspase-3 activity in NMVCs by ELISA assay (One-way ANOVA, followed

by Tukey post hoc multi-comparisons test). n = 6. ns, not significant. (D, E) The protein levels of Bcl2 and Bax detected by Western blot (Kruskal-Wallis, followed by false discovery rate (FDR) method of Benjamini and Hochberg test). n = 5. ns, not significant. (F) The efficiency of small interfering RNA (siRNA) of p73 in NMVCs by Western blot (Mann-Whitney *U* test). n = 5. (G) Cell death of NMVCs by LDH release (One-way ANOVA, followed by Tukey post hoc multi-comparisons test). n = 6. ns, not significant. (H) Caspase-3 activity in NMVCs by ELISA assay (One-way ANOVA, followed by Tukey post hoc multi-comparisons test). n = 6. ns, not significant. (I, J) The protein levels of Bcl2 and Bax detected by Western blot (One-way ANOVA, followed by Tukey post hoc multi-comparisons test). n = 6. ns, not significant.

Supplementary Figure 8. Efficiency of siRNA for ASPP2, iASPP, importin-β1 and E2F1.

(A) Efficiency of siASPP2 in NMVCs by qRT-PCR assay (Student *t* test). n = 6. (B) Efficiency of siiASPP in NMVCs by qRT-PCR assay (Student *t* test). n = 6. (C) Efficiency of siimportin- β 1 in NMVCs by qRT-PCR assay (Student *t* test). n = 6. (D) Efficiency of siE2F1 in NMVCs by qRT-PCR assay (Student *t* test). n = 6.

Supplementary Figure 9. Slices of NMVCs were permeabilized by 0.5% Triton X-100 with PBS and then blocked with 10% normal goat serum. (A-D) Slices of NMVCs were directly incubated with DyLight 488 (anti-mouse) (A), DyLight 488 (anti-rabbit) (B), DyLight 594 (anti-goat) (C) and DyLight 594 (anti-mouse) (D). Scale bar = 20 μm.

Supplementary Tables

Supplementary Table 1. Overexpression of ASPP1 does not affect cardiac function in

Group	WT (n=14)	ASPP1(TG) (n=20)
EF, %	75.51±5.751	76.98±6.021 ^{ns}
FS, %	43.47±5.552	44.77 ± 5.638^{ns}
LVIDd, mm	3.25±0.29	3.16±0.35 ^{ns}
LVIDs, mm	1.85±0.29	1.75±0.32 ^{ns}
LVEDV, µl	44.42±11.97	40.36 ± 11.54^{ns}
LVESV, µl	10.79±3.921	9.63±4.63 ^{ns}

physiological mice.

The data are expressed as means \pm SD. ns, not significant versus WT group. EF and LVIDs were analyzed by using nonpaired 2-tailed Student *t* test; LVIDd, LVEDV and LVESV were analyzed by using Mann-Whitney *U* test.

Abbreviations: EF, ejection fraction; FS, fractional shorting; LVIDd, left ventricular internal dimension at end diastole; LVIDs, left ventricular internal dimension at systole; LVEDV, left ventricular end diastolic volume; LVESV, left ventricular end systolic volume.

Group	WT (n=9)	ASPP1(KO) (n=12)
EF, %	79.40±8.83	77.43±4.72 ^{ns}
FS, %	47.78±9.04	45.12±4.51 ^{ns}
LVIDd, mm	3.2±0.25	3.25 ± 0.25^{ns}
LVIDs, mm	1.68±0.35	1.79±0.22 ^{ns}
LVEDV, µl	41.32±7.56	42.92 ± 7.71^{ns}
LVESV, µl	8.74±4.39	9.78±3.15 ^{ns}

Supplementary Table 2. Knockout of ASPP1 does not affect cardiac function in physiological mice.

The data are expressed as means \pm SD. ns, not significant versus WT group. They were analyzed by using nonpaired 2-tailed Student *t* test.

Supplementary Table 3. Overexpression of ASPP1 aggravates cardiac function in I/R

•	
mı	ce.

Group	Sham+WT Sham+ASPP1		I/R+WT	I/R+ASPP1(TG)	
	(n=9)	(TG) (n=9)	(n=9)	(n=9)	
EF, %	75.45±3.77	75.98±3.47	59.03±3.95 (ªP=2.9*10 ⁻⁷)	42.15±7.40 (^b P=1.6*10 ⁻⁷)	
FS, %	43.10±3.61	43.45±2.99	30.63±2.62 (^a P=6.1*10 ⁻⁸)	20.33±4.38 (^b P=2.6*10 ⁻⁶)	
LVIDd, mm	3.15±0.12	3.09±0.35	3.55±0.13 (ªP=0.0088)	3.64±0.41 (bns)	
LVIDs, mm	1.79±0.11	1.75±0.26	2.46±0.17 (^a P=1.4*10 ⁻⁶)	2.89±0.28 (^b P=0.0013)	
LVEDV, µl	39.62±3.48	38.24±10.65	52.68±4.66 (°P=0.0091)	56.73±15.50 (^b ns)	
LVESV, µl	9.68±1.47	9.38±3.82	21.70±3.78 (^a P=3.7*10 ⁻⁵)	32.35±7.66 (^b P=0.0002)	

^aP values were compared with Sham+WT group; ^bP values were compared with I/R+WT group. ns, not significant. EF, FS, LVIDs, and LVESV were analyzed by using two-way ANOVA analysis followed by Tukey's post-hoc multi-comparison test. LVIDd and LVEDV were analyzed by using Kruskal-Wallis, followed by false discovery rate (FDR) method of Benjamini and Hochberg test. The data are expressed as means \pm SD.

Group	Sham+WT	Sham+ASPP	I/R+WT	I/R+ASPP1(KO)
	(n=11)	1	(n=11)	(n=11)
		(KO) (n=11)		
EF, %	75.62±3.40	78.43±8.12	58.24±4.64 (^a P=6.5*10 ⁻⁹)	69.20±2.75 (^b P=7.3*10 ⁻⁵)
FS, %	43.17±3.18	46.63±8.21	30.12±3.08 (aP=7.6*10-7)	37.71±2.08 (^b P=0.0033)
LVIDd, mm	3.11±0.24	3.16±0.30	3.61±0.24 (ªP=0.0002)	3.14±0.22 (^b P=0.0002)
LVIDs, mm	1.77±0.16	1.70±0.36	2.52±0.21 (ªP=3.7*10 ⁻⁸)	1.96±0.18 (^b P=1.4*10 ⁻⁵)
LVEDV, µl	38.53±6.49	40.22±8.39	55.03±8.66 (ªP=0.0020)	39.28±6.42 (^b P=0.0002)
LVESV, µl	9.39±2.06	9.03±4.28	23.07±4.75 (aP=3.4*10 ⁻¹⁰)	12.19±2.74 (^b P=9.8*10 ⁻⁸)

Supplementary Table 4. Knockout of ASPP1 improves cardiac function in I/R mice.

^aP values were compared with Sham+WT group; ^bP values were compared with I/R+WT group. EF, FS, LVIDs and LVESV were analyzed by using two-way ANOVA analysis followed by Tukey's post-hoc multi-comparison test. LVIDd and LVEDV were analyzed by using Kruskal-Wallis, followed by false discovery rate (FDR) method of Benjamini and Hochberg test. The data are expressed as means ± SD.

Group	I/R+WT	I/R+ASPP1(TG) (n=7)	I/R+ASPP1(T	I/R+ASPP1(TG)+AAV9-
	(n=7)		G)+AAV9-NC	shp53
			(n=7)	(n=7)
EF, %	62.63±2.46	48.25±2.54 (^a P=7.3*10 ⁻⁹)	47.50±3.60	63.98±2.54 (^b P=5.1*10 ⁻¹⁰)
FS, %	33.11±1.85	23.79±1.51 (ªP=7.3*10 ⁻⁹)	23.38±2.09	34.11±1.82 (^b P=4.6*10 ⁻¹⁰)
LVIDd, mm	3.55±0.15	3.72±0.17 (ªP=ns)	3.77±0.19	3.59±0.14 (^b P=ns)
LVIDs, mm	2.37±0.08	2.84±0.15 (^a P=2.1*10 ⁻⁵)	2.89±0.19	3.36±0.14 (^b P=3.0*10 ⁻⁶)
LVEDV, µl	52.77±5.07	59.13±6.53 (*ns)	61.06±7.33	54.06±5.23 (^b P=ns)
LVESV, µl	19.66±1.71	30.63±4.11 (°P=6.1*10 ⁻⁵)	32.14±5.24	19.53±2.78 (^b P=8.0*10 ⁻⁶)
^a P values	were compa	red with I/R+WT gro	oup; ^b P values	were compared with

Supplementary Table 5. AAV9-shp53 rescues the cardiac injury mediated by the transgenic overexpression of ASPP1.

^aP values were compared with I/R+W1 group; ^bP values were compared with I/R+ASPP1(TG)+AAV9-NC group. ns, not significant. EF, FS, LVIDs and LVESV were analyzed by using two-way ANOVA analysis followed by Tukey's post-hoc multi-comparison test. LVIDd and LVEDV were analyzed by using Kruskal-Wallis, followed by false discovery rate (FDR) method of Benjamini and Hochberg test. The data are expressed as means ± SD.

Supplementary Table 6. Sequences of mouse oligonucleotide primers used for real-time

quantitative PCR

ASPP1	Forward	5'-CCACCAAGTCCCACATACCC-3'
	Reverse	5'-GGTGGCTGGTAGTTCTTAGGTG-3'
p53	Forward	5'-CTCTCCCCGCAAAAGAAAA-3'
	Reverse	5'-CGGAACATCTCGAAGCGTTTA-3'
ASPP2	Forward	5'-CAAGCCTGTGATAGCTGCTG-3'
	Reverse	5'-GGCTTCTAAGTCAGCATCGC-3'
iaspp	Forward	5'-TAGAGGCCCGTTTTGGACG-3'
	Reverse	5'-CCCGATCTAGGCTGCTGTAG-3'
Bax	Forward	5'-TGAAGACAGGGGCCTTTTTG-3'
Dux	Reverse	5'-AATTCGCCGGAGACACTCG-3'
Puma	Forward	5'-AGCAGCACTTAGAGTCGCC-3'
	Reverse	5'-CCTGGGTAAGGGGAGGAGT-3'
Noxa	Forward	5'-GCAGAGCTACCACCTGAGTTC-3'
	Reverse	5'-CTTTTGCGACTTCCCAGGCA-3'
E2F1	Forward	5'-AGACCACCGACAGACCCGAT-3'
	Reverse	5'-AGCCGTTCCATAATGACCAG-3'
importin-81	Forward	5'-AGCCTAGGGATTCAGGGTGT-3'
importin pr	Reverse	5'-CAGAGGGTATGGATCGTGCT-3'
ß-actin	Forward	5'-GGCTGTATTCCCCTCCATCG-3'
F	Reverse	5'-CCAGTTGGTAACAATGCCATGT-3'

Figure		Groups	Normality	Statistical analysis	P value
0		(Sample size)	test values		
1A	ASPP1	Control (n=6)	0.1356	nonpaired 2-tailed	
	levels	H/R (n=6)	0.2619	Student <i>t</i> test	P= 0.000354003636749
	(Input)				vs Control
	p53 levels	Control (n=6)	0.8248	nonpaired 2-tailed	
	(Input)	H/R (n=6)	0.1397	Student t test	P=0.000636833131323
					vs Control
	p53/ASPP1	Control (n=6)	0.0128	Mann-Whitney U test	
		H/R (n=6)	0.2218	-	P=0.002164502164502
					vs Control
1B	ASPP1	Control (n=6)	0.3884	nonpaired 2-tailed	
	levels	H/R (n=6)	0.1944	Student <i>t</i> test	P=0.000131112963606
	(Input)				vs Control
	p53 levels	Control (n=6)	0.5156	Mann-Whitney U test	
(Input)	H/R (n=6)	0.0146		P=0.002164502164502	
				vs Control	
	ASPP1/p53	Control (n=6)	0.2275	nonpaired 2-tailed	
	H/R (n=6)	0.6580	Student <i>t</i> test	P=0.001011151797024	
					vs Control
1C Total ASPP1	Control (n=5)	0.2164	Mann-Whitney U test		
	H/R (n=5)	0.3517		P=0.007936507936508	
	levels				vs Control
	ASPP1	Control (n=5)	0.5421	Mann-Whitney U test	
	nuclear/cyt				
	oplasm	H/R (n=5)	0.0538	_	P=0.007936507936508
	ratio				vs Control
	Total p53	Control (n=5)	0.1230	Mann-Whitney U test	
	levels	. ,			
		H/R (n=5)	0.6936		P=0.007936507936508
					vs Control
	p53	Control (n=5)	0.6549	Mann-Whitney U test	
	nuclear/cyt				
	oplasm	H/R (n=5)	0.0916		P=0.007936507936508
	ratio				vs Control
1D	Total	Sham (n=5)	0.1451	Mann-Whitney U test	
	ASPP1				
	levels	I/R (n=5)	0.5901		P=0.007936507936508
					vs Sham
	ASPP1	Sham (n=5)	0.2289	Mann-Whitney U test	
	nuclear/cyt				
	oplasm	I/R (n=5)	0.6468		P=0.007936507936508

Supplementary Table 7. Detailed statistical analysis information for all main and

supplementary figures.

	ratio				vs Sham
	Total p53	Sham (n=5)	0.4280	Mann-Whitney U test	
	levels				
		I/R (n=5)	0.8189	-	P=0.007936507936508
					vs Sham
	p53	Sham (n=5)	0.5889	Mann-Whitney U test	
	nuclear/cyt	I/R (n=5)	0.2414		P=0.007936507936508
	oplasm				vs Sham
	ratio				
2A	Total p53	NC (n=5)	0.6490	Kruskal Wallis test with	
	levels	ASPP1 (n=5)	0.2341	FDR (Benjamini-	P=0.872600061 vs NC
		H/R+NC (n=5)	0.2234	Hochberg method)	P=0.005443982 vs NC
					P=0.008814655 vs
					ASPP1
		H/R+ASPP1	0.8586	_	P=0.006409444 vs NC
		(n=5)			P=0.010296549 vs
					ASPP1
					P=0.957371576 vs
					H/R+NC
	Nuclear	NC (n=6)	0.3279	one-way ANOVA	
	p53 levels	ASPP1 (n=6)	0.1606	analysis followed by	P=0.999575262 vs NC
1	H/R+NC (n=6)	0.9921	Tukey's post-hoc multi-	P=0.000149212 vs NC	
			0.7721	comparison test	P=0.000188613 vs
				_	A CDD1
		$H/R + \Delta SPP1$	0.1188	-	$P=1 \ 40832F - 09 \ vs \ NC$
		(n=6)	0.1100		$D = 1.500321-07 v_{0} v_{0}$
					P=1.03042E-09 VS
					P = 2.50 / 2 / F = 0.5 vs
					H/R+NC
	Cytoplasmi	NC (n=6)	0.6742	one-way ANOVA	
	c n53	$\frac{\text{NC}(\text{II}=0)}{\text{ASPP1}(n=6)}$	0.0742	analysis followed by	P=0.8612003 vs NC
	levels	$\frac{\text{ASITI}(II=0)}{\text{H/P+NC}(n=6)}$	0.2460	Tukey's post-hoc multi-	P=5.8012093 VS NC
	10 0 015		0.5554	comparison test	D = 1.01149E 10 vs
				comparison test	A CDD1
		$H/D + \Lambda$ SDD1	0.1244	_	ASFF1 P=0.007177685.vg NC
		(n=6)	0.1244		P=0.007177085 VS INC
		(11-0)			r=0.001211221 VS
					ASPP1 D=2.52491E.07.07
					P=2.53401E=07VS
20	Total n52	NC(n-5)	0.7270	Kmuckel Wellie test with	
20	levels	$\frac{\text{NC}(\text{II}=3)}{\text{si} \wedge \text{SDD1}(n=5)}$	0.7279	FDR (Benjamini	D-0.972600061 ng NC
	10 0015	$\frac{\text{SIASFFI}(\text{II}=3)}{\text{H/P+NC}(n=5)}$	0.7329	Hochberg method)	P=0.072000001 vs NC
		$\Pi/K^{+}NC(\Pi-3)$	0.3074	Themberg method)	P=0.000409444 VS INC
					P=0.010296549 vs
			0.4016	_	SIASPPI
1		H/R+siASPP1	0.4816		P=0.005443982 vs NC
		(n=5)			P=0.008814655 vs

					siASPP1
					P=0.957371576 vs
					H/R+NC
	Nuclear	NC (n=6)	0.0608	one-way ANOVA	
	p53 levels	siASPP1 (n=6)	0.4254	analysis followed by	P=0.890271561 vs NC
		H/R+NC (n=6)	0.9167	Tukey's post-hoc multi-	P=3.79031E-07 vs NC
				comparison test	P=1.50676E-06 vs
					siASPP1
		H/R+siASPP1	0.5781		P=0.163391288 vs NC
		(n=6)			P=0.476240517 vs
					siASPP1
					P=3.13601E-05 vs
					H/R+NC
	Cytoplasmi	NC (n=6)	0.0857	one-way ANOVA	
	c p53	siASPP1 (n=6)	0.4572	analysis followed by	P=0.977118176 vs NC
	levels	H/R+NC (n=6)	0.4090	Tukey's post-hoc multi-	P=5.6342E-08 vs NC
				comparison test	P=2.80044E-08 vs
					siASPP1
		H/R+siASPP1	0.5957		P=2.26E-13 vs NC
		(n=6)			P=1.56E-13 vs siASPP1
					P=5.44347E-08 vs
					H/R+NC
2C	Total p53	NC (n=6)	0.2033	one-way ANOVA	
	levels	ASPP1 (n=6)	0.5668	analysis followed by	P=0.989996387 vs NC
		H/R+NC (n=6)	0.1009	Tukey's post-hoc multi-	P=1.8229E-06 vs NC
				comparison test	P=3.35579E-06 vs
					ASPP1
		H/R+ASPP1	0.6750		P=2.63546E-06 vs NC
		(n=6)			P=4.88699E-06 vs
					ASPP1
					P=0.9977131 vs H/R+NC
	p53	NC (n=6)	0.0756	one-way ANOVA	
	nuclear/cyt	ASPP1 (n=6)	0.0567	analysis followed by	P=0.677318729 vs NC
	oplasm	H/R+NC (n=6)	0.3180	Tukey's post-hoc multi-	P=2.17767E-05 vs NC
	ratio			comparison test	P=0.000261169 vs
					ASPP1
		H/R+ASPP1	0.1446		P=3.1577E-11 vs NC
		(n=6)			P=1.37621E-10 vs
					ASPP1
					P=5.76212E-07 vs
					H/R+NC
2D	Total p53	NC (n=6)	0.4379	one-way ANOVA	
	levels	siASPP1 (n=6)	0.7105	analysis followed by	P=0.999486663 vs NC
		H/R+NC (n=6)	0.1367	Tukey's post-hoc multi-	P=2.02489E-08 vs NC
				comparison test	P=2.44514E-08 vs

					siASPP1
		H/R+siASPP1	0.9552		P=3.90555E-08 vs NC
		(n=6)			P=4.73988E-08 vs
					siASPP1
					P=0.980091641 vs
					H/R+NC
	p53	NC (n=6)	0.2868	one-way ANOVA	
	nuclear/cyt	siASPP1 (n=6)	0.9838	analysis followed by	P=0.992785996 vs NC
	oplasm	H/R+NC (n=6)	0.9954	Tukey's post-hoc multi-	P=1.67616E-06 vs NC
	ratio			comparison test	P=2.88714E-06 vs
					siASPP1
		H/R+siASPP1	0.9115		P=0.98827785 vs NC
		(n=6)			P=0.999956262 vs
					siASPP1
					P=3.18814E-06 vs
					NC+H/R
2E		NC+H/R(n=5)	0.5499	Mann-Whitney U test	
		Sin 52 II/D	0.1122	-	D-0.007026507026509
		S1p33+H/K	0.1132		P=0.00/93030/930308
2F		NC+H/R (n=5)	0 5499	Mann-Whitney U test	VS INC TH/K
21	nuclear/cvt		0.5477	Wallin- whitey o test	
	oplasm	Siimportin-	0.7922	-	P=0.007936507936508
	ratio	$\beta_{1+H/R}$ (n=5)			vs NC+H/R
	p53	NC+H/R (n=5)	0.9707	Mann-Whitney U test	
	nuclear/cyt	Siimportin-	0.6740		P=0.007936507936508
	oplasm	β 1+H/R (n=5)			vs NC+H/R
	ratio				
2G	Bax levels	NC (n=9)	0.5396	one-way ANOVA	
		ASPP1 (n=9)	0.1089	analysis followed by	P=0.999704054 vs NC
		H/R+NC (n=9)	0.5254	Tukey's post-hoc multi-	P=0.000355144 vs NC
				comparison test	P=0.000462575 vs
					ASPP1
		H/R+ASPP1	0.6296		P=1.04E-13 vs NC
		(n=9)			P=1.04E-13 vs ASPP1
					P=4.637E-11 vs H/R+NC
	Puma	NC (n=9)	0.7920	one-way ANOVA	
	levels	ASPP1 (n=9)	0.6469	analysis followed by	P=0.998052082 vs NC
		H/R+NC (n=9)	0.7607	Tukey's post-hoc multi-	P=0.000444708 vs NC
				comparison test	P=0.000728832 vs
					ASPP1
		H/R+ASPP1	0.9493		P=1.09E-13 vs NC
		(n=9)			P=1.12E-13 vs ASPP1
					P=1.35741E-10 vs
					H/R+NC

	Noxa	NC (n=9)	0.5163	one-way ANOVA	
	levels	ASPP1 (n=9)	0.3974	analysis followed by	P=0.993239184 vs NC
		H/R+NC (n=9)	0.3354	Tukey's post-hoc multi-	P=7.26598E-06 vs NC
				comparison test	P=1.56771E-05 vs
					ASPP1
		H/R+ASPP1	0.3343		P=1E-13 vs NC
		(n=9)			P=1E-13 vs ASPP1
					P=1.31E-13 vs H/R+NC
2H	Bax levels	NC (n=8)	0.0089	Kruskal Wallis test with	
		siASPP1 (n=8)	0.2418	FDR (Benjamini-	P=0.337355652 vs NC
		H/R+NC (n=8)	0.5982	Hochberg method)	P=9.69282E-06 vs NC
					P=0.000531195 vs
					siASPP1
		H/R+siASPP1	0.0006	7	P=0.028866319 vs NC
		(n=8)			P=0.220234759 vs
					siASPP1
					P=0.025181464 vs
					H/R+NC
	Puma	NC (n=9)	0.5755	one-way ANOVA	
	levels	siASPP1 (n=9)	0.2370	analysis followed by	P=0.822204478 vs NC
		H/R+NC (n=9)	0.8387	Tukey's post-hoc multi-	P=7.1124E-11 vs NC
				comparison test	P=9.349E-12 vs siASPP1
		H/R+siASPP1	0.4793		P=0.81599853 vs NC
		(n=9)			P=0.318340125 vs
					siASPP1
					P=6.20111E-10 vs
					H/R+NC
	Noxa	NC (n=8)	0.3229	Kruskal Wallis test with	
	levels	siASPP1 (n=8)	0.0058	FDR (Benjamini-	P>0.9999999 vs NC
		H/R+NC (n=8)	0.5871	Hochberg method)	P=0.008303 vs NC
					P=0.001926 vs siASPP1
		H/R+siASPP1	0.6401		P>0.9999999 vs NC
		(n=8)			P>0.9999999 vs siASPP1
					P=0.005187 vs H/R+NC
3A	mRNA	Sham (n=6)	0.6304	nonpaired 2-tailed	
	levels of	I/R (n=6)	0.4433	Student t test	P=8.44977E-05 vs Sham
	ASPP1				
	protein	Sham (n=6)	0.4787	Mann-Whitney U test	
	levels of	I/R (n=6)	0.0093		P=0.002164502164502
	ASPP1				vs Sham
3B	mRNA	Control(n=9)	0.3273	nonpaired 2-tailed	
	levels of	H/R (n=9)	0.8890	Student <i>t</i> test	P=1.30701E-06 vs
	ASPP1				Control
	protein	Control (n=6)	0.6238	nonpaired 2-tailed	
	levels of	H/R (n=6)	0.8123	Student <i>t</i> test	P=6.75828E-05 vs
1	ASPP1				Control

3C	E2F1	Sham (n=6)	0.9006	nonpaired 2-tailed	
	levels (in	I/R (n=6)	0.1460	Student <i>t</i> test	P=4.32413E-07 vs Sham
	vivo)				
	E2F1	Control (n=6)	0.5126	nonpaired 2-tailed	
	levels (in	H/R (n=6)	0.7646	Student <i>t</i> test	P=1.90083E-07 vs
	vitro)				Control
3D	mRNA	Control (n=5)	0.999	Kruskal Wallis test with	
	levels of	H/R (n=5)	0.4379	FDR (Benjamini-	P=0.004581111 vs
	ASPP1			Hochberg method)	Control
		H/R+NC (n=5)	0.0378		P=0.007481307 vs
					Control
					P=0.872504983 vs H/R
		H/R+E2F1(SI)	0.9088	-	P=0.872504983 vs
		(n=5)			Control
					P=0.007481307 vs H/R
					P=0.011932078 vs
prote					H/R+NC
	protein	Control (n=6)	0.4088	one-way ANOVA	
	levels of	H/R (n=6)	0.1068	analysis followed by	P=1.04794E-09 vs
	ASPP1			Tukey's post-hoc multi-	Control
		H/R+NC (n=6)	0.7878	comparison test	P=1.63264E-10 vs
					Control
					P=0.170118127 vs H/R
		H/R+E2F1(SI)	0.8604	-	P=0.04045555 vs Control
		(n=6)			P=3.84548E-08 vs H/R
					P=4.60338E-09 vs
					H/R+NC
3E		WT (n=6)	0.7438	Mann-Whitney U test	
		ASPP1(TG)	0.0401		P=0.002164502164502
		(n=6)			vs WT
3F	EF	WT+Sham	0.3584	two-way ANOVA	
		(n=9)		analysis followed by	
		ASPP1(TG)+Sh	0.6918	Tukey's post-hoc multi-	P=0.995724123 vs
		am (n=9)		comparison test	WT+Sham
		WT+I/R (n=9)	0.4626		P=2.86621E-07 vs
					WT+Sham
					P=1.51667E-07 vs
					ASPP1(TG)+Sham
		ASPP1(TG)+I/	0.3370		P=1.11E-13 vs
		R (n=9)			WT+Sham
					P=1.08E-13 vs
					ASPP1(TG)+Sham
					P=1.63415E-07 vs
					WT+I/R
	FS	WT+Sham	0.2560	two-way ANOVA	
		(n=9)		analysis followed by	

		ASPP1(TG)+Sh	0.7281	Tukey's post-hoc multi-	P=0.996340287 vs
		am (n=9)		comparison test	WT+Sham
		WT+I/R (n=9)	0.4289		P=6.09478E-08 vs
					WT+Sham
					P=3.37548E-08 vs
					ASPP1(TG)+Sham
		ASPP1(TG)+I/	0.2479		P=1.25E-13 vs
		R (n=9)			WT+Sham
					P=1.16E-13 vs
					ASPP1(TG)+Sham
					P=2.59946E-06 vs
					WT+I/R
3G		WT+I/R (n=10)	0.2845	nonpaired 2-tailed	
		ASPP1(TG)+I/	0.9348	Student <i>t</i> test	P=5.20283E-07 vs
		R (n=10)			WT+I/R
3Н	LDH	WT+Sham	0.5771	two-way ANOVA	
		(n=10)		analysis followed by	
		ASPP1(TG)+Sh	0.0596	Tukey's post-hoc multi-	P=0.971026736 vs
		am (n=10)		comparison test	WT+Sham
		WT+I/R (n=12)	0.8377		P=4.71E-13 vs
					WT+Sham
					P=4.71E-13 vs
					ASPP1(TG)+Sham
		ASPP1(TG)+I/	0.7899		P=4.71E-13 vs
		R (n=12)			WT+Sham
					P=4.71E-13 vs
					ASPP1(TG)+Sham
					P=5.16E-13 vs WT+I/R
	CKMB	WT+Sham	0.5697	two-way ANOVA	
		(n=9)		analysis followed by	
		ASPP1(TG)	0.1612	Tukey's post-hoc multi-	P=0.999436795 vs
		+Sham (n=9)		comparison test	WT+Sham
		WT+I/R (n=9)	0.4889		P=1.01E-13 vs
					WT+Sham
					P=1.01E-13 vs
					ASPP1(TG)+Sham
		ASPP1(TG)+I/	0.1072		P=1E-13 vs WT+Sham
		R (n=9)			P=1E-13 vs
					ASPP1(TG)+Sham
					P=3.67571E-10 vs
					WT+I/R
3I		WT+Sham	0.6496	two-way ANOVA	
		(n=9)		analysis followed by	
		ASPP1(TG)+Sh	0.8984	Tukey's post-hoc multi-	P=0.996034844 vs
		am (n=9)		comparison test	WT+Sham
		WT+I/R (n=9)	0.8501]	P=1.65567E-06 vs
					WT+Sham

					P=3.12824E-06 vs
					ASPP1(TG)+Sham
		ASPP1(TG)+I/	0.3625	-	P=1.04E-13 vs
		R (n=9)			WT+Sham
					P=1.05E-13 vs
					ASPP1(TG)+Sham
					$P=4.73187E_{-}09 vs$
					WT+I/R
21	Rol 2	WT+Sham	0.7153	two way ANOVA	
55	DCI-2	(n=6)	0.7133	analysis followed by	
		(II=0)	0.4572	Tukey's post has multi	D-0.626571604 mg
		ASFFI(10) + SII	0.4373	acomparison test	r=0.0203/1004 VS
		$\frac{\operatorname{ann}\left(\operatorname{n-0}\right)}{\operatorname{WT}\left(\operatorname{L}\left(\operatorname{n-0}\right)\right)}$	0.0500	comparison test	
		$W_{1+1/R}$ (n=6)	0.0580		P=3.86021E-07 vs
					WT+Sham
					P=4.18363E-06 vs
				-	ASPP1(TG)+Sham
		ASPP1(TG)+I/	0.0799		P=8.8617E-11 vs
		R (n=6)			WT+Sham
					P=4.74575E-10 vs
					ASPP1(TG)+Sham
					P=0.000200635 vs
					WT+I/R
	Bax	WT+Sham	0.6880	two-way ANOVA	
		(n=6)		analysis followed by	
		ASPP1(TG)+Sh	0.5282	Tukey's post-hoc multi-	P=0.99931268 vs
		am (n=6)		comparison test	WT+Sham
		WT+I/R (n=6)	0.5124		P=0.001449762 vs
					WT+Sham
					P=0.001095024 vs
					ASPP1(TG)+Sham
		ASPP1(TG)+I/	0.7617		P = 7.01575E - 10 vs
		R (n=6)			WT+Sham
					P=5.86235E-10 vs
					ASPP1(TG)+Sham
					P=1.24982E-06 vs
					WT+I/R
3K	Total n53	WT+Sham	0.4310	two-way ANOVA	
511	levels	(n=6)	0.1510	analysis followed by	
	10,015	ASPP1(TG)+Sh	0.2200	Tukey's post-hoc multi-	P=0.997301824 vs
		am (n=6)	0.2200	comparison test	WT+Sham
		WT+I/R (n=6)	0.5514	comparison test	$P=7.63E_{13} vs$
		W I + I/K (II=0)	0.5514		WT+Shom
					W = 17E + 12 cm
					$\Gamma = 0.1 / E = 13 VS$
			0.0007	4	ASPPI(IG)+Sham
		ASPP1(TG)+I/	0.0895		P=1.4E-12 vs WT+Sham
		R (n=6)			P=1.125E-12 vs
					ASPP1(TG)+Sham

					D 0 0 4 0 0 0 0 0 0 0 0 0
					P=0.947037526 vs
			0.455		WT+I/R
	p53	WT+Sham	0.1752	two-way ANOVA	
	nuclear/cyt	(n=6)	0.0120	analysis followed by	D 0.00000000000000000000000000000000000
	oplasm	ASPPI(IG)+Sh	0.8130	Tukey's post-hoc multi-	P=0.996998662 vs
	ratio	am (n=6)	0.6512	comparison test	W1+Sham
		WT+I/R (n=6)	0.6513		P=4.90'/09E-06 vs
					W1+Sham
					P=3.25085E-06 vs
			0.0004		ASPPI(IG)+Sham
		ASPPI(TG)+I/	0.2234		P=3.214E-12 vs
		R (n=6)			W1+Sham
					P=2.548E-12 vs
					ASPPI(IG)+Sham
					P=6.35812E-08 vs
4.4			0.(724	. 12 (1 1	W I+I/K
4A		NC (n=6)	0.6/24	nonpaired 2-tailed	D 2 1004(E 05 NG
40		ASPP1 (n=6)	0.1831	Student <i>t</i> test	P=2.10846E-05 vs NC
4B		Control (n=6)	0.1600	one-way ANOVA	
		H/R (n=6)	0.5820	analysis followed by	P=4.8E-14 vs Control
		H/R+NC (n=6)	0.9479	Tukey's post-noc multi-	P=3.7E-14 vs Control
				comparison test	P=0.898463348 vs H/R
		H/R+ASPP1	0.5761		P=2.3E-14 vs Control
		(n=6)			P=1.90757E-09 vs H/R
					P=5.64292E-09 vs
					NC+H/R
4C		Control (n=6)	0.4097	one-way ANOVA	
		H/R (n=6)	0.3212	analysis followed by	P=3.306E-10 vs Control
		H/R+NC (n=6)	0.4716	Tukey's post-hoc multi-	P=3.96371E-10 vs
				comparison test	Control
					P=0.999234872 vs H/R
		H/R+ASPP1	0.1196		P=2.3E-14 vs Control
		(n=6)			P=5.3965E-11 vs H/R
					P=4.5807E-11 vs
					NC+H/R
4D		Control (n=6)	0.5959	one-way ANOVA	
		H/R (n=6)	0.6259	analysis followed by	P=3.1E-14 vs Control
		H/R+NC (n=6)	0.8878	Tukey's post-hoc multi-	P=3.1E-14 vs Control
				comparison test	P=0.999999999804002
					vs H/R
		H/R+ASPP1	0.2636	-	P=2.3E-14 vs Control
		(n=6)	-		P=7.59494E-08 vs H/R
					P=7.60583E-08 vs
					NC+H/R
4F		Control (n=6)	0.9673	one-way ANOVA	
-1 L-			0.7075		

		H/R (n=6)	0.5021	analysis followed by	P=1.50351E-05 vs
				Tukey's post-hoc multi-	Control
		H/R+NC (n=6)	0.2270	comparison test	P=8.99475E-06 vs
					Control
					P=0.994739552 vs H/R
		H/R+ASPP1	0.3283		P=1.16402E-09 vs
		(n=6)			Control
					P=0.000199025 vs H/R
					P=0.000344819 vs
					NC+H/R
4F		Control (n=6)	0.1602	one-way ANOVA	
		H/R (n=6)	0.7057	analysis followed by	P=1.12672E-05 vs
				Tukey's post-hoc multi-	Control
		H/R+NC (n=6)	0.7665	comparison test	P=4.83055E-06 vs
					Control
					P=0.976569466 vs H/R
		H/R+ASPP1	0.6032		P=1.8004E-11 vs Control
		(n=6)			P=4.38409E-07 vs H/R
					P=9.59008E-07 vs
					NC+H/R
4G		Control (n=6)	0.6700	one-way ANOVA	
		H/R (n=6)	0.7974	analysis followed by	P=0.000302538 vs
				Tukey's post-hoc multi-	Control
		H/R+NC (n=6)	0.1783	comparison test	P=0.000664013 vs
					Control
					P=0.985281237 vs H/R
		H/R+ASPP1	0.5723		P=2.78938E-08 vs
		(n=6)			Control
					P=0.000810792 vs H/R
					P=0.000368876 vs
					NC+H/R
5A		WT (n=6)	0.4983	nonpaired 2-tailed	
		ASPP1(KO)	0.1535	Student t test	P=8.10021E-07 vs WT
		(n=6)			
5B	EF	WT+Sham	0.6023	two-way ANOVA	
		(n=11)		analysis followed by	
		ASPP1(KO)+Sh	0.3526	Tukey's post-hoc multi-	P=0.5848123762 vs
		am (n=11)		comparison test	WT+Sham
		WT+I/R (n=11)	0.7810		P=6.5373E-9 vs
					WT+Sham
					P=1.33244E-10 vs
			0.4007		ASPP1(KO)+Sham
		ASPPI(KO)+I	0.4097		P=0.02838/04 vs
		к (n=11)			w 1+Snam
					P=0.000831822 vs
					ASPP1(KO)+Sham

(1			
					P=7.29144E-05 vs
					WT+I/R
	FS	WT+Sham	0.4535	two-way ANOVA	
		(n=11)		analysis followed by	
		ASPP1(KO)+Sh	0.3704	Tukey's post-hoc multi-	P=0.338366479 vs
		am (n=11)		comparison test	WT+Sham
		WT+I/R (n=11)	0.8341		P=7.6156E-07 vs
					WT+Sham
					P=3.46549E-09 vs
					ASPP1(KO)+Sham
		ASPP1(KO)+I/	0.3639		P=0.050276088 vs
		R (n=11)			WT+Sham
					P=0.00047368 vs
					ASPP1(KO)+Sham
					P=0.003278664 vs
					WT+I/R
5C		WT+I/R (n=15)	0.0304	Mann-Whitney U test	
		ASPP1(KO)+I/	0.8587		P=1.28935E-08 vs
		R (n=15)			WT+I/R
5D		WT+Sham	0.3464	Kruskal Wallis test with	
		(n=13)		FDR (Benjamini-	
		ASPP1(KO)+Sh	0.4114	Hochberg method)	P=0.9138197 vs
		am (n=13)			WT+Sham
		WT+I/R (n=15)	0.0031		P=1.38128E-08 vs
					WT+Sham
					P=7.13507E-09 vs
					ASPP1(KO)+Sham
		ASPP1(KO)+I/	0.0419	-	P=0.001250895 vs
		R (n=15)			WT+Sham
					P=0.000840703 vs
					ASPP1(KO)+Sham
					0.01104994 vs WT+I/R
5E		WT+Sham	0.1973	two-way ANOVA	
		(n=9)		analysis followed by	
		ASPP1(KO)	0.5715	Tukey's post-hoc multi-	P=0.999955876 vs
		+Sham (n=9)		comparison test	WT+Sham
		WT+I/R (n=9)	0.6686		P=1.01E-13 vs
					WT+Sham
					P=1.01E-13 vs
					ASPP1(KO)+Sham
		ASPP1(KO)+I/	0.1669	1	P=1.09793E-08 vs
		R (n=9)			WT+Sham
					P=1.25251E-08 vs
					ASPP1(KO)+Sham
					P=1.10357E-08 vs
					WT+I/R
5F		WT+Sham	0.5828	two-way ANOVA	

		(n=9)		analysis followed by	
		ASPP1(KO)+Sh	0.7786	Tukey's post-hoc multi-	P=0.960849952 vs
		am (n=9)		comparison test	WT+Sham
		WT+I/R (n=9)	0.2676		P=3.38E-13 vs
					WT+Sham
					P=7.63E-13 vs
					ASPP1(KO)+Sham
		ASPP1(KO)+I/	0.9520		P=0.000632509 vs
		R (n=9)			WT+Sham
					P=0.002459429 vs
					ASPP1(KO)+Sham
					P=7.68615E-09 vs
					WT+I/R
5G	Bcl-2	WT+Sham	0.9953	two-way ANOVA	
		(n=6)		analysis followed by	
		ASPP1(KO)+Sh	0.1698	Tukey's post-hoc multi-	P=0.895610801 vs
		am (n=6)		comparison test	WT+Sham
		WT+I/R (n=6)	0.4118		P=0.002780918 vs
					W I+Sham
					P=0.000562676 vs
			0.0470	-	ASPPI(KO)+Sham
		ASPP1(KO)+1/	0.8479		P=0.993548953 vs
		K (n=0)			W 1 + 5nam D=0.070800058
					P=0.9708999958 VS
					P=0.001522272 yr
					WT+I/R
5H	Bay	WT+Sham	0 3658	two-way ANOVA	
511	Dun	(n=6)	0.5050	analysis followed by	
		ASPP1(KO)+Sh	0.9307	Tukey's post-hoc multi-	P=0.999881886 vs
		am (n=6)		comparison test	WT+Sham
		WT+I/R (n=6)	0.4310		P=1.18067E-08 vs
					WT+Sham
					P=1.05531E-08 vs
					ASPP1(KO)+Sham
		ASPP1(KO)+I/	0.1012		P=0.672950935 vs
		R (n=6)			WT+Sham
					P=0.632018157 vs
					ASPP1(KO)+Sham
					P=8.25844E-08 vs
					WT+I/R
5I	Total p53	WT+Sham	0.4536	Kruskal Wallis test with	
	levels	(n=5)		FDR (Benjamini-	
		ASPP1(KO)+Sh	0.4068	Hochberg method)	P=0.708281012 vs
		am (n=5)			WT+Sham
		WT+I/R (n=5)	0.9847		P=0.032509445 vs
					WT+Sham

					P=0.011996214 vs
					ASPP1(KO)+Sham
		ASPP1(KO)+I/	0.4668		P=0.004611783 vs
		R (n=5)			WT+Sham
					P=0.001340641 vs
					ASPP1(KO)+Sham
					P=0.487130991 vs
					WT+I/R
	p53	WT+Sham	0.8126	Kruskal Wallis test with	
	nuclear/cyt	(n=5)		FDR (Benjamini-	
	oplasm	ASPP1(KO)+Sh	0.1154	Hochberg method)	P=0.830696011 vs
	ratio	am (n=5)			WT+Sham
		WT+I/R (n=5)	0.6613		P=0.005443982 vs
					WT+Sham
					P=0.002759549 vs
					ASPP1(KO)+Sham
		ASPP1(KO)+I/	0.3563		P=0.592980098 vs
		R (n=5)			WT+Sham
					P=0.454260243 vs
					ASPP1(KO)+Sham
					P=0.02476849 vs
					WT+I/R
6A		NC (n=5)	0.1294	Mann-Whitney U test	
		siASPP1-1	0.1466		P=0.420634920634921
		(n=5)			vs NC
		siASPP1-2	0.1541		P=0.222222222222222
		(n=5)			vs NC
		siASPP1-3	0.5071		P=0.007936507936508
		(n=5)			vs NC
6B		Control (n=6)	0.9741	one-way ANOVA	
		H/R (n=6)	0.1750	analysis followed by	P=2.3E-14 vs Control
		H/R+NC (n=6)	0.7532	Tukey's post-hoc multi-	P=2.3E-14 vs Control
				comparison test	P=0.992822613 vs H/R
		H/R+siASPP1	0.7040		P=0.001460505 vs
		(n=6)			Control
					P=2.5E-14 vs H/R
					P=2.5E-14 vs H/R+NC
6C		Control (n=6)	0.8078	one-way ANOVA	
		H/R (n=6)	0.5302	analysis followed by	P=5.02505E-09 vs
				Tukey's post-hoc multi-	Control
		H/R+NC (n=6)	0.2386	comparison test	P=3.40611E-09 vs
					Control
					P=0.994585774 vs H/R
		H/R+siASPP1	0.1536	1	P=0.046337371 vs
		(n=6)			Control
					P=7.28987E-07 vs H/R
					1 7.20907E 07 75 11/R

				P=4.55034E-07 vs
				H/R+NC
6D	Control (n=6)	0.8956	one-way ANOVA	
	H/R (n=6)	0.8940	analysis followed by	P=1.086E-12 vs Control
	H/R+NC (n=6)	0.7722	Tukey's post-hoc multi-	P=1.071E-12 vs Control
			comparison test	P=0.99999926 vs H/R
	H/R+siASPP1	0.7299		P=5.83639E-05 vs
	(n=6)			Control
				P=1.96033E-09 vs H/R
				P=1.92296E-09 vs
				H/R+NC
6E	Control (n=6)	0.2446	one-way ANOVA	
	H/R (n=6)	0.3123	analysis followed by	P=2.08378E-08 vs
			Tukey's post-hoc multi-	Control
	H/R+NC (n=6)	0.8922	comparison test	P=1.82358E-09 vs
				Control
				P=0.445911189 vs H/R
	H/R+siASPP1	0.1606		P=0.054063753 vs
	(n=6)			Control
				P=3.50581E-06 vs H/R
				P=1.85878E-07 vs
				H/R+NC
6F	Control (n=5)	0.5790	Kruskal Wallis test with	
	H/R (n=5)	0.3946	FDR (Benjamini-	P=0.020593097944251
		0.2212	Hochberg method)	vs Control
	H/R+NC (n=5)	0.3312		P=0.0096/3458033440
				$\frac{VS \text{ Control}}{D=0}$
				P=0.00/859105/55/74
	H/D+ciASDD1	0.7611		D=0.708281012200605
	(n=5)	0.7011		vs Control
	(11-5)			P=0.042618870899495
				vs H/R
				P=0.016331945415615
				vs H/R+NC
6G	Control (n=5)	0.9964	Kruskal Wallis test with	
	H/R (n=5)	0.1571	FDR (Benjamini-	P=0.001933702 vs
			Hochberg method)	Control
	H/R+NC (n=5)	0.2645		P=0.008814655 vs
				Control
				P=0.630466582 vs H/R
	H/R+siASPP1	0.7379		P=0.708281012 vs
	(n=5)			Control
				P=0.006409444 vs H/R
				P=0.02476849 vs
				H/R+NC

7A	NC (n=5)	0.8589	Mann-Whitney U test	
	sip53-1 (n=5)	0.0844		P=0.007936507936508
				vs NC
	sip53-2 (n=5)	0.2195		P=0.031746031746032
				vs NC
	sip53-3 (n=5)	0.1345		P=0.007936507936508
				vs NC
7B	H/R+NC (n=9)	0.0623	one-way ANOVA	
	H/R+ASPP1	0.4674	analysis followed by	P=2.85061E-10 vs
	(n=9)		Tukey's post-hoc multi-	H/R+NC
	H/R+ASPP1+si	0.4920	comparison test	P=1.92158E-08 vs
	CTRL (n=9)			H/R+NC
				P=0.378632861 vs
				H/R+ASPP1
	H/R+ASPP1+si	0.1152		P=0.918781982 vs
	p53 (n=9)			H/R+NC
				P=6.0045E-11 vs
				H/R+ASPP1
				P=3.53424E-09 vs
				H/R+ASPP1+siCTRL
7C	H/R+NC (n=5)	0.3365	Kruskal Wallis test with	
	H/R+ASPP1	0 1790	FDR (Benjamini-	P=0.008814655 vs
	(n=5)	0.1750	Hochberg method)	H/R+NC
	H/R+ASPP1+si	0.8961		P=0.02476849 vs
	CTRL (n=5)	0.0501		H/R+NC
				P=0.708281012vs
				H/R+ASPP1
	H/R+ASPP1+si	0 4676		P=0.630466582.vs
	n53 (n=5)	0.1070		H/R+NC
	p55 (ii 5)			P=0.001933702 vs
				H/R+A SPP1
				P=0.006409444 vs
				H/R+ASPP1+siCTRI
7D	H/R+NC (n=6)	0.5123	one-way ANOVA	
	H/R+ASPP1	0.7256	analysis followed by	P=2.6032E-05.vs
	(n=6)	0.7250	Tukey's post-hoc multi-	H/R+NC
	$H/P + \Lambda SPP1 + si$	0.6741	comparison test	$P=2.57442E_{06} vc$
	CTRL (n=6)	0.0741	comparison test	H/R+NC
	CIRL (n 0)			P=0.687786762 vs
				$H/R + \Lambda SPP1$
	$H/D \pm \Lambda \text{SDD1} \pm c_i$	0.2483		P = 0.050018852 yr
	n53 (n=6)	0.2485		H/D+NC
	p55 (II-0)			D = 1.10602E.07.447
				$1 = 1.19002 \text{ E} \cdot 0 / VS$ $1 / \text{D} \pm \text{A} \text{ S} \text{D} \text{D} 1$
				D-1 72425E 00
				$\frac{\Gamma - 1.73433E - 08}{U/D \pm 4.5DD1 \pm a^2 CTD1}$
70		0.0007		n/KTASPP1+SIU1KL
/E	H/K+NC (n=6)	0.9905	one-way ANOVA	

	H/R+ASPP1	0.5199	analysis followed by	P=1.10156E-06 vs
	(n=6)		Tukey's post-hoc multi-	H/R+NC
	H/R+ASPP1+si	0.9617	comparison test	P=3.83275E-06 vs
	CTRL (n=6)			H/R+NC
				P=0.563072735 vs
				H/R+ASPP1
	H/R+ASPP1+si	0.1651	-	P=0.483310244 vs
	p53 (n=6)			H/R+NC
				P=5.03802E-06 vs
				H/R+ASPP1
				P=1.84754E-05 vs
				H/R+ASPP1+siCTRL
7F	H/R+NC (n=6)	0.0740	one-way ANOVA	
	H/R+ASPP1	0.9345	analysis followed by	P=2.60397E-08 vs
	(n=6)		Tukey's post-hoc multi-	H/R+NC
	H/R+ASPP1+si	0.3855	comparison test	P=4.42156E-07 vs
	CTRL (n=6)			H/R+NC
				P=0.414266597 vs
				H/R+ASPP1
	H/R+ASPP1+si	0.1799		P=0.533421157 vs
	p53 (n=6)			H/R+NC
				P=2.98585E-07 vs
				H/R+ASPP1
				P=6.67017E-06 vs
				H/R+ASPP1+siCTRL
7J	H/R+NC (n=6)	0.5795	one-way ANOVA	
	H/R+ASPP1	0.5605	analysis followed by	P=2.38136E-10 vs
	(n=6)		Tukey's post-hoc multi-	H/R+NC
	H/R+ASPP1+N	0.0969	comparison test	P=7.9355E-11 vs
	C(n=6)			H/R+NC
				P=0.973265273 vs
				H/R+ASPP1
	H/R+ASPP1+F1	0.1157		P=0.004158301 vs
	ag-p53-NT			H/R+NC
	(n=6)			P=1.05659E-06 vs
				H/R+ASPP1
				P=2.6117E-07 vs
				H/R+ASPP1+NC
	H/R+ASPP1+F1	0.5600		P=1.38582E-10 vs
	ag-p53-CT			H/R+NC
	(n=6)			P=0.998244607 vs
				H/R+ASPP1
				P=0.997885494 vs
				H/R+ASPP1+NC
				P=5.31091E-07 vs
				H/R+ASPP1+Flag-p53-
				NΤ

7K	H/R+NC (n=6)	0.1228	one-way ANOVA	
	H/R+ASPP1	0.9127	analysis followed by	P=1.07415E-10 vs
	(n=6)		Tukey's post-hoc multi-	H/R+NC
	H/R+ASPP1+N	0.1655	comparison test	P=2.8411E-11 vs
	C(n=6)			H/R+NC
				P=0.941658765 vs
				H/R+ASPP1
	H/R+ASPP1+F1	0.2550		P=0.998126582 vs
	ag-p53-NT			H/R+NC
	(n=6)			P=1.85408E-10 vs
				H/R+ASPP1
				P=4.7901E-11 vs
				H/R+ASPP1+NC
	H/R+ASPP1+F1	0.6447		P=1.79297E-10 vs
	ag-p53-CT			H/R+NC
	(n=6)			P=0.998534455 vs
				H/R+ASPP1
				P=0.837443419 vs
				H/R+ASPP1+NC
				P=3.12431E-10 vs
				H/R+ASPP1+Flag-p53-
				NT
7L	H/R+NC (n=6)	0.5218	one-way ANOVA	
	H/R+ASPP1	0.6630	analysis followed by	P=1.76761E-09 vs
	(n=6)		Tukey's post-hoc multi-	H/R+NC
	H/R+ASPP1+N	0.9722	comparison test	P=1.17218E-09 vs
	C(n=6)			H/R+NC
				P=0.999545617 vs
		0.4470	-	H/R+ASPPI
	H/R+ASPP1+F1	0.4472		P=0.998755172 vs
	ag-p53-N1			H/R+NC
	(n=0)			P=1.0409E-09 vs
				H/R+ASPP1
				P=0.94997E-10Vs
		0.4741		$P=2.74026E_{10}m$
	H/R+ASPP1+F1	0.4/41		P=2./4920E-10 VS
	ag-p33-C1			D = 0.866652486 yg
	(11-0)			$H/D \pm \Lambda$ SDD1
				P=0.02071205 yr
				$H/D + \Lambda SDD1 + NC$
				P = 1.66084E = 10 yr
				$H/D \pm \Lambda$ SDD1 \pm Flag n53
				IT NT
7M	$H/D \perp NC(n-6)$	0.2070	one way ANOVA	
/101	H/R+INC (II=0)	0.3079	one-way ANOVA	D 0 20020E 10
	H/R+ASPP1	0.2336	Tultov's post is a second	P=9.38838E-10 VS

		H/R+ASPP1+N	0.6420	comparison test	P=2.55664E-10 vs
		C(n=6)			H/R+NC
					P=0.957972031 vs
					H/R+ASPP1
		H/R+ASPP1+F1	0.2790		P=0.464533339 vs
		ag-p53-NT			H/R+NC
		(n=6)			P=2.90196E-08 vs
					H/R+ASPP1
					P=6.86022E-09 vs
					H/R+ASPP1+NC
		H/R+ASPP1+F1	0 5381		P=1.06292E-10 vs
		ag-p53-CT	0.0001		H/R+NC
		(n=6)			P=0.771385461 vs
		(11 0)			H/R+ASPP1
					P=0.988610037 vs
					H/R+ASPP1+NC
					$P=2.59095F_0.09 vs$
					$H/R + \Delta SPP1 + Flag_n 53$
					NT
81		ΔΑΥΘ ΝΟ	0.1/08	nonnaired ? tailed	111
0A		(n=6)	0.1490	Student <i>t</i> test	
		(11 0)	0 70/1		P=7.08908E.07.vs
		(n=6)	0./941		1 - 7.00900L-07 VS
8B	FF	$\frac{(n-0)}{WT+I/R (n=7)}$	0.0064	one way ANOVA	
0D	LI	$\Lambda SDD1(TC)+I/$	0.0904	analysis followed by	D-7 26203E 00 yr
		$\frac{\text{ASITI(IO)}}{\text{P}(n-7)}$	0.4951	Tukey's post has multi	I = 7.20233L = 0.9 VS WT+1/D
		K (II - 7)	0.2042	comparison test	$D = 2.74458E_{00} mg$
		ASFFI(IO)+I/ P+AAVO NC	0.2942	comparison test	$\Gamma = 2.74436E - 09 VS$ WT+I/D
		K + AAV 9 - NC			$W 1 \pm 1/K$
		(n-/)			P=0.900107/4 VS
			0.0040	-	ASPP1(1G)+1/K
		ASPP1(1G)+I/	0.2942		P=0.80884/929 vs
		R+AAV9-shp53			W I+I/K
		(n=/)			P=1.2712E-09 vs
					ASPPI(TG)+I/R
					P=5.06677E-10 vs
					ASPP1(TG)+I/R+AAV9-
					NC
	FS	WT+I/R (n=7)	0.1602	one-way ANOVA	
		ASPP1(TG)+I/	0.3785	analysis followed by	P=7.27796E-09 vs
		R (n=7)		Tukey's post-hoc multi-	WT+I/R
		ASPP1(TG)+I/	0.3644	comparison test	P=3.16924E-09 vs
		R+AAV9-NC			WT+I/R
		(n=7)			P=0.974620984 vs
					ASPP1(TG)+I/R
		ASPP1(TG)+I/	0.4521		P=0.737030875 vs
		R+AAV9-shp53			WT+I/R
		(n=7)			P=9.9234E-10 vs

				ASPP1(TG)+I/R
				P=4.55216E-10 vs
				ASPP1(TG)+I/R+AAV9-
				NC
8C	WT+I/R (n=6)	0.4521	one-way ANOVA	
	ASPP1(TG)+I/	0.6009	analysis followed by	P=1.69895E-06 vs
	R (n=6)		Tukey's post-hoc multi-	WT+I/R
	ASPP1(TG)+I/	0.5927	comparison test	P=1.54881E-06 vs
	R+AAV9-NC			WT+I/R
	(n=6)			P=0.999962242 vs
				ASPP1(TG)+I/R
	ASPP1(TG)+I/	0.9370		P=0.193897363 vs
	R+AAV9-shp53			WT+I/R
	(n=6)			P=3.60309E-08 vs
				ASPP1(TG)+I/R
				P=3.32505E-08 vs
				ASPP1(TG)+I/R+AAV9-
				NC
8D	WT+I/R (n=10)	0.7606	one-way ANOVA	
	ASPP1(TG)+I/	0.6424	analysis followed by	P=1.6958E-08 vs
	R (n=10)		Tukey's post-hoc multi-	WT+I/R
	ASPP1(TG)+I/	0.7573	comparison test	P=3.27491E-08 vs
	R+AAV9-NC			WT+I/R
	(n=10)			P=0.99600497 vs
				ASPP1(TG)+I/R
	ASPP1(TG)+I/	0.8147		P=0.97053238 vs
	R+AAV9-shp53			WT+I/R
	(n=10)			P=4.66523E-09 vs
				ASPP1(TG)+I/R
				P=8.91365E-09 vs
				ASPP1(TG)+I/R+AAV9-
0.5		0.2220		NC
8E	W I+I/K (n=10)	0.3230	one-way ANOVA	
	$\frac{\text{ASPPI}(10)+1}{\text{B}(m-10)}$	0.4801	Tukov's post has multi	P=1E-15 VS W 1+1/K
	K (II-10)	0.4601	comparison test	$D = 1E_{15} ug WT + I/D$
	ASPP1(10)+1/ P+AAVO NC	0.4091	comparison test	P = 1E = 13 VS W 1 = 1/K
	(n=10)			P=0.9999940913 vs
	(II-10)	0.5097	_	ASPP1(1G)+1/K
	ASPP1(10)+1/ $P+4 AV0 shp52$	0.3987		P = 0.990310220 VS WT+1/D
	(n=10)			$P < 1E_{15} vc$
	(II-10)			$\Lambda \text{SPP1}(\text{TG}) + I/P$
				$\frac{P < 1E_{15} v_{\text{F}}}{P < 1E_{15} v_{\text{F}}}$
				$\Lambda \text{SPP1}(\text{TG}) + I/\text{R} + \Lambda \text{AVQ}$
				NC
8F	WT+I/R $(n=10)$	0.0558	one-way ANOVA	
	$\frac{1}{\text{ASPP1(TG)+I}}$	0.3860	analysis followed by	P=7.372E-12 vs WT+I/R

		R (n=10)		Tukey's post-hoc multi-	
		ASPP1(TG)+I/	0.7834	comparison test	P=2.7912E-11 vs
		R+AAV9-NC			WT+I/R
		(n=10)			P=0.958881181 vs
					ASPP1(TG)+I/R
		ASPP1(TG)+I/	0.1812	-	P=0.801594243 vs
		R+AAV9-shp53			WT+I/R
		(n=10)			P=5.19E-13 vs
					ASPP1(TG)+I/R
					P=2.432E-12 vs
					ASPP1(TG)+I/R+AAV9-
					NC
8G		WT+I/R (n=6)	0.1142	one-way ANOVA	
		ASPP1(TG)+I/	0.7255	analysis followed by	P=1.86062E-06 vs
		R (n=6)		Tukey's post-hoc multi-	WT+I/R
		ASPP1(TG)+I/	0.2360	comparison test	P=2.67081E-06 vs
		R+AAV9-NC			WT+I/R
		(n=6)			P=0.997846099 vs
				-	ASPP1(TG)+I/R
		ASPP1(TG)+I/	0.1402		P=0.457621629 vs
		R+AAV9-shp53			WT+I/R
		(n=6)			P=1.08916E-07 vs
					ASPP1(TG)+I/R
					P=1.51002E-07 vs
					ASPP1(TG)+I/R+AAV9-
011		WT + I/D (m-6)	0.7102		NC
оп		W I + I/K (II - 0)	0.7192	one-way ANOVA	D-2 44200E 06 mg
		ASFFI(10) + 1/	0.9044	Tukey's post hoc multi	I = 2.44309⊡-00 VS
		A SPP1(TG)+I/	0.1834	comparison test	P=4.61814E.07 vs
		R+AAV9-NC	0.1054		WT+I/R
		(n=6)			P=0.828929203 vs
		(11-0)			ASPP1(TG)+I/R
		ASPP1(TG)+I/	0 5889	-	P=0.980224569 vs
		R+AAV9-	0.0009		WT+I/R
		shp53 (n=6)			P=5.33597E-06 vs
		1			ASPP1(TG)+I/R
					P=9.66563E-07 vs
					ASPP1(TG)+I/R+AAV9-
					NC
S1	Total	Non-ischemic	0.2926	Mann-Whitney U test	
	ASPP1	area (n=5)			
	levels	Ischemic area	0.0808		P=0.007936507936508
		(n=5)			vs Non-ischemic area
	ASPP1	Non-ischemic	0.3337	Mann-Whitney U test	
	nuclear/cyt	area (n=5)			
	oplasm	Ischemic area	0.9445		P=0.007936507936508

	ratio	(n=5)			vs Non-ischemic area
	Total p53	Non-ischemic	0.6728	Mann-Whitney U test	
	levels	area (n=5)			
		Ischemic area	0.7002		P=0.007936507936508
		(n=5)			vs Non-ischemic area
	p53	Non-ischemic	0.8457	Mann-Whitney U test	
	nuclear/cyt	area (n=5)			
	oplasm	Ischemic area	0.9890	_	P=0.007936507936508
	ratio	(n=5)			vs Non-ischemic area
S2 A	Total p63	NC (n=5)	0.8612	Kruskal Wallis test with	
	levels	siASPP1 (n=5)	0.7951	FDR (Benjamini-	P=0.21892122 vs NC
		H/R+NC (n=5)	0.0322	Hochberg method)	P=0.668929268 vs NC
					P=0.422678074 vs
					siASPP1
		H/R+siASPP1	0.1940	-	P=0.422678074 vs NC
		(n=5)			P=0.668929268 vs
					siASPP1
					P=0.708281012 vs
					H/R+NC
	p63	NC (n=5)	0.3196	Kruskal Wallis test with	
	nuclear/cyt	siASPP1 (n=5)	0.6856	FDR (Benjamini-	P=0.199543244894338
	oplasm			Hochberg method)	vs NC
	ratio	H/R+NC (n=5)	0.1339		P=0.121113867656861
					vs NC
					P=0.789268026134283
					vs siASPP1
		H/R+siASPP1	0.5018	_	P=0.630466581587966
		(n=5)			vs NC
					P=0.422678074170649
					vs siASPP1
					P=0.285049407402629
					vs H/R+NC
S2 B	Total p73	NC (n=5)	0.1580	Kruskal Wallis test with	
	levels	siASPP1 (n=5)	0.2203	FDR (Benjamini-	P=0.422678074170649
				Hochberg method)	vs NC
		H/R+NC (n=5)	0.5674	-	P=0.261651090588242
					vs NC
					P=0.054319378127170
					vs siASPP1
		H/R+siASPP1	0.4028	_	P=0.830696011306370
		(n=5)			vs NC
					P=0.309823373372381
					vs siASPP1
					P=0.363514722736453
					vs H/R+NC
1	p73	NC (n=5)	0.6926	Kruskal Wallis test with	

	nuclear/cyt	siASPP1 (n=5)	0.8762	FDR (Benjamini-	P=0.285049407402629
	oplasm			Hochberg method)	vs NC
	ratio	H/R+NC (n=5)	0.8146		P=0.454260242566824
					vs NC
					P=0.069159491941058
					vs siASPP1
		H/R+siASPP1	0.4451	-	P=0.521245308114821
		(n=5)			vs NC
					P=0.668929268252769
					vs siASPP1
					P=0.164602236716164
					vs H/R+NC
S3 A	Total p53	H/R+NC (n=5)	0.1446	Mann-Whitney U test	
	levels	H/R+SiASPP2	0.6318	-	P=0.547619047619048
		(n=5)			vs H/R+NC
	p53	H/R+NC (n=5)	0.1742	Mann-Whitney U test	
	nuclear/cyt	H/R+SiASPP2	0.5772	-	P=0.547619047619048
	oplasm	(n=5)			vs H/R+NC
	ratio				
S3 B	Total p53	H/R+NC (n=5)	0.8086	Mann-Whitney U test	
	levels	H/R+SiiASPP	0.8029		P=0.007936507936508
		(n=5)			vs H/R+NC
	p53	H/R+NC (n=5)	0.5613	Mann-Whitney U test	
	nuclear/cyt	H/R+SiiASPP	0.2121		P>0.99999999999999999
	oplasm	(n=5)			vs H/R+NC
	ratio				
S3 C	Total	H/R+NC (n=5)	0.6547	Mann-Whitney U test	
	ASPP2	H/R+Siimportin	0.6106		P=0.309523809523810
	levels	-β1 (n=5)			vs H/R+NC
	ASPP2	H/R+NC (n=5)	0.5830	Mann-Whitney U test	
	nuclear/cyt	H/R+Si	0.6401		P=0.547619047619048
	oplasm	importin-β1			vs H/R+NC
	ratio	(n=5)			
S3 D	Total	H/R+NC (n=5)	0.0084	Mann-Whitney U test	
	iASPP	H/R+Siimportin	0.9961		P=0.547619047619048
	levels	-β1 (n=5)			vs H/R+NC
	iASPP	H/R+NC (n=5)	0.8803	Mann-Whitney U test	
	nuclear/cyt	H/R+Si	0.7667		P=0.841269841269841
	oplasm	importin-β1			vs H/R+NC
	ratio	(n=5)			
S4 B	EF	WT (n=14)	0.1793	nonpaired 2-tailed	
		ASPP1(TG)	0.2993	Student <i>t</i> test	P=0.480531939433960
		(n=20)			vs WT
1	FS	WT (n=14)	0.0379	Mann-Whitney U test	
		ASPP1(TG)	0.3679	1	P=0.522479771269560
		(n=20)			vs WT
S4 C	Heart	WT (n=6)	0.8228	nonpaired 2-tailed	

	weight	ASPP1(TG)	0.4123	Student t test	P=0.807272802009156
		(n=6)			vs WT
	Body	WT (n=6)	0.3561	nonpaired 2-tailed	
	weight	ASPP1(TG)	0.4245	Student t test	P=0.591326096918382
		(n=6)			vs WT
	Heart	WT (n=6)	0.6636	nonpaired 2-tailed	
	weight/bod	ASPP1(TG)	0.6200	Student t test	P=0.946374698356178
	y weight	(n=6)			vs WT
	(HW/BW)				
S5 B	EF	WT (n=9)	0.1256	nonpaired 2-tailed	
		ASPP1(KO)	0.8037	Student <i>t</i> test	P=0.517412514137118
		(n=12)			vs WT
	FS	WT (n=9)	0.0803	nonpaired 2-tailed	
		ASPP1(KO)	0.6661	Student t test	P=0.385036128965754
		(n=12)			vs WT
S5 C	Heart	WT (n=6)	0.9735	nonpaired 2-tailed	
	weight	ASPP1(KO)	0.9948	Student t test	P=0.901440144573029
		(n=6)			vs WT
	Body	WT (n=6)	0.7287	Mann-Whitney U test	
	weight,	ASPP1(KO)	0.0221	_	P=0.816017316017316
		(n=6)			vs WT
	Heart	WT (n=6)	0.1607	nonpaired 2-tailed	
	weight/bod	ASPP1(KO)	0.6737	Student t test	P=0.969474465338486
	y weight	(n=6)			vs WT
	(HW/BW)				
S6 A		NC (n=6)	0.3171	nonpaired 2-tailed	
		p53 (n=6)	0.7327	Student t test	P=1.53196E-09 vs NC
S6 B		H/R+siCTRL	0.2223	one-way ANOVA	
		(n=6)		analysis followed by	
		H/R+siASPP1	0.0521	Tukey's post-hoc multi-	P=1.91774E-08 vs
		(n=6)		comparison test	H/R+siCTRL
		H/R+siASPP1+	0.1215		P=1.21756E-07 vs
		NC (n=6)			H/R+siCTRL
					P=0.71705067 vs
					H/R+siASPP1
		H/R+siASPP1+	0.3801		P=1.75269E-07 vs
		p53 (n=6)			H/R+siCTRL
					P=0.597690229 vs
					H/R+siASPP1
					P=0.99706735 vs
					H/R+siASPP1+p53
S6 C		H/R+siCTRL	0.8832	one-way ANOVA	
		(n=6)		analysis followed by	
		H/R+siASPP1	0.3306	Tukey's post-hoc multi-	P=9.20901E-08 vs
		(n=6)		comparison test	H/R+siCTRL
		H/R+siASPP1+	0.0705		P=1.35861E-08 vs
		NC (n=6)			H/R+siCTRL

				P=0.687113653 vs
				H/R+siASPP1
	H/R+siASPP1+	0.5106	-	P=3.62933E-07 vs
	p53 (n=6)			H/R+siCTRL
				P=0.876808818 vs
				H/R+siASPP1
				P=0.276985155 vs
				H/R+siASPP1+p53
S6 D	H/R+siCTRL	0.9798	Kruskal Wallis test with	
	(n=5)		FDR (Benjamini-	
	H/R+siASPP1	0.3890	Hochberg method)	P=0.007526315166462
	(n=5)			vs H/R+siCTRL
	H/R+siASPP1+	0.2819	-	P=0.010296548972126
	NC (n=5)			vs H/R+siCTRL
				P=0.914864745735549
				vs H/R+siASPP1
	H/R+siASPP1+	0.7094	1	P=0.005443981805205
	p53 (n=5)			vs H/R+siCTRL
				P=0.914864745735549
				vs H/R+siASPP1
				P=0.830696011306370
				vs H/R+siASPP1+p53
S6 E	H/R+siCTRL	0.8456	Kruskal Wallis test with	
	(n=5)		FDR (Benjamini-	
	H/R+siASPP1	0.6650	Hochberg method)	P=0.028412580599663
	(n=5)			vs H/R+siCTRL
	H/R+siASPP1+	0.9171		P=0.003896500435959
	NC (n=5)			vs H/R+siCTRL
				P=0.487130990687863
				vs H/R+siASPP1
	H/R+siASPP1+	0.3862	1	D 0 000000 4 (000 (070
		0.000		P=0.003283460986070
	p53 (n=5)	0.0002		P=0.003283460986070 vs H/R+siCTRL
	p53 (n=5)			P=0.003283460986070 vs H/R+siCTRL P=0.454260242566823
	p53 (n=5)			P=0.003283460986070 vs H/R+siCTRL P=0.454260242566823 vs H/R+siASPP1
	p53 (n=5)			P=0.003283460986070 vs H/R+siCTRL P=0.454260242566823 vs H/R+siASPP1 P=0.957371576490613
	p53 (n=5)			P=0.003283460986070 vs H/R+siCTRL P=0.454260242566823 vs H/R+siASPP1 P=0.957371576490613 vs H/R+siASPP1+p53
S7 A	p53 (n=5)	0.7107	Mann-Whitney U test	P=0.003283460986070 vs H/R+siCTRL P=0.454260242566823 vs H/R+siASPP1 P=0.957371576490613 vs H/R+siASPP1+p53
S7 A	p53 (n=5) NC (n=5) sip63-1 (n=5)	0.7107 0.5432	Mann-Whitney U test	P=0.003283460986070 vs H/R+siCTRL P=0.454260242566823 vs H/R+siASPP1 P=0.957371576490613 vs H/R+siASPP1+p53 P=0.309523809523810
S7 A	p53 (n=5) NC (n=5) sip63-1 (n=5)	0.7107 0.5432	Mann-Whitney U test	P=0.003283460986070 vs H/R+siCTRL P=0.454260242566823 vs H/R+siASPP1 P=0.957371576490613 vs H/R+siASPP1+p53 P=0.309523809523810 vs NC
S7 A	p53 (n=5) NC (n=5) sip63-1 (n=5) sip63-2 (n=5)	0.7107 0.5432 0.4107	Mann-Whitney U test	P=0.003283460986070 vs H/R+siCTRL P=0.454260242566823 vs H/R+siASPP1 P=0.957371576490613 vs H/R+siASPP1+p53 P=0.309523809523810 vs NC P=0.007936507936508
S7 A	p53 (n=5) NC (n=5) sip63-1 (n=5) sip63-2 (n=5)	0.7107 0.5432 0.4107	Mann-Whitney U test	P=0.003283460986070 vs H/R+siCTRL P=0.454260242566823 vs H/R+siASPP1 P=0.957371576490613 vs H/R+siASPP1+p53 P=0.309523809523810 vs NC P=0.007936507936508 vs NC
S7 A	p53 (n=5) NC (n=5) sip63-1 (n=5) sip63-2 (n=5) sip63-3 (n=5)	0.7107 0.5432 0.4107 0.2928	Mann-Whitney U test	P=0.003283460986070 vs H/R+siCTRL P=0.454260242566823 vs H/R+siASPP1 P=0.957371576490613 vs H/R+siASPP1+p53 P=0.309523809523810 vs NC P=0.007936507936508 vs NC P=0.031746031746032
S7 A	p53 (n=5) NC (n=5) sip63-1 (n=5) sip63-2 (n=5) sip63-3 (n=5)	0.7107 0.5432 0.4107 0.2928	Mann-Whitney U test	P=0.003283460986070 vs H/R+siCTRL P=0.454260242566823 vs H/R+siASPP1 P=0.957371576490613 vs H/R+siASPP1+p53 P=0.309523809523810 vs NC P=0.007936507936508 vs NC P=0.031746031746032 vs NC
S7 A S7 B	p53 (n=5) NC (n=5) sip63-1 (n=5) sip63-2 (n=5) H/R+NC (n=6)	0.7107 0.5432 0.4107 0.2928 0.7740	Mann-Whitney U test	P=0.003283460986070 vs H/R+siCTRL P=0.454260242566823 vs H/R+siASPP1 P=0.957371576490613 vs H/R+siASPP1+p53 P=0.309523809523810 vs NC P=0.007936507936508 vs NC P=0.031746031746032 vs NC
S7 A S7 B	p53 (n=5) NC (n=5) sip63-1 (n=5) sip63-2 (n=5) H/R+NC (n=6) H/R+ASPP1	0.7107 0.5432 0.4107 0.2928 0.7740 0.9736	Mann-Whitney U test one-way ANOVA analysis followed by	P=0.003283460986070 vs H/R+siCTRL P=0.454260242566823 vs H/R+siASPP1 P=0.957371576490613 vs H/R+siASPP1+p53 P=0.309523809523810 vs NC P=0.007936507936508 vs NC P=0.031746031746032 vs NC P=1.967E-12 vs H/R+NC
S7 A S7 B	p53 (n=5) NC (n=5) sip63-1 (n=5) sip63-2 (n=5) sip63-3 (n=5) H/R+NC (n=6) H/R+ASPP1 (n=6)	0.7107 0.5432 0.4107 0.2928 0.7740 0.9736	Mann-Whitney U test one-way ANOVA analysis followed by Tukey's post-hoc multi-	P=0.003283460986070 vs H/R+siCTRL P=0.454260242566823 vs H/R+siASPP1 P=0.957371576490613 vs H/R+siASPP1+p53 P=0.309523809523810 vs NC P=0.007936507936508 vs NC P=0.031746031746032 vs NC P=1.967E-12 vs H/R+NC

	CTRL (n=6)			P=0.610792960863232
				vs H/R+ASPP1
	H/R+ASPP1+si	0.4067	-	P=1.0805E-11 vs
	p63 (n=6)			H/R+NC
				P=0.478230690462547
				vs H/R+ASPP1
				P=0.995969851341333
				vs H/R+ASPP1+siCTRL
S7 C	H/R+NC (n=6)	0.6125	one-way ANOVA	
			analysis followed by	
	H/R+ASPP1	0.1822	Tukey's post-hoc multi-	P=9.65924E-07 vs
	(n=6)		comparison test	H/R+NC
	H/R+ASPP1+si	0.6999	-	P=3.93556E-06 vs
	CTRL (n=6)			H/R+NC
				P=0.894283894086269
				vs H/R+ASPP1
	H/R+ASPP1+si	0.3477		P=3.94909E-08 vs
	p63 (n=6)			H/R+NC
				P=0.330687551391404
				vs H/R+ASPP1
				P=0.100852016726795
				vs H/R+ASPP1+siCTRL
S7 D	H/R+NC (n=5)	0.2759	Kruskal Wallis test with	
	H/R+ASPP1	0.8245	FDR (Benjamini-	P=0.006409443948789
	(n=5)		Hochberg method)	vs H/R+NC
	H/R+ASPP1+si	0.5411		P=0.013940092260532
	CTRL (n=5)			vs H/R+NC
				P=0.789268026134283
				vs H/R+ASPP1
	H/R+ASPP1+si	0.5998		P=0.004611783449109
	p63 (n=5)			vs H/R+NC
				P=0.914864745735550
				vs H/R+ASPP1
				P=0.708281012290605
				vs H/R+ASPP1+siCTRL
S7 E	H/R+NC (n=5)	0.5430	Kruskal Wallis test with	
	H/R+ASPP1	0.2189	FDR (Benjamini-	P=0.011996214124711
	(n=5)		Hochberg method)	vs H/R+NC
	H/R+ASPP1+si	0.6893		P=0.002759548935304
	CTRL (n=5)			vs H/R+NC
				P=0.630466581587966
			4	vs H/R+ASPP1
	H/R+ASPP1+si	0.1430		P=0.011996214124711
	p63 (n=5)			vs H/R+NC
				P>0.999999999999999999
				vs H/R+ASPP1
				P=0.630466581587966

				vs H/R+ASPP1+siCTRL
S7 F	NC (n=5)	0.9008	Mann-Whitney U test	
	Sip73-1 (n=5)	0.7061		P=0.007936507936508
				vs NC
	Sip73-2 (n=5)	0.1460	-	P=0.007936507936508
				vs NC
	Sip73-3 (n=5)	0.0672	-	P=0.007936507936508
				vs NC
S7 G	H/R+NC (n=6)	0.8799	one-way ANOVA	
	H/R+ASPP1	0.2010	analysis followed by	P=6.71988E-10 vs
	(n=6)		Tukey's post-hoc multi-	H/R+NC
	H/R+ASPP1+si	0.8535	comparison test	P=5.49217E-9 vs
	CTRL (n=6)			H/R+NC
				P=0.529595747282050
				vs H/R+ASPP1
	H/R+ASPP1+si	0.4425		P=1.6802739E-8 vs
	p73 (n=6)			H/R+NC
				P=0.201146220115563
				vs H/R+ASPP1
				P=0.901961439951775
				vs H/R+ASPP1+siCTRL
S7 H	H/R+NC (n=6)	0.7256	one-way ANOVA	
	H/R+ASPP1	0.7135	analysis followed by	P=1.44896E-10 vs
	(n=6)		Tukey's post-hoc multi-	H/R+NC
	H/R+ASPP1+si	0.1807	comparison test	P=5.71708E-09 vs
	CTRL (n=6)			H/R+NC
				P=0.093294084549919
				vs H/R+ASPP1
	H/R+ASPP1+si	0.4395		P=2.19465E-09 vs
	p73 (n=6)			H/R+NC
				P=0.270251911961957
				vs H/R+ASPP1
				P=0.927688529265254
6 7 7		0.4000		vs H/R+ASPP1+siCTRL
S71	H/R+NC (n=6)	0.4002	one-way ANOVA	D 1 41001E 00
	H/R+ASPP1	0.1229	analysis followed by	P=1.41981E-09 vs
	(n=6)	0.0016	Tukey s post-noc mulu-	H/K+NC
	H/R+ASPP1+s1	0.2016	comparison test	P=6.40089E-09 vs
	CIKL (n=0)			H/R+INC
				r = 0.709903934 VS $H/D \pm A CDD1$
		0.2911	-	$\frac{\Pi/K^+ASPP1}{D=1.12006E_{-}00.07}$
	n/K + ASPP1 + S1 n73 (n=6)	0.2011		r = 1.13900E - 09 VS H/R+NC
	p/3 (n=0)			D-0.0088/115
				$H/R + \Delta SPP1$
				D-0.686250510
				1-0.000237319 18

				H/R+ASPP1+siCTRL
S7 J	H/R+NC (n=6)	0.5374	one-way ANOVA	
	H/R+ASPP1	0.1487	analysis followed by	P=0.001500717080863
	(n=6)		Tukey's post-hoc multi-	vs H/R+NC
	H/R+ASPP1+si	0.6262	comparison test	P=0.001412806251957
	CTRL (n=6)			vs H/R+NC
				P=0.001934746317545
				vs H/R+ASPP1
	H/R+ASPP1+si	0.7065		P=0.999993118079006
	p73 (n=6)			vs H/R+NC
				P=0.999489377373111
				vs H/R+ASPP1
				P=0.999034864743258
				vs H/R+ASPP1+siCTRL
S8 A	NC (n=6)	0.3855	nonpaired 2-tailed	
	siASPP2 (n=6)	0.6649	Student <i>t</i> test	P=2.32972E-06 vs NC
S8 B	NC (n=6)	0.3562	nonpaired 2-tailed	
	siiASPP (n=6)	0.6253	Student <i>t</i> test	P=2.25397E-07 vs NC
S8 C	NC (n=6)	0.5567	nonpaired 2-tailed	
	siimportin-β1	0.5803	Student <i>t</i> test	P=9.50083E-07 vs NC
	(n=6)			
S8 D	NC (n=6)	0.5631	nonpaired 2-tailed	
	siE2F1 (n=6)	0.3920	Student t test	P=1.22798E-08 vs NC

Normality test values were analyzed by D'Agostino & Pearson test ($n \ge 8$) and Shapiro-Wilk test (n < 8).

Supplementary Table 8. Detailed statistical analysis information for all main and

supplementary	figures	and tables.	

Table		Groups (Sample size)	Normalit y test	Statistical analysis	P value
			values		
S1	EF	WT (n=14)	0.1793	nonpaired 2-tailed	
		ASPP1(TG)	0.2993	Student t test	P=0.480531939433960
		(n=20)			vs WT
	FS	WT (n=14)	0.0379	Mann-Whitney U test	
		ASPP1(TG)	0.3679	-	P=0.522479771269560
		(n=20)			vs WT
	LVIDd	WT (n=14)	0.1521	Mann-Whitney U test	
		ASPP1(TG)	0.0065		P=0.344938235413373
		(n=20)			vs WT
	LVIDs	WT (n=14)	0.3543	nonpaired 2-tailed	
		ASPP1(TG)	0.4092	Student <i>t</i> test	P=0.396070566010893

		(n=20)			vs WT
	LVEDV	WT (n=14)	0.2083	Mann-Whitney U test	
		ASPP1(TG)	0.0001		P=0.327372297262329
		(n=20)			vs WT
	LVESV	WT (n=14)	0.9505	Mann-Whitney U test	
		ASPP1(TG)	0.0130		P=0.241248546562209
		(n=20)			vs WT
S2	EF	WT (n=9)	0.1256	nonpaired 2-tailed	
		ASPP1(KO)	0.8037	Student <i>t</i> test	P=0.517412514137118
		(n=12)			vs WT
	FS	WT (n=9)	0.0803	nonpaired 2-tailed	
		ASPP1(KO)	0.6661	Student t test	P=0.385036128965754
		(n=12)			vs WT
	LVIDd	WT (n=9)	0.6133	nonpaired 2-tailed	
		ASPP1(KO)	0.4343	Student t test	P=0.652501422547523
		(n=12)			vs WT
	LVIDs	WT (n=9)	0.1598	nonpaired 2-tailed	
		ASPP1(KO)	0.5917	Student <i>t</i> test	P=0.404440482462218
		(n=12)			vs WT
	LVEDV	WT (n=9)	0.6090	nonpaired 2-tailed	
		ASPP1(KO)	0.5397	Student t test	P=0.639549860162757
		(n=12)			vs WT
	LVESV	WT (n=9)	0.1694	nonpaired 2-tailed	
		ASPP1(KO)	0.5466	Student <i>t</i> test	P=0.534055415037592
		(n=12)			vs WT
S3	EF	WT+Sham	0.3584	two-way ANOVA	
		(n=9)		analysis followed by	
		ASPP1(TG)+S	0.6918	Tukey's post-hoc	P=0.995724123 vs
		ham (n=9)		multi-comparison test	WT+Sham
		WT+I/R (n=9)	0.4626		P=2.86621E-07 vs
					WT+Sham
					P=1.5166/E-0/vs
			0.2270	-	ASPPI(IG)+Sham
		ASPPI(IG)+I/	0.3370		P=1.11E-13 vs
		R (n=9)			W_1 +Snam
					P=1.08E-15 VS
					$\frac{\text{ASPPI(10)}+\text{Sham}}{\text{D}=1.62415\text{E}\cdot07.43}$
					$\Gamma = 1.03413 \pm 07.08$ WT+I/D
	FS	WT+Sham	0.2560	τωο-ωαν ΔΝΟΥΔ	VV 1 + 1/ IX
	15	(n=9)	0.2300	analysis followed by	
		ASPP1(TG)+S	0.7281	Tukey's post-hoc	P=0.996340287 vs
		ham (n=9)		multi-comparison test	WT+Sham
		WT+I/R (n=9)	0.4289		P=6.09478E-08 vs
					WT+Sham

				P=3.37548E-08 vs
				ASPP1(TG)+Sham
	ASPP1(TG)+I/	0.2479		P=1.25E-13 vs
	R (n=9)			WT+Sham
				P=1.16E-13 vs
				ASPP1(TG)+Sham
				P=2.59946E-06 vs
				WT+I/R
LVIDd	WT+Sham	0.0434	Kruskal Wallis test	
	(n=9)		with FDR (Benjamini-	
	ASPP1(TG)+S	0.9172	Hochberg method)	P=0.80552627 vs
	ham (n=9)			WT+Sham
	WT+I/R (n=9)	0.9790		P=0.008826852 vs
				WT+Sham
				P=0.004171542 vs
				ASPP1(TG)+Sham
	ASPP1(TG)+I/	0.5032		P=0.004171542 vs
	R (n=9)			WT+Sham
				P=0.001863972 vs
				ASPP1(TG)+Sham
				P=0.80552627 vs
				WT+I/R
LVIDs	WT+Sham	0.6898	two-way ANOVA	
	(n=9)		analysis followed by	
	ASPP1(TG)+S	0.3695	Tukey's post-hoc	P=0.972320645 vs
	ham (n=9)		multi-comparison test	WT+Sham
	WT+I/R (n=9)	0.6847		P=1.41875E-06 vs
				WT+Sham
				P=4.16131E-07 vs
				ASPP1(TG)+Sham
	ASPP1(TG)+I/	0.7821		P=2.8659E-11 vs
	R (n=9)			WT+Sham
				P=1.0496E-11 vs
				ASPP1(TG)+Sham
				P=0.001339017 vs
				WT+I/R
LVEDV	WT+Sham	0.0444	Kruskal Wallis test	
	(n=9)		with FDR (Benjamini-	
	ASPP1(TG)+S	0.7407	Hochberg method)	P=0.81427103 vs
	ham (n=9)			WT+Sham
	WT+I/R $(n=9)$	0.9633		P=0.009147538 vs
				WT+Sham
				P=0.004491451 vs
				ASPP1(TG)+Sham
	ASPP1(TG)+I/	0.1594		P=0.004186141 vs
	R (n=9)			WT+Sham

$ \begin{array}{ c c c c c } & VT+Sham & 0.6872 & Wr-Way ANOVA & analysis followed by \\ \hline ASPP1(TG)+S & 0.1966 & Mam (n=9) & Utwo-way ANOVA & analysis followed by \\ \hline ASPP1(TG)+S & 0.1966 & Mam (n=9) & Utwo-way ANOVA & analysis followed by \\ \hline MT+LR (n=9) & 0.5906 & WT+Sham & P=0.5909135733 vs & WT+Sham & P=0.55036E-05 vs & ASPP1(TG)+L/ & 0.8047 & WT+Sham & P=0.5604E-11 vs & ASPP1(TG)+L/ & 0.8047 & WT+Sham & P=0.5002187 vs & WT+Sham & P=0.0002187 vs & WT+Sham & P=0.0002187 vs & WT+LR & ASPP1(TG)+Sham & P=0.0002187 vs & WT+LR & ASPP1(TG)+L & 0.3526 & Sham (n=11) & Utwo-way ANOVA & analysis followed by & MT+LR & Utwo-way ANOVA & analysis followed by & MT+LR & 0.7810 & MT+LR & 0.7810 & MT+Sham & P=0.302482+01 vs & MT+Sham & P=0.302482+01 vs & MT+Sham & P=0.30248704 vs & WT+Sham & P=0.000831822 vs & ASPP1(KO)+Sham & P=0.038366479 vs & WT+LR & WT+Sham & P=0.038366479 vs & WT+LR & WT+Sham & P=0.038366479 vs & WT+Sham & P=0.038366479 vs & WT+Sham & P=0.038366479 vs & WT+Sham & P=0.01838366479 vs & WT+S$						P=0.001943696 vs
Image: Second state in the second state in						ASPP1(TG)+Sham
Image: space						P=0.796952561 vs
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						WT+I/R
information information <thinformation< th=""> information</thinformation<>		LVESV	WT+Sham	0.6872	two-way ANOVA	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(n=9)		analysis followed by	
$ \begin{array}{ c c c c c c c } \hline & ham (n=9) & multi-comparison test \\ \hline WT+I/R (n=9) & 0.5906 \\ \hline WT+I/R (n=9) & 0.5906 \\ \hline & WT+Sham \\ \hline P=3.74868E-05 v_S \\ WT+Sham \\ \hline P=2.55036E-05 v_S \\ BP1(TG)+Sham \\ \hline P=2.55036E-05 v_S \\ WT+Sham \\ \hline P=2.55036E-05 v_S \\ WT+Sham \\ \hline P=2.5036E-11 v_S \\ ASPP1(TG)+Sham \\ \hline P=0.0002187 v_S \\ WT+I/R \\ (n=11) & & & & & & & & & & & & & & & & & \\ \hline & & & &$			ASPP1(TG)+S	0.1966	Tukey's post-hoc	P=0.999135733 vs
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			ham (n=9)		multi-comparison test	WT+Sham
$ \begin{array}{ c c c c c c } \hline FS & \\ F$			WT+I/R (n=9)	0.5906		P=3.74868E-05 vs
$ \begin{array}{ c c c c c c c } \hline FS & WT+Sham \\ \hline NSPP1(KO)+I \\ R (n=1) \\ \hline S4 \\ Fs \\ F$						WT+Sham
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						P=2.55036E-05 vs
$ \begin{array}{ c c c c c c c c } & ASPP1(TG)+I/\\ R (n=9) & ASPP1(TG)+I/\\ R (n=9) & ASPP1(TG)+I/\\ R (n=9) & ASPP1(TG)+Sham & P=0.3604E-11 vs & ASPP1(TG)+Sham & P=0.786E-11 vs & ASPP1(TG)+Sham & P=0.0002187 vs & WT+J/R & ASPP1(KO)+\\ \hline & & & & & & & & & & & & & & & & & & $						ASPP1(TG)+Sham
$ \begin{array}{ c c c c c c } \hline R (n=9) & R (n=1) & R (n=11) & R (n=1) & R (n=$			ASPP1(TG)+I/	0.8047		P=9.3604E-11 vs
$ \begin{array}{ c c c c c c c } \hline FS & WT+Sham & 0.6023 & two-way ANOVA & analysis followed by \\ \hline MSPP1(KO)+ & 0.3526 & Sham (n=11) & WT+I/R & 0.7810 & WT+Sham & P=0.5848123762 \ v_S WT+Sham & VT+Sham & VT+Sham & P=0.5848123762 \ v_S WT+Sham & VT+Sham & P=0.5848123762 \ v_S WT+Sham & P=0.02838704 \ v_S WT+Sham & P=0.02838704 \ v_S WT+Sham & P=0.000831822 \ v_S WT+Sh$			R (n=9)			WT+Sham
$ \begin{array}{ c c c c c c } \hline S4 & EF & WT+Sham & 0.6023 & two-way ANOVA & analysis followed by \\ \hline S4 & EF & WT+Sham & 0.6023 & two-way ANOVA & analysis followed by \\ \hline ASPP1(KO)+ & 0.3526 & Sham (n=11) & & & \\ \hline WT+I/R & 0.7810 & & & & \\ (n=11) & WT+I/R & 0.7810 & & & & \\ (n=11) & & & & & \\ \hline WT+I/R & 0.7810 & & & & & \\ (n=11) & & & & & \\ \hline NT+I/R & 0.7810 & & & & \\ (n=11) & & & & & \\ \hline NT+I/R & 0.4097 & & & & \\ \hline ASPP1(KO)+I & 0.4097 & & & & \\ \hline R & (n=11) & & & & \\ \hline FS & WT+Sham & 0.4535 & two-way ANOVA & \\ \hline not & & & & & \\ \hline FS & WT+Sham & 0.4535 & two-way ANOVA & \\ \hline not & & & & & \\ \hline NT+I/R & 0.8341 & & \\ \hline WT+I/R & 0.8341 & \\ \hline P=7.6156E-07 vs & & \\ \hline \end{array} $						P=6.786E-11 vs
S4 EF WT+Sham (n=11) 0.6023 two-way ANOVA analysis followed by P=0.0002187 vs WT+J/R S4 EF WT+Sham (n=11) 0.6023 two-way ANOVA analysis followed by P=0.5848123762 vs ASPP1(KO)+ (n=11) 0.7810 Tukey's post-hoc multi-comparison test P=0.5373E-9 vs WT+J/R (n=11) 0.7810 P=0.02838704 vs WT+Sham ASPP1(KO)+I /R (n=11) 0.4097 P=0.02838704 vs WT+Sham P=0.00831822 vs ASPP1(KO)+Sham P=0.00831822 vs ASPP1(KO)+Sham FS WT+Sham 0.4535 two-way ANOVA analysis followed by P=7.29144E-05 vs FS WT+Sham 0.4535 two-way ANOVA analysis followed by P=0.338366479 vs MT+I/R (n=11) 0.8341 multi-comparison test P=0.338366479 vs						ASPP1(TG)+Sham
S4 EF WT+Sham (n=11) 0.6023 analysis followed by Tukey's post-hoc multi-comparison test P=0.5848123762 vs WT+Sham WT+I/R 0.3526 Tukey's post-hoc multi-comparison test P=0.5848123762 vs WT+I/R 0.7810 multi-comparison test P=0.5373E-9 vs MT+I/R 0.7810 P=1.33244E-10 vs ASPP1(KO)+I (R (n=11) 0.4097 ASPP1(KO)+I /R (n=11) 0.4097 WT+Sham P=0.02838704 vs WT+Sham P=0.000831822 vs ASPP1(KO)+Sham P=0.000831822 vs ASPP1(KO)+Sham P=7.29144E-05 vs WT+I/R 0.4535 two-way ANOVA analysis followed by P=0.338366479 vs FS WT+Sham (n=11) 0.8341 multi-comparison test P=0.338366479 vs WT+I/R 0.8341 multi-comparison test P=7.6156E-07 vs						P=0.0002187 vs
S4 EF WT+Sham (n=11) 0.6023 two-way ANOVA analysis followed by ASPP1(KO)+ Sham (n=11) 0.3526 Tukey's post-hoc multi-comparison test P=0.5848123762 vs WT+1/R 0.7810 multi-comparison test P=6.5373E-9 vs (n=11) 0.7810 P=1.33244E-10 vs ASPP1(KO)+I 0.4097 R (n=11) /R (n=11) 0.4097 P=0.00831822 vs ASPP1(KO)+I 0.4097 P=0.000831822 vs /R (n=11) VT+Sham P=0.000831822 vs ASPP1(KO)+I 0.4535 two-way ANOVA analysis followed by FS WT+Sham (n=11) 0.4535 two-way ANOVA analysis followed by FS WT+Sham (n=11) 0.4535 two-way ANOVA analysis followed by WT+I/R 0.3704 Tukey's post-hoc multi-comparison test P=0.338366479 vs WT+I/R 0.8341 (n=11) P=7.6156E-07 vs WT+Sham						WT+I/R
$ \begin{array}{ c c c c c c } \hline & (n=11) & (n=11)$	S4	EF	WT+Sham	0.6023	two-way ANOVA	
$ \begin{array}{ c c c c c c c } \hline Sham (n=11) & 0.3526 \\ Sham (n=11) & 0.7810 \\ (n=11) & 0.7810 \\ (n=11) & 0.7810 \\ (n=11) & 0.7810 \\ (n=11) & 0.4097 \\ /R (n=11) & 0.$			(n=11)		analysis followed by	
$ \begin{array}{ c c c c c } Sham (n=11) & multi-comparison test \\ \hline WT+I/R & 0.7810 \\ (n=11) & 0.7810 \\ (n=11) & 0.7810 \\ (n=11) & 0.7810 \\ \hline WT+Sham & 0.7810 \\ \hline WT+Sham & 0.4097 \\ /R (n=11) & 0.4097 \\ /R (n=11) & 0.4097 \\ /R (n=11) & 0.4097 \\ \hline P=0.02838704 \nu_S \\ WT+Sham & 0.4097 \\ \hline P=0.000831822 \nu_S \\ ASPP1(KO)+Sham \\ \hline P=0.000831822 \nu_S \\ ASPP1(KO)+Sham \\ \hline P=7.29144E-05 \nu_S \\ WT+I/R \\ \hline FS & WT+Sham & 0.4535 \\ (n=11) & uvoway ANOVA \\ analysis followed by \\ \hline Sham (n=11) & Uvoway ANOVA \\ nulti-comparison test & WT+Sham \\ \hline P=7.6156E-07 \nu_S \\ WT+Sham \\ \hline P=7.6156E-07 \nu_S \\ WT+Sham \\ \hline \end{array} $			ASPP1(KO)+	0.3526	Tukey's post-hoc	P=0.5848123762 vs
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Sham (n=11)		multi-comparison test	WT+Sham
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			WT+I/R	0.7810		P=6.5373E-9 vs
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(n=11)			WT+Sham
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						P=1.33244E-10 vs
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						ASPP1(KO)+Sham
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			ASPP1(KO)+I	0.4097		P=0.02838704 vs
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			/R (n=11)			WT+Sham
$ \begin{array}{ c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $						P=0.000831822 vs
$ \begin{array}{ c c c c c c c } \hline P=7.29144E-05 \ vs \\ WT+I/R \\ \hline FS & WT+Sham & 0.4535 & two-way ANOVA \\ (n=11) & analysis followed by \\ \hline ASPP1(KO)+ & 0.3704 & Tukey's post-hoc \\ Sham (n=11) & multi-comparison test \\ \hline WT+I/R & 0.8341 & P=7.6156E-07 \ vs \\ (n=11) & WT+Sham \\ \hline \end{array} $						ASPP1(KO)+Sham
$\begin{tabular}{ c c c c c c c } \hline FS & WT+Sham & 0.4535 & two-way ANOVA & \\ \hline (n=11) & & analysis followed by & \\ \hline ASPP1(KO)+ & 0.3704 & Tukey's post-hoc & P=0.338366479 vs & \\ \hline Sham (n=11) & & multi-comparison test & WT+Sham & \\ \hline WT+I/R & 0.8341 & & P=7.6156E-07 vs & \\ \hline (n=11) & & & WT+Sham & \\ \hline \end{array}$						P=7.29144E-05 vs
$ \begin{array}{c ccccc} FS & WT+Sham & 0.4535 & two-way ANOVA \\ \hline (n=11) & & analysis followed by \\ \hline ASPP1(KO)+ & 0.3704 & Tukey's post-hoc \\ Sham (n=11) & & multi-comparison test \\ \hline WT+I/R & 0.8341 \\ \hline (n=11) & & & WT+Sham \\ \end{array} $						WT+I/R
(n=11) analysis followed by ASPP1(KO)+ 0.3704 Tukey's post-hoc P=0.338366479 vs Sham (n=11) multi-comparison test WT+Sham WT+I/R 0.8341 P=7.6156E-07 vs (n=11) WT+Sham		FS	WT+Sham	0.4535	two-way ANOVA	
ASPP1(KO)+ 0.3704 Tukey's post-hoc P=0.338366479 vs Sham (n=11) multi-comparison test WT+Sham WT+I/R 0.8341 P=7.6156E-07 vs (n=11) WT+Sham			(n=11)		analysis followed by	
Sham (n=11) multi-comparison test WT+Sham WT+I/R 0.8341 P=7.6156E-07 vs (n=11) WT+Sham			ASPP1(KO)+	0.3704	Tukey's post-hoc	P=0.338366479 vs
WT+I/R 0.8341 P=7.6156E-07 vs (n=11) WT+Sham			Sham (n=11)		multi-comparison test	WT+Sham
(n=11) WT+Sham			WT+I/R	0.8341		P=7.6156E-07 vs
			(n=11)			WT+Sham
P=3.46549E-09 vs						P=3.46549E-09 vs
ASPP1(KO)+Sham						ASPP1(KO)+Sham
ASPP1(KO)+I 0.3639 P=0.050276088 vs			ASPP1(KO)+I	0.3639		P=0.050276088 vs
/R (n=11) WT+Sham			/R (n=11)			WT+Sham
P=0.00047368 vs						P=0.00047368 vs
ASPP1(KO)+Sham						ASPP1(KO)+Sham
P=0.003278664 vs						D. 0.00000000000
						P=0.0032/8664 vs

LVIDd	WT+Sham	0.0005	Kruskal Wallis test	
	(n=11)		with FDR (Benjamini-	
	ASPP1(KO)+	0.0127	Hochberg method)	P=0.517314202 vs
	Sham (n=11)			WT+Sham
	WT+I/R	0.1982		P=0.000187324 vs
	(n=11)			WT+Sham
				P=0.002014853 vs
				ASPP1(KO)+Sham
	ASPP1(KO)+I	0.6072		P=0.973511376 vs
	/R (n=11)			WT+Sham
				P=0.496064063 vs
				ASPP1(KO)+Sham
				P=0.00016408 vs
				WT+I/R
LVIDs	WT+Sham	0.2730	two-way ANOVA	
	(n=11)		analysis followed by	
	ASPP1(KO)+	0.5167	Tukey's post-hoc	P=0.913411653 vs
	Sham (n=11)		multi-comparison test	WT+Sham
	WT+I/R	0.7946		P=3.65627E-08 vs
	(n=11)			WT+Sham
				P=4.66246E-09 vs
				ASPP1(KO)+Sham
	ASPP1(KO)+I	0.7598		P=0.262729716 vs
	/R (n=11)			WT+Sham
				P=0.073397222 vs
				ASPP1(KO)+Sham
				P=1.42267E-05 vs
				WT+I/R
LVEDV	WT+Sham	0.0020	Kruskal Wallis test	
	(n=11)		with FDR (Benjamini-	
	ASPP1(KO)+	0.0770	Hochberg method)	P=0.522728744 vs
	Sham (n=11)			WT+Sham
	WT+I/R	0.1889		P=0.000193802 vs
	(n=11)			WT+Sham
				P=0.00201633 vs
				ASPP1(KO)+Sham
	ASPP1(KO)+I	0.7936		P=0.960278985 vs
	/R (n=11)			WT+Sham
				P=0.490855815 vs
				ASPP1(KO)+Sham
				P=0.000158879 vs
				WT+I/R
LVESV	WT+Sham	0.6914	two-way ANOVA	
	(n=11)		analysis followed by	
	ASPP1(KO)+	0.7109	Tukey's post-hoc	P=0.995742331 vs
	Sham (n=11)		multi-comparison test	WT+Sham

		WT+I/R	0.8212		P=3.3851E-10 vs
		(n=11)			WT+Sham
					P=1.70539E-10 vs
					ASPP1(KO)+Sham
		ASPP1(KO)+I	0.9910		P=0.280370017 vs
		/R (n=11)			WT+Sham
					P=0.188776896 vs
					ASPP1(KO)+Sham
					P=9.78295E-08 vs
					WT+I/R
S5	EF	WT+I/R (n=7)	0.0964	one-way ANOVA	
		ASPP1(TG)+I/	0.4951	analysis followed by	P=7.26293E-09 vs
		R (n=7)		Tukey's post-hoc	WT+I/R
		ASPP1(TG)+I/	0.2942	multi-comparison test	P=2.74458E-09 vs
		R+AAV9-NC			WT+I/R
		(n=7)			P=0.96010774 vs
					ASPP1(TG)+I/R
		ASPP1(TG)+I/	0.2942		P=0.808847929 vs
		R+AAV9-			WT+I/R
		shp53 (n=7)			P=1.2712E-09 vs
					ASPP1(TG)+I/R
					P=5.06677E-10 vs
					ASPP1(TG)+I/R+AAV
					9-NC
	FS	WT+I/R (n=7)	0.1602	one-way ANOVA	
		ASPP1(TG)+I/	0.3785	analysis followed by	P=7.27796E-09 vs
		R (n=7)		Tukey's post-hoc	WT+I/R
		ASPP1(TG)+I/	0.3644	multi-comparison test	P=3.16924E-09 vs
		R+AAV9-NC			WT+I/R
		(n=7)			P=0.974620984 vs
					ASPP1(TG)+I/R
		ASPP1(TG)+I/	0.4521		P=0.737030875 vs
		R+AAV9-			WT+I/R
		shp53 (n=7)			P=9.9234E-10 vs
					ASPP1(TG)+I/R
					P=4.55216E-10 vs
					ASPP1(TG)+I/R+AAV
					9-NC
	LVIDd	WT+I/R (n=7)	0.0094	Kruskal Wallis test	
		ASPP1(TG)+I/	0.8406	with FDR (Benjamini-	P=0.110893751 vs
		R (n=7)		Hochberg method)	WT+I/R
		ASPP1(TG)+I/	0.0397		P=0.054916854 vs
		R+AAV9-NC			WT+I/R
		(n=7)			P=0.744920237 vs
					ASPP1(TG)+I/R
		$ASPP1(T\overline{G})+I/$	0.8943		P=0.794651096 vs
		R+AAV9-			WT+I/R

	shp53 (n=7)			P=0.182232341 vs
				ASPP1(TG)+I/R
				P=0.097063866 vs
				ASPP1(TG)+I/R+AAV
				9-NC
LVIDs	WT+I/R (n=7)	0.4686	two-way ANOVA	
	ASPP1(TG)+I/	0.3149	analysis followed by	P=2.08833E-05 vs
	R (n=7)		Tukey's post-hoc	WT+I/R
	ASPP1(TG)+I/	0.5595	multi-comparison test	P=3.86787E-06 vs
	R+AAV9-NC			WT+I/R
	(n=7)			P=0.896138371 vs
				ASPP1(TG)+I/R
	ASPP1(TG)+I/	0.8664	-	P=0.999503074 vs
	R+AAV9-			WT+I/R
	shp53 (n=7)			P=1.59497E-05 vs
				ASPP1(TG)+I/R
				P=2.97812E-06 vs
				ASPP1(TG)+I/R+AAV
				9-NC
LVEDV	WT+I/R (n=7)	0.0160	Kruskal Wallis test	
	ASPP1(TG)+I/	0.8462	with FDR (Benjamini-	P=0.122457658 vs
	R (n=7)		Hochberg method)	WT+I/R
	ASPP1(TG)+I/	0.0385		P=0.059299781 vs
	R+AAV9-NC			WT+I/R
	(n=7)			P=0.732783996 vs
				ASPP1(TG)+I/R
	ASPP1(TG)+I/	0.9036		P=0.832607885 vs
	R+AAV9-			WT+I/R
	shp53 (n=7)			P=0.182472223 vs
				ASPP1(TG)+I/R
				P=0.094011536 vs
				ASPP1(TG)+I/R+AAV
		0.5055		9-NC
LVESV	WT+I/R (n=7)	0.5922	two-way ANOVA	D (0702 17 05
	ASPP1(TG)+I/	0.2667	analysis followed by	P=6.07924E-05 vs
	R(n=7)	0.4640	Tukey's post-noc	W1+I/R
	ASPPI(TG)+I/	0.4642	mulu-comparison test	P=9.46072E-06 vs
	R+AAV9-NC			W1+I/R
	(n=/)			P=0.8/1480293 vs
		0.0041	-	ASPP1(10)+1/K
	ASPPI(IG)+I/	0.8841		r=0.999885245 <i>vs</i> wt+1/d
	$ \begin{bmatrix} \mathbf{N}^{\top} \mathbf{A} \mathbf{A} \mathbf{V} \mathbf{y}^{-} \\ shn 53 (n-7) \end{bmatrix} $			W 1 ⊤1/K D−5 14006E 05 mg
				I = J.14090E = 0J VS A SDD1(TC)+I/D
				$\frac{100}{10} = 1000 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 10$
				I = 0.03033E = 00 VS $\Lambda \text{SDD1}(TC) \pm I/D \pm \Lambda \Lambda V$
				$\frac{ASPFI(1O)+I/K+AAV}{0 NC}$
	1			7-1NC

Normality test values were analyzed by D'Agostino & Pearson test ($n \ge 8$) and Shapiro-Wilk test ($n \le 8$).