Supplemental Online Content

Jung S-H, Kim H-R, Chun MY, et al. Transferability of Alzheimer disease polygenic risk score across populations and its association with Alzheimer disease-related phenotypes. *JAMA Netw Open*. 2022;5(12):e2247162. doi:10.1001/jamanetworkopen.2022.47162

eMethods.

eTable 1. Thirty-nine SNVs Used in the Best-fit PRS

eTable 2. Demographics of the Participants According to the PRS Quantiles

eTable 3. Characteristics of SNVs Selected for Transancestry PRS

eTable 4. Characteristics of SNVs Selected for Japanese-based PRS

eTable 5. Predictive Accuracy of PRSs Derived From European, Japanese, and Transancestry Meta-GWAS

eFigure 1. Principal Component Analysis Comparison of the Korean Study Cohorts and the 1000 Genomes Project Populations

eFigure 2. PRS Distributions Among the Study Participants According to the Genotyping Arrays

eFigure 3. Distribution Plots for Nagelkerke's R^2 Values of Each Population-based PRS Across the SNP Selection Thresholds

eFigure 4. Quantile-quantile Plot and Miami Plot for the Transancestry Meta-GWAS **eReferences.**

This supplemental material has been provided by the authors to give readers additional information about their work.

eMethods.

eMethod 1. Genotyping, imputation, and quality control criteria.

Quality control (QC) was performed for both types of single-nucleotide polymorphism (SNP) data. SNVs were removed using the following criteria: (i) call rate of <98%, (ii) minor allele frequency (MAF) of <1%, or (iii) genotype frequencies significantly deviating from the Hardy–Weinberg equilibrium with a *P* value of <10⁻⁶. After QC, the genotype data were imputed to estimate genotypes for variants that were not directly genotyped and to combine datasets of different genotyping arrays (ASA chip and KBA chip). Imputation was conducted using the Minimac4 software with all available reference haplotypes from the Haplotype Reference Consortium (HRC-r1.1 2016) at the University of Michigan Imputation Server. Consequently, we performed post-imputation QC with (i) an MAF of <1% or (ii) a low imputation quality (R^2 <0.8 for imputed SNVs). To verify the appropriate combination of the two genotype datasets, we performed principal component analysis (PCA) using EIGENSTRAT [1]. We also conducted PCA for 1000 Genomes Project samples, and projected the two genotyped datasets to the PCA plot to confirm the ancestral distinction.

Based on the genotype data, participants were excluded in accordance with the following criteria: (i) call rate of <95%, (ii) sex mismatch, (iii) heterozygosity excess (± 5 standard deviations from the mean), or (iv) one of the related pairs of individuals with second-degree or closer relationships estimated using the KING software [2].

eMethod 2. Amyloid positron emission tomography acquisition.

Aβ PET images were obtained using a Discovery STE PET/computed tomography scanner (GE Medical Systems, Milwaukee, WI, USA). PET images were acquired for 20 min, starting at 90 min after intravenous injection of either 18F-florbetaben or 18F-flutemetamol. Aβ positivity or negativity was determined by well-trained nuclear physicians using visual assessments for florbetaben or flutemetamol PET [3, 4]. Positivity for tracer uptake was assessed in four cortical regions (lateral temporal, frontal, parietal, and posterior cingulate cortices) for florbetaben PET and five regions (lateral temporal, frontal, parietal, posterior cingulate cortices, and striatum) for flutemetamol PET. Amyloid PET positivity was defined as having at least one cortical region with evidence of a positive uptake. eMethod 3. Polygenic risk score generation.

To generate the best polygenic risk score (PRS) model *P* values and effect sizes from the summary statistics were used in the dataset 1 (Korean population of 554 Alzheimer's disease dementia (ADD) cases and 479 cognitively unimpaired (CU) controls). Briefly, the PRS for each participant was generated from the sum of the effect sizes from all associated alleles included in the best model. To derive the best model, we tested the inclusion of SNVs from a range of *P* value thresholds (5×10^{-8} –1.0) from the genome-wide association study conducted by Kunkle et al [5]. Further, we tested a range of linkage disequilibrium-based clumping r2 (0.1–0.9) within 1,000 kb to examine which thresholds resulted in the largest Nagelkerke's R^2 value, calculated from the logistic regression. Subsequently, we used the same SNVs and weights to replicate the association of the PRS in a dataset 2 of 379 samples (159 ADD cases and 220 CU controls) and in the dataset 1 of 222 patients with amnestic mild cognitive impairment. The overview of the study is shown in Fig. 1.

		Noorost		Europe	East	Europea	n GWAS	Korean		
CHR	SNP	nearest	EA	an ¹	Asian ¹	(IGAP)	5]	(our data	aset 1)	
		gene		EAF	EAF	Beta ²	SE^2	Beta ³	SE ³	
10	rs12358692	RP11- 138118.1	Т	0.6572	0.3264	0.6429	0.0154	0.0133	0.0828	
11	rs11218343	SORL1	Т	0.9611	0.7023	0.2053	0.0369	0.0936	0.0826	
2	rs6733839	BIN1	Т	0.3921	0.4363	0.1693	0.0154	0.0048	0.0759	
1	rs679515	CR1	Т	0.1988	0.0284	0.1508	0.0183	0.1816	0.2186	
1	rs1752684	CR1	А	0.2037	0.3526	0.1432	0.0178	0.0241	0.0789	
20	rs6014724	CASS4	А	0.9095	0.6311	0.1319	0.0259	0.0474	0.0796	
3	rs6805148	CLEC3B	А	0.9109	0.9188	0.1293	0.0257	0.0455	0.1387	
8	rs1532276	CLU	Т	0.3919	0.2031	-0.1266	0.0154	-0.0834	0.0901	
11	rs1582763	MS4A6A	А	0.3593	0.1330	-0.1232	0.0149	-0.0215	0.0980	
14	rs17125924	FERMT2	А	0.0954	0.2262	0.1222	0.0246	0.0298	0.0889	
2	rs35832505	BIN1	Т	0.1662	0.0562	0.1213	0.019	0.0318	0.1419	
11	rs3851179	PICALM	Т	0.3542	0.4103	-0.1198	0.0148	-0.0433	0.0783	
2	rs35695568	RPL21P3 2	Т	0.0963	0.1247	0.1152	0.0247	0.0645	0.1130	
11	rs56201148	MS4A6A	Т	0.3823	0.2189	-0.1137	0.0146	-0.0955	0.0965	
19	rs12151021	ABCA7	А	0.6795	0.5081	-0.1071	0.0169	-0.0267	0.0737	
7	rs11767557	EPHA1- ASI	Т	0.7989	0.1401	0.1028	0.0182	0.0759	0.1068	
11	rs67472071	SPI1	А	0.3396	0.3026	-0.0981	0.0152	-0.0281	0.0773	
19	rs3795065	ABCA7	Т	0.3498	0.2548	0.0968	0.0171	-0.0152	0.0908	
16	rs3752786	MTSS2	А	0.2213	0.1324	0.0964	0.0209	0.0354	0.1038	
8	rs73223431	РТК2В	Т	0.3352	0.2991	0.0936	0.0153	-0.0211	0.0906	
14	rs11623019	SLC24A4	Т	0.8066	0.5553	-0.0913	0.0174	-0.0615	0.0773	
14	rs12590654	SLC24A4	А	0.3429	0.4640	-0.0906	0.0157	-0.0668	0.0772	
11	rs11039165	MADD	А	0.2668	0.0244	0.0894	0.0158	-0.0139	0.2328	
16	rs28482811	GPRC5B	Т	0.8400	0.7329	0.0872	0.0189	0.0443	0.0894	
6	rs3135348	BTNL2	А	0.4198	0.3705	0.0837	0.0150	-0.0026	0.0818	
6	rs9381563	AL35535 3.1	Т	0.3550	0.1979	0.0821	0.0148	0.0298	0.0977	
6	rs9268112	TSBP1- ASI	А	0.3256	0.2629	0.0815	0.0159	-0.0208	0.0981	
19	rs3865444	SIGLEC2 2P	А	0.3212	0.1733	-0.0804	0.0158	0.0035	0.0947	

eTable 1. Thirty-nine SNVs used in the best-fit PRS.

11	rs11230227	MS4A4E	А	0.3804	0.2584	0.0792	0.0153	0.0162	0.0843
6	rs9271375	HLA- DRB1	А	0.4850	0.6226	-0.0789	0.0157	-0.0261	0.0820
11	rs2293579	PSMC3	А	0.3868	0.3743	0.0771	0.0145	-0.0644	0.0825
8	rs7831810	GULOP	А	0.5860	0.4013	-0.0765	0.0146	-0.0343	0.0793
5	rs11168036	PFDN1	Т	0.4918	0.4339	0.0754	0.0143	0.0734	0.0768
11	rs598561	SLC25A1 P1	А	0.4873	0.0963	0.0747	0.0143	0.0508	0.1088
21	rs3017432	ADAMTS 1	Т	0.6033	0.2664	0.0735	0.0151	0.0481	0.0825
17	rs2526378	BZRAP1	А	0.5449	0.4696	-0.0717	0.0145	0.0026	0.0764
19	rs8111708	ELL	А	0.3562	0.2523	0.0696	0.0151	0.0667	0.0869
7	rs7805776	EPHA1- ASI	A	0.5248	0.3732	-0.0695	0.0148	-0.0237	0.0776
6	rs12197146	CD2AP	Т	0.5127	0.8269	0.0674	0.0144	0.0164	0.0933

¹EAF for non-Finnish EUR and EAS samples from the Genome Aggregation Database (gnomAD version 2.1.1, https://gnomad.broadinstitute.org)

Statistical values were obtained from ²a previous study [5] and ³our dataset 1.

Abbreviations: IGAP, International Genomics of Alzheimer's Project; CHR, chromosome;

SNP, single-nucleotide polymorphism; SE, standard error; EA, effective allele; EAF,

effective allele frequency; PRS, polygenic risk score

	Low PRS	Intermediate	High	Very high	
	group	PRS group	PRS group	PRS group	Р
	(n=314)	(n=314)	(n=314)	(n=313)	
Age, mean (SD), y	72.6 (8.9)	72.6 (8.8)	71.9 (9.1)	71.7 (8.7)	.15
Education, mean	11 2 (4 9)	10.9 (5.0)	10.7(5.1)	11 1 (4 9)	76
(SD), y	11.2 (4.9)	10.9 (5.0)	10.7 (5.1)	11.1 (4.7)	.70
Sex					.22
Female, No. (%)	172 (54.8)	182 (58.0)	197 (62.7)	188 (60.1)	
Male, No. (%)	142 (45.2)	132 (42.0)	117 (37.3)	125 (39.9)	
<i>APOE</i> ε4 carrier,	117 (37.3)	129 (41.1)	132 (42.0)	133 (42.5)	.53
Amyloid					
nositivity No	139/304	161/303	169/304	181/303	005
(%)	(45.7)	(53.1)	(55.6)	(59.7)	.005
Age at ADD					
symptom onset,	69.0 (9.9)	68.1 (9.8)	66.5 (10.4)	65.3 (9.7)	.01
mean (SD), y					
Diagnosis, No.					005
(%)					.005
CU, No. (%)	150 (47.8)	115 (36.6)	112 (35.7)	102 (32.6)	
aMCI, No. (%)	51 (16.2)	59 (18.8)	53 (16.9)	59 (18.8)	
ADD, No. (%)	113 (36.0)	140 (44.6)	149 (47.5)	152 (48.6)	

eTable 2. Demographics of the participants according to the PRS quantiles.

P values were obtained using the chi-square test for categorical variables and analysis of

variance for continuous variables.

Abbreviations: CU, cognitively unimpaired; aMCI, amnestic mild cognitive impairment;

ADD, Alzheimer's disease dementia; PRS, polygenic risk score; SD, standard deviation.

CHR	SNP	P Nearest	Nearest EA		Trans-ancestry meta-GWAS		European GWAS (IGAP) [5]			Japanese GWAS (NCGG) [6]			Korean (our dataset 1)	
		gene		Beta ¹	SE ¹	Beta ²	SE ²	⁴ Proportio n of SNP's weight	Beta ²	SE ²	⁴ Proportio n of SNP's weight	Beta ³	SE ³	
16	rs56983910	UNGP1	Т	-0.3818	0.0915	-0.3818	0.0889	100.00%	-	-	-	-0.1421	0.3074	
4	rs12640503	LINC022 83	А	0.1096	0.0602	-	-	-	0.1096	0.0588	100.00%	0.0344	0.3319	
11	rs117807585	SORL1	А	-0.2335	0.0322	-0.1895	0.0499	39.46%	-0.1137	0.0403	60.54%	-0.2559	0.2087	
1	rs142802245	SERINC 2	А	0.0944	0.0506	-	-	-	0.0944	0.0494	100.00%	-0.0478	0.2504	
11	rs76367405	SORL1	А	0.2116	0.0501	0.2116	0.0487	100.00%	-	-	-	-0.1997	0.4440	
10	rs138604348	IPMK	А	0.1805	0.0423	0.1805	0.0411	100.00%	-	-	-	-0.6043	0.9234	
2	rs6733839	SORL1	Т	0.1693	0.0159	0.1693	0.0154	100.00%	-	-	-	0.0109	0.1749	
11	rs2101756	SORL1	А	0.0725	0.0407	-	-	-	0.0725	0.0398	100.00%	0.2922	0.1941	
1	rs679515	CR1	Т	0.1523	0.0184	0.1508	0.0183	95.31%	0.0795	0.0825	4.69%	0.4181	0.5033	
1	rs6697005	CR1	А	-0.1416	0.0188	-0.1416	0.0183	100.00%	-	-	-	-0.0257	0.1844	
6	rs1497525	OR2B2	А	0.1348	0.0294	0.1153	0.0353	65.46%	0.0745	0.0486	34.54%	-0.0328	0.3204	
20	rs6014724	CASS4	А	0.1319	0.0267	0.1319	0.0259	100.00%	-	-	-	0.1091	0.1833	
8	rs1532276	CLU	Т	-0.1271	0.0146	-0.1266	0.0154	85.36%	-0.0564	0.0372	14.64%	-0.1920	0.2076	
6	rs9275098	HLA- DQB1	Т	-0.1237	0.0245	-0.1292	0.0262	82.93%	-0.0422	0.0578	17.07%	-0.1615	0.2847	
11	rs3851179	PICALM	Т	-0.1234	0.0140	-0.1198	0.0148	84.24%	-0.0618	0.0342	15.76%	-0.0997	0.1803	
3	rs7618668	CLEC3B	А	-0.1220	0.0250	-0.1297	0.0258	88.94%	-0.0263	0.0732	11.06%	-0.1047	0.3193	
2	rs35832505	BIN1	Т	-0.1213	0.0196	-0.1213	0.0190	100.00%	-	-	-	-0.0733	0.3267	
5	rs1001530	FAM193 B-DT	А	-0.1210	0.0271	-0.1373	0.0342	59.65%	-0.0422	0.0416	40.35%	-0.1458	0.2133	
11	rs1582763	MS4A4E	А	-0.1122	0.0145	-0.1232	0.0149	89.43%	-0.0088	0.0433	10.57%	-0.0496	0.2256	

eTable 3. Characteristics of SNVs selected for trans-ancestry PRS.

19	rs12151021	ABCA7	А	0.1071	0.0174	0.1071	0.0169	100.00%	-	-	-	0.0616	0.1696
14	rs8016766	TEX22	Т	-0.1042	0.0253	-0.1042	0.0246	100.00%	-	-	-	-0.0825	0.1741
7	rs75045569	EPHA1- ASI	Т	0.1040	0.0201	0.1040	0.0195	100.00%	-	-	-	0.2760	0.3120
14	rs74825460	FERMT2 , LOC105 370500	Т	0.0984	0.0213	0.1200	0.0246	71.05%	0.0199	0.0385	28.95%	0.0686	0.2041
11	rs7926954	LINC027 05	А	-0.0979	0.0143	-0.1126	0.0146	90.48%	0.0175	0.0450	9.52%	-0.2449	0.2210
14	rs12590273	SLC24A4	Т	0.0974	0.0216	0.0935	0.0215	94.92%	0.0732	0.0929	5.08%	0.2885	0.4238
11	rs11605348	NDUFS3 , FAM180 B	А	-0.0968	0.0160	-0.0968	0.0155	100.00%	-	-	-	-0.1146	0.1862
19	rs3795065	ABCA7	Т	-0.0968	0.0176	-0.0968	0.0171	100.00%	-	-	-	0.0350	0.2091
16	rs3752786	MTSS2	А	-0.0964	0.0215	-0.0964	0.0209	100.00%	-	-	-	-0.0816	0.2389
4	rs13101577	<i>LINC024</i> 98	А	-0.0942	0.0210	-0.0922	0.0227	81.05%	-0.0445	0.0470	18.95%	-0.0779	0.2253
12	rs7962629	CIS	А	0.0922	0.0201	0.0867	0.0206	90.30%	0.0620	0.0629	9.70%	-0.1740	0.3250
6	rs9389138	SLC2A12	Т	-0.0922	0.0221	-0.0978	0.0221	94.60%	0.0020	0.0925	5.40%	-0.0266	0.4607
2	rs6605277	INPP5D	А	0.0921	0.0209	0.0921	0.0203	100.00%	-	-	-	-0.0917	0.2333
6	rs3132963	TSBP1, TSBP1- AS1	А	-0.0919	0.0204	-0.0919	0.0198	100.00%	-	-	-	0.3855	0.5383
6	rs9270824	HLA- DRB1	Т	0.0916	0.0175	0.0916	0.0170	100.00%	-	-	-	-0.0458	0.2038
8	rs28834970	PTK2B	Т	-0.0909	0.0148	-0.0921	0.0153	87.95%	-0.0358	0.0413	12.05%	0.0735	0.2092
14	rs12590654	SLC24A4	А	-0.0906	0.0162	-0.0906	0.0157	100.00%	-	-	-	-0.1539	0.1779
17	rs61182333	SCIMP, ZNF594- DT	Т	0.0874	0.0212	0.0874	0.0206	100.00%	-	-	-	0.0917	0.2568
2	rs17014923	BIN1	Т	-0.0870	0.0184	-0.0863	0.0189	89.23%	-0.0404	0.0544	10.77%	0.1501	0.2680

16	rs12102869	GPRC5B	Т	0.0870	0.0195	0.0870	0.0189	100.00%	-	-	-	0.1101	0.2073
11	rs11039165	MADD	А	-0.0865	0.0162	-0.0894	0.0158	99.16%	0.1114	0.1712	0.84%	0.0320	0.5361
6	rs4335021	BTNL2	Т	0.0859	0.0147	0.0850	0.0155	84.97%	0.0394	0.0369	15.03%	0.0760	0.2141
10	rs12358692	LOC105 376412, LOC105 376413	Т	0.0841	0.0159	0.0841	0.0154	100.00%	-	-	-	0.0305	0.1907
3	rs4574296	LOC102 723364	А	0.0840	0.0200	0.1013	0.0223	76.33%	0.0124	0.0400	23.67%	0.0742	0.2047
6	rs9381563	AL35535 3.1	Т	-0.0821	0.0152	-0.0821	0.0148	100.00%	-	-	-	-0.0686	0.2250
19	rs3865444	CD33	А	-0.0804	0.0163	-0.0804	0.0158	100.00%	-	-	-	0.0080	0.2181
1	rs61833519	LOC343 508	Т	0.0800	0.0191	0.0800	0.0186	100.00%	-	-	-	0.0175	0.2865
19	rs113704219	<i>TMEM25</i> 9	Т	-0.0797	0.0193	-0.0764	0.0198	89.58%	-0.0467	0.0581	10.42%	-0.0807	0.3158
11	rs11230227	MS4A4E	А	0.0792	0.0157	0.0792	0.0153	100.00%	-	-	-	0.0373	0.1941
7	rs1989834	LOC101 928012	Т	-0.0790	0.0187	-0.0793	0.0188	93.74%	-0.0326	0.0727	6.26%	-0.0742	0.3104
14	rs1680666	LOC107 987210	Т	0.0789	0.0179	0.0789	0.0174	100.00%	-	-	-	-0.1542	0.1714
14	rs941648	SLC24A4	А	-0.0775	0.0152	-0.0829	0.0165	80.41%	-0.0241	0.0334	19.59%	-0.1510	0.1768
10	rs10748526	TSPANI 4	Т	-0.0773	0.0172	-0.0775	0.0179	87.23%	-0.0330	0.0468	12.77%	-0.0159	0.2447
13	rs9520713	NALF1	А	-0.0769	0.0166	-0.0730	0.0166	94.43%	-0.0616	0.0683	5.57%	0.3228	0.4013
17	rs2526378	BZRAP1	А	0.0767	0.0137	0.0717	0.0145	84.05%	0.0446	0.0333	15.95%	-0.0060	0.1759
11	rs598561	SLC25A1 P1	А	0.0766	0.0140	0.0747	0.0143	90.35%	0.0410	0.0438	9.65%	0.1169	0.2505
4	rs11520553	<i>RNA5SP</i> 527	Т	0.0759	0.0179	0.0716	0.0181	92.43%	0.0558	0.0632	7.57%	0.4329	0.2900
15	rs72749540	EFL1	Α	0.0758	0.0163	0.0700	0.0175	81.94%	0.0442	0.0373	18.06%	-0.0658	0.1986
8	rs7831810	GULOP	А	-0.0736	0.0138	-0.0765	0.0146	84.89%	-0.0248	0.0346	15.11%	-0.0790	0.1826
21	rs3017432	ADAMTS 1	Т	-0.0735	0.0155	-0.0735	0.0151	100.00%	-	-	-	-0.1106	0.1900

16	rs4985557	MTSS2	Т	0.0734	0.0140	0.0652	0.0146	86.47%	0.0544	0.0369	13.53%	0.0193	0.1892
1	rs12118278	KIF21B	А	0.0730	0.0169	0.0798	0.0186	78.28%	0.0212	0.0353	21.72%	0.1106	0.1836
16	rs4782284	IQCK	А	0.0727	0.0175	0.0827	0.0189	81.46%	0.0126	0.0396	18.54%	0.0406	0.2162
7	rs60738304	ZCWPW 1	А	-0.0711	0.0149	-0.0700	0.0160	81.74%	-0.0330	0.0339	18.26%	-0.1035	0.1740
19	rs8111708	ELL	А	-0.0704	0.0144	-0.0696	0.0151	86.16%	-0.0326	0.0377	13.84%	-0.1536	0.2000
5	rs11168036	PFDN1	Т	0.0701	0.0135	0.0754	0.0143	84.35%	0.0182	0.0332	15.65%	0.1689	0.1767
6	rs12197146	CD2AP	Т	0.0674	0.0148	0.0674	0.0144	100.00%	-	-	-	0.0377	0.2149
7	rs11769980	EPHA1- ASI	А	-0.0668	0.0145	-0.0684	0.0148	91.11%	-0.0222	0.0474	8.89%	-0.1691	0.2370
1	rs12030051	EIF4G3	А	0.0667	0.0146	0.0661	0.0153	86.41%	0.0307	0.0386	13.59%	-0.0354	0.2116
11	rs11607586	UBASH3 B	Т	0.0663	0.0153	0.0527	0.0164	82.76%	0.0569	0.0359	17.24%	0.2038	0.2008
11	rs12284553	NTM, LOC107 984413	А	0.0661	0.0137	0.0617	0.0144	85.72%	0.0401	0.0353	14.28%	-0.2327	0.1993
10	rs7358283	SH2D4B	А	0.0652	0.0154	0.0656	0.0164	83.32%	0.0273	0.0367	16.68%	-0.0775	0.1774
11	rs12798036	AP2A2	Т	-0.0638	0.0143	-0.0614	0.0152	83.77%	-0.0330	0.0345	16.23%	0.0975	0.1776
3	rs59930643	ADCY5	А	-0.0633	0.0147	-0.0586	0.0155	85.19%	-0.0390	0.0372	14.81%	0.1151	0.1903
6	rs1265759	TSBP1, TSBP1- AS1	Т	-0.0630	0.0141	-0.0671	0.0150	83.17%	-0.0188	0.0333	16.83%	0.0298	0.1829
20	rs6076600	<i>RPL21P</i> 2	А	0.0619	0.0150	0.0563	0.0154	89.24%	0.0469	0.0444	10.76%	-0.0426	0.2129
1	rs7536204	USP24	А	-0.0607	0.0141	-0.0641	0.0148	86.37%	-0.0170	0.0373	13.63%	0.0069	0.1864
2	rs1446445	LOC105 369165	А	0.0572	0.0136	0.0557	0.0143	85.12%	0.0286	0.0342	14.88%	0.0751	0.1769
2	rs6722041	FSIP2	Т	-0.0569	0.0135	-0.0636	0.0143	84.49%	-0.0090	0.0334	15.51%	-0.0768	0.1761
9	rs2480497	LOC105 376137	Т	-0.0568	0.0134	-0.0549	0.0142	84.53%	-0.0291	0.0332	15.47%	-0.0959	0.1711
3	rs614004	CMTM7	А	-0.0562	0.0134	-0.0538	0.0141	84.78%	-0.0302	0.0333	15.22%	-0.0478	0.1735

Statistical values were obtained from ¹a meta-GWAS, ²previous studies [5, 6], and ³our dataset 1.

⁴Proportion of SNP's weight of each cohort for the inverse-variance weighted model (METAL)

Abbreviations: NCGG, National Center for Geriatrics and Gerontology; IGAP, International Genomics of Alzheimer's Project; CHR,

chromosome; SNP, single-nucleotide polymorphism; SE, standard error; EA, effect allele; PRS, polygenic risk score.

eTable 4. Characteristics of SNVs selected for Japanese-based PRS.

CHR	SNP	Nearest	EA	Japanese [6] (NCGG)	Korean	Japanese [6] (NCGG)		Korean (our datase	t 1)
		gene		EAF ¹	EAF^1	Beta ²	SE ²	Beta ³	SE ³
11	rs117807585	SORL1	А	0.2302	0.2167	-0.2619	0.0789	-0.2559	0.1480

Statistical values and ¹EAF were obtained from ²a previous study [6] and ³our dataset 1. Abbreviations: NCGG, National Center for

Geriatrics and Gerontology; CHR, chromosome; SNP, single-nucleotide polymorphism; SE, standard error; EAF, effect allele

frequency; PRS, polygenic risk score.

ADD diagnosis	Dataset 1 (CU (n=47	79) vs. ADD (n=	544))	Dataset 2 (CU (n=220) vs. ADD (n=159))			
Derivation GWAS	¹ OR (95% CI)	¹ <i>P</i>	² Nagelkerke's R^2	¹ OR (95% CI)	¹ P	² Nagelkerke's <i>R</i> ²	
European GWAS (IGAP)	1.95 (1.40–2.72)	<.001	0.020	1.85 (1.05–3.32)	.04	0.026	
Japanese GWAS (NCGG)	2.71 (1.16–6.40)	.02	0.006	3.26 (0.71– 15.55)	.13	0.006	
Trans-ancestry meta- GWAS	1.69 (1.31–2.19)	<.001	0.023	2.09 (1.09-4.04)	.03	0.032	

eTable 5. Predictive accuracy of PRSs derived from European, Japanese, and trans-ancestry meta-GWAS.

¹The OR and *P* values for PRS were calculated using multivariable logistic regression model after adjusting sex, age, education year, four PCs of genetic data, and *APOE* ε 4 status.

²Variance explained by PRS.

Abbreviations: CU, cognitively unimpaired; ADD, Alzheimer's disease dementia; OR, odds ratio; CI, confidence interval; GWAS, genome-wide association study; PRS, polygenic risk score; IGAP, European International Genomics of Alzheimer's Project; NCGG, National Center for Geriatrics and Gerontology; PC, principal component.

 $\ensuremath{\mathbb{C}}$ 2022 Jung S-H et al. JAMA Network Open.

eFigure 1. Principal component analysis comparison of the Korean study cohorts and the 1000 Genomes Project populations. The first three PCs of genetic ancestry are presented. Each dot represents an individual from the ethnic group represented by different colours. **(A)**, **(B)** PCs of the 1000 Genomes Project dataset (circle; AFR, AMR, EAS, EUR, and SAS) and the current study cohorts (triangle; ASA and KBA). **(C)**, **(D)** PCs of the 1000 Genomes Project East Asian dataset (circle; CDX, CHN, JPT, and KHV) and the current study cohorts (triangle; ASA and KBA samples from independent PCA without projection to the 1000 Genomes Project. Abbreviations: PC, principal component; ASA, Illumina Asian Screening Array BeadChip (Korean study cohorts); KBA, Affymetrix Axiom Korea Biobank Array (Korean study cohorts); AFR, African; AMR, American; EAS, East Asian; EUR, European; SAS, South Asian; CDX, Chinese Dai in Xishuangbanna, Chinese; CHN, Han Chinese in Beijing, Chinese; JPT, Japanese in Tokyo, Japan; KHV, Kinh in Ho Chi Minh City, Vietnam.

eFigure 2. PRS distributions among the study participants according to the genotyping arrays. Abbreviations: ASA, Illumina Asian Screening Array BeadChip; KBA, Affymetrix Axiom Korea Biobank Array; PRS, polygenic risk score.

eFigure 3. Distribution plots for Nagelkerke's R^2 values of each population-based PRS across the SNP selection thresholds. Abbreviations: PRS, polygenic risk score; SNP, single-nucleotide polymorphism; LD, linkage disequilibrium.

eFigure 4. (A) Quantile-quantile plot (B) Miami plot for the trans-ancestry meta-GWAS. The red and blue lines indicate the genome-wide significance level ($P=5.0\times10^{-8}$) and the genome-wide suggestive level ($P=1.0\times10^{-5}$), respectively. A locus near rs2526378 on chromosome 17 were newly identified in the trans-ancestry meta-GWAS.

Abbreviations: IGAP, International Genomics of Alzheimer's Project; NCGG, National Center for Geriatrics and Gerontology.

eReferences

[1] Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., & Reich, D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. *Nature genetics*, **38**(8), 904-909.

[2] Manichaikul, A., Mychaleckyj, J. C., Rich, S. S., Daly, K., Sale, M., & Chen, W. M. (2010). Robust relationship inference in genomewide association studies. *Bioinformatics*, **26**(22), 2867-2873.

[3] Villemagne, V. L., Ong, K., Mulligan, R. S., Holl, G., Pejoska, S., Jones, G., ... & Rowe, C. C. (2011). Amyloid imaging with 18F-florbetaben in Alzheimer disease and other dementias. *Journal of Nuclear Medicine*, **52**(8), 1210-1217.

[4] Curtis, C., Gamez, J. E., Singh, U., Sadowsky, C. H., Villena, T., Sabbagh, M. N., ... & Salloway, S. (2015). Phase 3 trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. *JAMA neurology*, **72**(3), 287-294.

[5] Kunkle, B. W., Grenier-Boley, B., Sims, R., Bis, J. C., Damotte, V., Naj, A. C., ... & Rotter, J. I. (2019). Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates $A\beta$, tau, immunity and lipid processing. *Nature genetics*, **51**(3), 414-430.

[6] Shigemizu, D., Mitsumori, R., Akiyama, S., Miyashita, A., Morizono, T., Higaki, S., ... & Ozaki, K. (2021). Ethnic and trans-ethnic genome-wide association studies identify new loci influencing Japanese Alzheimer's disease risk. *Translational psychiatry*, **11**(1), 1-10.