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eAppendix. Supplemental Methods 
 
Notes on analysis, data, and computation: 
All analyses were performed in R Version 4.0.51 using the following packages: dlnm,2 mvmeta,3 
tsModel,4 and splines.1 

 
The code used in the primary analysis can be found on GitHub: https://github.com/Epi- 
Emma/2022_temperature_and_firearm_violence.git 

 

This analysis benefited from the R code examples written by Antonio Gasparrini and made 
available on his personal website (http://www.ag-myresearch.com/): 

- Example of a DLNM analysis across multiple locations: 
https://github.com/gasparrini/2015_gasparrini_Lancet_Rcodedata 

- Investigating the lagged relationship: 
https://github.com/gasparrini/2016_gasparrini_AJE_Rcodedata 

- Attributable risk calculations and plots: 
https://github.com/gasparrini/2014_gasparrini_BMCmrm_Rcodedata 

US Census Bureau administrative “places” shapefiles were used to define the geographic 
boundaries for each of the 100 analysis cities.5 We used population estimates derived from the 
Global Human Settlements Population (GHS-POP) 2015 dataset for the population weighting of 
the city-specific maximum daily temperatures from the North American Land Data Assimilation 
System Phase 2 (NLDAS-2).6-8 
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eFigure 1: Graph of Daily Firearm Incidents Across the 100 Cities for the Study Period 
from 2015-2020 Showing Seasonal Trends 

 

 
Note: This figure plots the daily count of firearm incidents among the 100 analysis cities throughout the study period 
from 2015 through 2020. Daily firearm incident counts range from 16 to 202 per day (the high outlier of 202 firearm 
incidents occurred on July 5th, 2020). The red line is represents our method for controlling for seasonality: cubic 
splines with 7 knots per study year for a total of 42 knots). In the primary analyses, adjustment for seasonal trends 
was city-specific before results were pooled across cities, so this graph is just an example of what the seasonal 
trends would look like using all cities’ data. 
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eFigure 2: Pooled Lagged Relationship Between Firearm Incidents and Temperature Over 7 
Days Across 100 US Cities 

 

NOTE: This graph displays the overall pooled lagged function comparing the risk of firearm incidents at the 95th 
temperature percentile compared to the median temperature from a DLNM model fit with up to seven days of lag 
across 100 cities. The DLNM models were fit with knots at the 10th, 75th, and 90th percentiles for the 
exposure~outcome association. A sensitivity analysis was conducted using both one and two inner knots within the 
lag~outcome association to allow greater flexibility in the lagged relationship. The influence of heat on firearm 
incidents was strongest on the day of, which prompted the authors to choose a zero-lag model for the primary 
analysis. 
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eFigure 3: Sensitivity Analysis Changing the Placement and Number of Knots Within the 
Maximum Daily Temperature and Firearm Incident Relationship, Specified With a 0-Day 
Lag and Pooled Across 100 US Cities 

 

Note: This graph depicts the overall pooled association between daily maximum temperature and firearm incidents 
across 100 cities, with different combinations of the number and placement of knots specified for the 
exposure~outcome association to assess whether the relationship was robust to model specification. The DLNM 
models were fit with a 0-day lag period. 
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eFigure 4: Sensitivity Analysis Changing the Placement and Number of Knots Within the 
Maximum Daily Temperature and Firearm Incident Relationship, Specified With a 2-Day 
Lag and Pooled Across 100 US Cities 

 
 

Note: This graph depicts the overall pooled association between daily maximum temperature and firearm incidents 
across 100 cities, with different combinations of the number and placement of knots specified for the 
exposure~outcome association to assess whether the relationship was robust to model specification. The DLNM 
models were fit with a 2-day lag period. 
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eFigure 5: Sensitivity Analysis Assessing the Pooled Firearm Incident and Temperature 
Association Using Different Numbers of Lag Days, Across 100 US Cities 

 
 

 
 

Note: This graph depicts the overall pooled association between daily maximum temperature and firearm incidents 
across 100 cities, using varying lag durations to assess how the relationship changes with the inclusion of increasing 
lagged days. The DLNM models were fit with knots at the 10th, 75th, and 90th percentiles. The relative risks depicted 
here represent the cumulative risk over the specific lag duration at each temperature percentile, pooled across the 
100 cities. 
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eFigure 6: Results of the Overall Heat and Firearm Incident Association in the Sensitivity 
Analyses Accounting for the 2020 Pandemic Period 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: These graphs depict the overall pooled association between daily maximum temperature and firearm incidents 
across 100 cities using two different approaches to account for the influence of the pandemic period. Both analyses 
are modeled similarly to the primary analysis with knots at the 10th, 75th, and 90th percentiles and including zero lag 
days. 

Attributable Fraction 
(95% CI) 

Total Heat 6.30 (5.40, 6.95) 
Moderate Heat 4.70 (4.01, 5.18) 
Extreme Heat 1.61 (1.31, 1.83) 

B) Restricting data years to remove 2020 from 
analysis 

Attributable Fraction 
(95% CI) 

Total Heat 6.85 (6.03, 7.44) 
Moderate Heat 5.00 (4.45, 5.46) 
Extreme Heat 1.86 (1.55, 2.04) 

A) Including an indicator for the pandemic 
period (March 1, 2020 – December 31, 2020) 
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eTable 1: Sensitivity Analyses Assessing the Excess Risk of Firearm Incidents on Hot Days Using Different Numbers of Lag Days 

 
 0 Day Lag 1 Day Lag 2 Day Lag 3 Day Lag 7 Day Lag 

Attributable Risk Fraction 
All heat 6.85 (6.09, 7.46) 12.22 (10.45, 13.18) 6.73 (5.75, 7.46) 7.29 (6.23, 8.05) 7.17 (6.05, 7.86) 

Moderate heat 5.00 (4.44, 5.43) 9.10 (7.78, 9.80) 5.02 (4.23, 5.55) 5.40 (4.63, 5.96) 5.40 (4.63, 5.96) 
Extreme Heat 1.86 (1.58, 2.05) 3.14 (2.47, 3.41) 1.72 (1.39, 1.93) 1.90 (1.55, 2.12) 1.78 (1.42, 1.96) 

Attributable Risk Number 
All heat 7973 (7092, 8688) 14239 (12178, 15355) 7842 (6697, 8691) 8494 (7254, 9378) 8350 (7053, 9162) 

Moderate heat 5820 (5173, 6329) 10607 (9066, 11416) 5848 (4929, 6466) 6287 (5397, 6942) 6288 (5392, 6941) 
Extreme Heat 2164 (1839, 2388) 3654 (2875, 3977) 2005 (1624, 2243) 2219 (1800, 2467) 2073 (1654, 2279) 

I2 Statistic 11.7% 8.5% 4.3% 4.3% 5.6% 
Cochran’s Q Test p=0.02 p=0.08 p=0.17 p=0.24 p=0.18 

 
Note: The model with the 7-day lag included two internal knots to model the lagged temperature and firearm relationship. The 2- and 3-day lag models included 
a single internal knot in the lagged association. The 1-day lag model did not include any internal knots. The 0-day lag model necessarily included no lag at all. 
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eTable 2: Analysis City Characteristics and Attributable Heat Estimates From the Zero-Lag Model 
 

  
 

Climate 

 
Total 

Firearm 

 
Median 
Temp 

Max 
Incident 

Temp 

Max 
Incident 

Temp 

Heat 
Attributable 

Incidents 

Heat 
Attributable 

Incidents 
City Region Incidents (F) Perc. (F) (%) (95% CI) 

Akron, OH Midwest 551 62.7 79 80.0 6.53 (0.98, 11.77) 

Albuquerque, NM Southwest 608 71.0 96 95.5 5.12 (-0.98, 10.47) 

Atlanta, GA Southeast 1172 75.2 96 92.3 5.39 (0.32, 9.84) 

Augusta, GA Southeast 373 78.4 76 89.5 1.60 (-4.72, 6.93) 

Austin, TX Great Plains 398 83.6 77 94.6 1.66 (-4.46, 7.4) 

Bakersfield, CA Southwest 367 82.7 80 103.4 2.62 (-5.85, 9.09) 

Baltimore, MD Northeast 4659 65.8 78 82.3 6.15 (2.03, 9.77) 

Baton Rouge, LA Southeast 874 82.1 66 86.5 -0.36 (-4.91, 3.46) 

Birmingham, AL Southeast 1131 76.1 74 86.1 -0.35 (-5.91, 4.4) 

Boston, MA Northeast 907 59.5 91 84.5 12.51 (5.76, 18.45) 

Bridgeport, CT Northeast 523 61.1 92 84.9 12.47 (5.37, 17.89) 

Buffalo, NY Northeast 848 58.3 93 84.8 12.88 (5.84, 18.78) 

Charlotte, NC Southeast 1249 73.8 77 87.3 4.94 (-0.51, 9.59) 

Chattanooga, TN Southeast 727 73.7 81 86.7 6.24 (0.26, 11.24) 

Chicago, IL Midwest 16136 61.0 86 83.6 10.69 (7.51, 13.83) 

Cincinnati, OH Midwest 1185 67.0 96 90.3 5.37 (-0.56, 10.57) 

Cleveland, OH Midwest 1992 61.8 81 80.6 9.94 (4.73, 14.61) 

Colorado Springs, CO Southwest 498 61.3 95 86.6 6.79 (1.23, 11.4) 

Columbus, GA Southeast 527 79.0 74 88.2 0.26 (-5.24, 5.01) 

Columbus, OH Midwest 1648 65.4 83 84.5 6.32 (1.11, 10.74) 

Dallas, TX Great Plains 1352 80.8 82 96.5 5.33 (-0.59, 10.65) 

Dayton, OH Midwest 653 65.9 96 90.3 5.13 (-0.75, 10.39) 

Denver, CO Southwest 700 64.7 87 88.4 7.07 (0.73, 12.42) 

Detroit, MI Midwest 2877 60.5 94 87.9 11.60 (6.62, 15.59) 

Durham, NC Southeast 598 73.5 87 90.2 5.65 (0.11, 10.53) 

Flint, MI Midwest 463 58.4 93 85.8 8.72 (1.27, 14.24) 

Fort Wayne, IN Midwest 507 63.2 87 84.9 7.14 (0.45, 12.49) 

Fort Worth, TX Great Plains 758 80.8 80 95.8 1.72 (-3.83, 6.85) 
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Fresno, CA Southwest 715 80.4 78 100.5 3.64 (-2.66, 9.22) 

Gary, IN Midwest 634 62.1 92 87.1 9.92 (3.48, 14.91) 

Grand Rapids, MI Midwest 311 58.4 92 84.9 12.42 (4.29, 18.91) 

Greensboro, NC Southeast 540 71.9 76 85.4 2.19 (-3.92, 7.55) 

Hampton, VA Southeast 456 68.0 79 81.7 4.99 (-1.46, 10.33) 

Hartford, CT Northeast 469 60.6 86 81.8 9.45 (2.96, 15.06) 

Houston, TX Great Plains 2999 82.5 80 91.2 3.79 (-0.65, 7.64) 

Huntsville, AL Southeast 332 74.4 77 86.2 2.96 (-3.75, 8.54) 

Indianapolis, IN Midwest 2150 65.6 96 89.1 6.23 (1.19, 10.62) 

Jackson, MS Southeast 1049 79.6 80 89.7 1.85 (-2.86, 6.05) 

Jacksonville, FL Southeast 1888 81.5 96 92.4 2.51 (-1.98, 6.24) 

Jersey City, NJ Northeast 426 62.9 88 84.4 11.23 (5.38, 16.23) 

Kansas City, KS Great Plains 326 68.9 85 89.4 7.86 (0.88, 13.43) 

Kansas City, MO Midwest 1365 68.8 93 93.0 6.13 (0.78, 10.73) 

Knoxville, TN Southeast 361 72.1 80 85.3 4.04 (-1.66, 9.27) 

Las Vegas, NV Southwest 497 76.9 96 104.1 4.57 (-2.57, 9.74) 

Lexington, KY Southeast 592 67.5 96 89.1 5.97 (0.09, 10.72) 

Little Rock, AR Southeast 881 75.6 79 89.2 4.95 (0.13, 9.25) 

Long Beach, CA Southwest 406 66.4 67 69.6 -0.10 (-10.84, 8.37) 

Los Angeles, CA Southwest 1363 72.3 58 74.2 -1.08 (-7.59, 3.92) 

Louisville, KY Southeast 1529 69.1 96 90.7 4.03 (-0.69, 8.71) 

Macon, GA Southeast 427 78.9 78 90.4 2.01 (-3.85, 7.18) 

Memphis, TN Southeast 2867 75.5 82 90.5 5.51 (1.01, 9.3) 

Miami, FL Southeast 388 83.9 28 80.0 -1.94 (-8.85, 3.82) 

Milwaukee, WI Midwest 2867 55.8 93 83.5 11.92 (6.79, 16.99) 

Minneapolis, MN Midwest 788 57.8 87 83.7 15.92 (9.04, 22.12) 

Mobile, AL Southeast 567 80.3 76 87.7 2.37 (-2.65, 7.36) 

Montgomery, AL Southeast 658 79.9 75 89.1 0.62 (-5.08, 5.47) 

Nashville, TN Southeast 1645 72.7 75 85.4 2.37 (-2.54, 6.78) 

New Haven, CT Northeast 392 60.3 95 85.1 11.58 (4.15, 17.6) 

New Orleans, LA Southeast 2767 81.7 80 88.9 3.47 (-0.56, 6.92) 

New York, NY Northeast 4302 62.8 87 83.8 15.08 (10.85, 19.28) 
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Newark, NJ Northeast 896 63.0 85 83.3 9.51 (4.25, 14.42) 

Newport News, VA Southeast 514 69.4 81 83.9 5.45 (-0.89, 10.71) 

Norfolk, VA Southeast 682 69.7 81 83.5 5.26 (-0.51, 10.4) 

North Charleston, SC Southeast 383 78.6 96 93.1 2.96 (-3.63, 7.95) 

Oakland, CA Southwest 1364 68.1 96 85.6 3.25 (-3.37, 8.94) 

Oklahoma City, OK Great Plains 887 75.0 82 93.2 3.95 (-2.26, 9.38) 

Omaha, NE Great Plains 721 65.9 82 87.4 8.20 (1.87, 13.45) 

Orlando, FL Southeast 384 85.6 76 90.0 0.39 (-4.52, 4.67) 

Paterson, NJ Northeast 502 62.2 96 88.2 8.83 (3.52, 13.75) 

Peoria, IL Midwest 434 65.3 89 88.6 10.25 (2.77, 16.31) 

Philadelphia, PA Northeast 5736 64.7 87 85.2 6.07 (2.1, 9.2) 

Phoenix, AZ Southwest 1148 86.8 57 91.3 -1.03 (-8.88, 5) 

Pittsburgh, PA Northeast 872 64.5 93 87.1 9.67 (4.31, 14.63) 

Portland, OR Northwest 524 61.5 96 85.5 8.71 (1.57, 14.7) 

Portsmouth, VA Southeast 414 72.0 81 85.5 4.18 (-1.89, 9.29) 

Raleigh, NC Southeast 361 73.7 76 86.6 2.07 (-4.35, 7.31) 

Richmond, VA Southeast 1126 71.0 80 86.3 4.33 (-1.59, 9.08) 

Rochester, NY Northeast 796 57.9 96 86.4 8.28 (1.5, 14.14) 

Rockford, IL Midwest 556 61.0 93 86.8 14.25 (8.12, 19.59) 

San Antonio, TX Great Plains 1841 85.3 77 95.5 2.23 (-2.78, 6.44) 

San Diego, CA Southwest 385 76.3 54 77.5 -0.96 (-7.1, 4.4) 

San Francisco, CA Southwest 421 60.1 80 64.9 2.65 (-6.9, 10.73) 

Savannah, GA Southeast 607 80.0 76 87.7 0.82 (-4.58, 5) 

Seattle, WA Northwest 440 59.7 96 84.4 12.00 (4.34, 17.75) 

Shreveport, LA Southeast 912 81.0 84 93.1 6.07 (1, 10.75) 

South Bend, IN Midwest 401 61.5 93 86.6 13.26 (6.35, 19.42) 

Springfield, MA Northeast 367 59.8 96 86.3 6.56 (0.2, 12.58) 

St. Louis, MO Midwest 2959 69.0 81 87.6 6.68 (1.43, 11.63) 

St. Paul, MN Midwest 336 57.7 90 85.0 10.97 (4.73, 16.34) 

Stockton, CA Southwest 519 77.1 79 96.6 4.17 (-3.85, 11.2) 

Syracuse, NY Northeast 507 58.0 92 83.6 13.29 (7.45, 18.68) 

Toledo, OH Midwest 901 61.9 88 85.5 10.07 (3.99, 15.76) 
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Topeka, KS Great Plains 325 69.5 93 94.4 5.67 (-0.67, 10.87) 

Trenton, NJ Northeast 527 64.5 96 89.7 8.29 (1.94, 13.46) 

Tucson, AZ Southwest 308 83.2 76 95.7 1.83 (-4.66, 7.78) 

Tulsa, OK Great Plains 981 74.3 82 91.4 3.92 (-2.36, 8.97) 

Washington, DC Northeast 2531 67.4 80 84.5 5.96 (1.13, 9.95) 

Wichita, KS Great Plains 587 71.3 92 95.8 6.08 (0.36, 11.16) 

Wilmington, DE Northeast 710 65.1 81 83.0 6.19 (0.13, 11.5) 

Winston-Salem, NC Southeast 408 71.7 96 91.7 4.92 (-1.47, 10.53) 
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eFigure 7: 100 City- Specific Result Graphs 
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