Appendix

*We did not restrict the scores based on "respiratory support". In other words, we allowed scores of 3 and 4 when ePFR was below 200 and 100 respectively, even though our patients were not mechanically ventilated.

† Patients can only get up 3 or 4 points if they are on vasopressors; since we censored prior to ICU transfer, none of our patients were on vasopressors.

‡ The AVPU (Alert, Voice, Pain, Unresponsiveness) scale measures level of alertness. The NEWS model assigns 3 points for any rating other than "A" (alert). Since this scale is not routinely used in our institution, we assigned 3 points to any GCS rating lower than 15.

eFigure 1: This figure depicts our process of determining FiO₂. It is designed to closely resemble how clinicians would determine FiO₂ in their day-to-day clinical practice. It assumes an inspiratory flow rate of 25 liters per minute when accounting for entrainment of ambient air in low flow systems. (Abbreviations: Flow – supplemental oxygen flow rate; $FiO₂$ – Fraction of Inspired Oxygen; LPM – Liters Per Minute)

eFigure 2: Panels A - B show the Empirical Cumulative Distribution Functions for $SpO₂$ and ePFR respectively. This figure depicts the results from Emory. Corresponding results from UVA are shown in Figure 3. Race is encoded by color (red - Black patients, blue - others). Similar to Figure 3, we observe a right shift in distributions of hypoxemia measures. By itself, this finding could suggest that Black patients were hospitalized with less intense respiratory failure than non-Black patients. But that conclusion is inconsistent with the finding that for comparable levels of oxygenation, Black patients were at higher risk of adverse outcomes than non-Blacks. Together, these findings point to a phenomenon like occult hypoxemia which leads clinicians to use lower FiO₂ settings because of a falsely reassuring $SpO₂$ reading, leading to worse outcomes. To make the plots directly comparable despite the varying scales of the hypoxemia measures, we used SpO₂ values ranging from 85% to 100% and the corresponding range from a minimum ePFR of 50 (representing a $SpO₂$ of 85% on 100% FiO₂) to a maximum ePFR of 633 (representing a SpO₂ of 100% on room air). To smoothen the ECDFs, we converted SpO₂ from integer to continuous by adding uniformly distributed noise $(+/- 0.5\%$ with a maximum SpO₂ of

100%). The dashed horizontal lines (Panels C-D) mark the rate of clinical deterioration in the entire dataset (2.9%).

eFigure 3: For our primary analysis we used a prediction horizon of 24 hours (Figure 3). We repeated the analysis for 3 day, 5 day, 7 day, and 14 day horizons. The ePFR continued to outperform NEWS and Sepsis-3. However, the baseline risk model performed better with longer horizons (AUROC ranging from 0.63 for a 1 day horizon to 0.69 for a 14 day horizon).

eFigure 4: The distribution of ePFR, that simultaneously account for oximetry values and clinicians' response to it (supplemental oxygen adjustment), showed a wider racial disparity than was noted with the distribution of $SpO₂$. This suggested that, on average, clinicians were achieving their SpO₂ targets with lower supplemental oxygen settings in Black patients. This figure shows the empirical cumulative distribution functions for patients' FiO₂ at UVA (left) and Emory (right) which shows a left shift (lower FiO₂) for Black patients (red) compared to non-Black patients (blue).