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Supplemental	Methods:	Prediction 

To	get	patch-level	featurization:	

1. Standard	Representation:	Raster	scans	tissue	images	using	1000	by	1000	pixel	patches,
beginning	from	the	upper	left	corner	and	reading	across,	then	down.	Patches	on	the
right	and	bottom	border	that	were	smaller	than	1000	by	1000	were	retained	in	their
smaller	form.	For	cell-type	and	cell-neighborhood	analyses,	patches	were	generated
from	the	clustered	cell-identity	or	neighborhood-identity	text	files.	For	pairwise
interactions,	patches	were	generated	from	the	cell-identity	labeled	Voronoi	images.	In
all	cases,	abundance	ratios	were	obtained	by	normalizing	to	the	total	number	of	cells
(for	cell	identity	and	neighborhoods)	or	the	total	number	of	interactions	(for	cell-cell
interactions).

2. CNN	representation:	We	scan	the	Voronoi	images	right-to-left	and	then	up-down	with	a
stride	of	500	px	and	extract	1000	by	1000	px	patches.	We	then	resize	the	patches	to	224
by	224	px,	the	standard	input	size	of	the	ImageNet	dataset.		We	also	consider	using	a
stride	of	250	px	to	extract	500	by	500	px	patches	which	are	resized	to	224	by	224	px.
The	images	are	padded	with	black	pixels	so	the	height	and	width	are	divisible	by	the
stride.	Convolutional	Neural	Net	(CNN)	architectures	pre-trained	on	ImageNet	have	a
bias	towards	the	center	of	the	input	image.	Having	a	stride	equal	to	half	the	patch	length
gives	overlapping	patches,	but	it	allows	for	every	part	of	the	image	to	be	roughly
centered	in	a	patch.	Any	patches	where	more	than	60%	of	the	pixels	are	black	are
discarded.	Using	PyTorch,	we	instantiate	an	ImageNet	pre-trained	ResNet-50	(or
ResNet-18,	or	Res-Net	152,	or	ShuffleNet	v2)	model,	freeze	all	the	trainable	parameters,
and	put	the	model	in	evaluation	mode.	We	pass	each	patch	through	the	pre-trained
model	and	extract	that	last	hidden	layer	output	(just	before	the	final	fully	connected
layer)	to	use	as	the	representation	for	the	patch.

We	use	a	L2	regularized	logistic	regression	with	solver=’lbfgs’	from	scikit-learn	as	our	model	and	use	
leave-one-out	cross-validation	to	evaluate	predictive	performance.		More	specifically,	consider	the	
ith	patient.	For	now,	we’ll	refer	to	all	patients	other	than	patient	i	as	“training	patients”.	For	all	of	our	
tasks,	 we	 don’t	 believe	 that	 class	 prior	 probabilities	 present	 in	 our	 data	 are	 necessarily	
representative	of	the	class	prior	probabilities	of	said	task’s	population	of	interest.	As	such	we	will	
adjust	certain	patch-level	or	patient-level	predictions	so	that	the	adjusted	prediction	corresponds	to	
each	 class	 having	 a	 prior	 probability	 of	 0.5	 (42). We	 outline	 how	 to	 produce	 the	 patient-level	
prediction	for	the	ith	patient	for	each	of	our	training	methods.	Whenever	training	or	evaluating	a	
model,	we	standardize	our	predictors	using	means	and	standard	deviations	from	the	training	data.		



1. Patient-level	training:	we	aggregate	our	patch-level	representations	into	patient-level
representations	and	input	patient-level	representations	into	our	model.	The	model	then
directly	outputs	patient-level	predictions.	When	using	the	standard	representation,
aggregating	amounts	to	combine	our	cell	types,	cell	neighborhoods,	and	cell	interactions
to	get	total	counts	and	overall	frequencies.	When	using	the	CNN	representation,
aggregating	amounts	to	taking	the	mean	of	all	the	patch-level	representations.	We	train
the	model	on	the	training	patients	(total	number	of	training	samples	=	number	of
training	patients)	and	then	input	patient	i’s	patient-level	representation	to	get	patient	i’s
patient-level	prediction.	We	then	adjust	patient	i’s	patient-level	prediction	according	to
as	discussed	above	(42).

2. Patch-level	training:	we	assign	each	patch	the	response	of	the	patient	it	comes	from.	We
input	patch-level	representations	into	our	model	and	the	model	correspondingly
outputs	patch-level	predictions.	We	perform	a	weighted	training	where	we	train	on	all
the	patches	which	come	from	training	patients	(total	number	of	training	samples	=
number	of	training	patients	*	avg.	number	of	patches	per	training	patient).	A	patch	from
the	jth	patient	is	given	weight	inversely	proportional	to	the	total	number	of	patches
from	the	jth	patient.	We	then	input	all	the	patch-level	representations	corresponding	to
patient	i	to	get	all	of	the	patient	i’s	patch-level	predictions,	adjust	them	as	discussed
above,	and	average	them	to	get	patient	i’s	patient-level	prediction.

The	 above	 gives	 us	 patient-level	 predictions	 for	 each	 patient.	 To	 determine	 the	 threshold	 t_i	 for	
prediction	for	the	ith	patient	we	perform	a	nested	leave-one-out	cross-validation.	More	specifically	
we	repeat	the	above	process	with	all	patients	excluding	patient	i.	We	then	set	t_i	to	be	the	choice	of	
0.00,	0.01,	…,	0.99,	1.00	that	maximizes	Youden’s	Index	for	patient-level	classification	in	this	nested	
leave-one-out	cross-validation,	where	when	computing	the	ROC	curve,	we	weight	patients	inversely	
proportionally	to	the	size	of	the	class	(0/1)	they	belong	to.	If	multiple	choices	maximize	Youden’s	
Index,	we	choose	the	median	of	the	ones	that	do.	We	then	classify	patient	i	according	to	threshold	
t_i.		

By	using	the	patient-level	predictions	from	the	leave-one-out	cross-validation	to	classify	each	patient	
according	to	the	same	threshold	s	for	s=0.00,	0.01,	…,	0.99,	1.00	we	generate	a	validation	patient-
level	ROC	curve.	Again,	we	weight	patients	inversely	proportionally	to	the	size	of	the	class	(0/1)	they	
belong	to.	From	the	weighted	ROC	curve,	we	compute	a	weighted	validation	patient-level	AUROC.	In	
the	case	of	patch-level	training,	we	also	have	validation	patch-level	predictions,	and	we	do	the	same	



for	our	patch-level	predictions	to	get	a	validation	patch-level	AUROC.	In	this	case,	a	patch	from	patient	
i	is	given	weight	inversely	proportional	to	the	number	of	patches	from	patient	i	*	the	size	of	the	class	
(0/1)	patient	i	belongs	to.		

We	run	the	above	procedure	for	different	regularization	strengths,	lambda.			To	go	from	lambda	to	
the	parameter	C	we	input	in	sklearn	we	use	the	relation	C	=	1/(lambda	*	number	of	training	samples).	
We	present	results	for	the	C	which	gives	the	best	validation	AUROC.	If	multiple	values	for	C	give	the	
same	 validation	 AUROC,	 we	 present	 results	 for	 the	 C	 which	 corresponds	 to	 the	 smallest	
regularization	strength.	We	consider	lambdas	from	numpy.logspace(-3,	0,	4)	for	patch-level	training	
and	 lambdas	 from	 numpy.logspace(-1,	 2,	 4)	 for	 patient-level	 training.	 By	 searching	 over	 a	 small	
number	of	regularization	parameters,	we	attempt	to	minimize	the	bias	we	incur	by	presenting	results	
from	the	most	favorable	regularization	strength.		

Finally,	we	perform	a	permutation	test	to	test	the	null	hypothesis	that	the	predictors	and	response	
are	 independent.	 More	 specifically,	 we	 repeat	 all	 of	 the	 above	 an	 additional	 N=100	 times	 after	
randomly	 permuting	 the	 response	 at	 the	 patient	 level.	 Let	 k	 be	 the	 number	 of	 these	 additional	
iterations	 that	 have	 validation	 patient-level	 AUROC	 >=	 patient-level	 validation	 AUROC	 from	 our	
original,	non-permuted	run.	We	report	p=(k+1)/(N+1),	which	is	a	valid	p-value	for	testing	the	null	
hypothesis	that	the	predictors	and	response	are	independent.	We	do	the	same	for	patch-level	AUROC	
to	get	a	second	p-value	for	the	same	null	hypothesis.	



Supplemental	Figures 

S1a-b. CODEX imaging of tissue biomarker expression in patients with Ulcerative Colitis. 

a.

b.

• 1-4 samples/patient
• N=34 subjects

(29) Ulcerative colitis
(5) Healthy Control

• Tissue stored at -800C



Figure S1c-d. CODEX imaging of tissue biomarker expression in patients with Ulcerative Colitis. 
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Figure S1e-f. CODEX imaging of tissue biomarker expression in patients with Ulcerative Colitis. 
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f.



Figure S1g-h. CODEX imaging of tissue biomarker expression in patients with Ulcerative Colitis. 
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h.



Figure S1i-j. CODEX imaging of tissue biomarker expression in patients with Ulcerative Colitis. 

i.

j.



Figure S1. CODEX imaging of tissue biomarker expression in patients with UC. (a) Schematic overview of 
data acquisition process from (1) sample collection and (2) tissue sectioning to (3) tissue staining and (4) 
CODEX imaging. (b) Top left: CODEX image of a biopsy section from patient UC1 with Hoechst nuclear 
stain (gray), CD85j (cyan), Ki67 (yellow), CD19 (blue), CD31 (red), TIGIT (purple), and Vimentin (green) 
shown as a 7-color composite image selected from a total of 52 protein and 2 nuclear markers stained on 
the same tissue section. Bottom left: Zoomed-in view of representative staining for Vimentin, CD19, CD31, 
CD85j, TIGIT, and Ki67. Right: Zoomed-in view of the region denoted in the white box in panel (a) shown 
as a 7-color composite image (large panel) and as H&E and 2-color images of Hoechst and each of the 
indicated markers individually (small panels). Scale bars: yellow, 0.04 mm; white, 0.10 mm; black, 0.50 
mm. (c) Top left: CODEX image of a biopsy section from patient UC1 with Hoechst nuclear stain (gray),
CD66 (cyan), CD134 (yellow), CD3 (blue), IL6R (red), CD69 (purple), and CD4 (green) shown as a 7-color
composite image selected from a total of 52 protein and 2 nuclear markers stained on the same tissue
section. Bottom left: Zoomed-in view of representative staining for CD4, CD3, IL6R, CD66, CD69, and
CD134. Right: Zoomed-in view of the region denoted in the white box in panel (a) shown as a 7-color
composite image (large panel) and as H&E and 2-color images of Hoechst and each of the indicated
markers individually (small panels). Scale bars: yellow, 0.04 mm, white, 0.10 mm; black, 0.50 mm. (d) Top
left: CODEX image of a biopsy section from patient UC1 with Hoechst nuclear stain (gray), CD11c (cyan),
MMP12 (yellow), CD57 (blue), CD56 (red), HIF1a (purple), and CD8 (green) shown as a 7-color composite
image selected from a total of 52 protein and 2 nuclear markers stained on the same tissue section.
Bottom left: Zoomed-in view of representative staining for CD8, CD57, CD56, CD11c, HIF1a, and MMP12.
Right: Zoomed-in view of the region denoted in the white box in panel (a) shown as a 7-color composite
image (large panel) and as H&E and 2-color images of Hoechst and each of the indicated markers
individually (small panels). Scale bars: yellow, 0.04 mm; white, 0.10 mm; black, 0.50 mm. (el) Top left:
CODEX image of a biopsy section from patient UC1 with Hoechst nuclear stain (gray), CD7 (cyan), CD49f
(yellow), CD34 (blue), CD137 (red), VCAM1 (purple), and CD54 (green) shown as a 7-color composite
image selected from a total of 52 protein and 2 nuclear markers stained on the same tissue section.
Bottom left: Zoomed-in view of representative staining for CD54, CD34, CD137, CD7, VCAM1, and CD49f.
Right: Zoomed-in view of the region denoted in the white box in panel (a) shown as a 7-color composite
image (large panel) and as H&E and 2-color images of Hoechst and each of the indicated markers
individually (small panels). Scale bars: yellow, 0.04 mm; white, 0.10 mm; black, 0.50 mm. (f) Top left:
CODEX image of a biopsy section from patient UC1 with Hoechst nuclear stain (gray), CD38 (cyan), CD123
(yellow), CD36 (blue), CD16 (red), CD1c (purple), and TCRyd (green) shown as a 7-color composite image
selected from a total of 52 protein and 2 nuclear markers stained on the same tissue section. Bottom left:
Zoomed-in view of representative staining for TCRyd, CD36, CD16, CD38, CD1c, and CD123. Right:
Zoomed-in view of the region denoted in the white box in panel (a) shown as a 7-color composite image
(large panel) and as H&E and 2-color images of Hoechst and each of the indicated markers individually
(small panels). Scale bars: yellow, 0.04 mm; white, 0.10 mm; black, 0.50 mm. (g) Top left: CODEX image
of a biopsy section from patient UC1 with Hoechst nuclear stain (gray), CD40 (cyan), CD127 (yellow), CD45
(blue), HLA-ABC (red), FoxP3 (purple), and CD90 (green) shown as a 7-color composite image selected
from a total of 52 protein and 2 nuclear markers stained on the same tissue section. Bottom left: Zoomed-
in view of representative staining for CD90, CD45, HLA-ABC, CD40, FoxP3, and CD127. Right: Zoomed-in
view of the region denoted in the white box in panel (a) shown as a 7-color composite image (large panel)



and as H&E and 2-color images of Hoechst and each of the indicated markers individually (small panels). 
Scale bars: yellow, 0.04,mm; white, 0.10 mm; black, 0.50 mm. (h) Top left: CODEX image of a biopsy 
section from patient UC1 with Hoechst nuclear stain (gray), Podoplanin (cyan), CD120b (yellow), PanCk 
(blue), CD104 (red), CD278 (purple), and CD45RA (green) shown as a 7-color composite image selected 
from a total of 52 protein and 2 nuclear markers stained on the same tissue section. Bottom left: Zoomed-
in view of representative staining for Cd45RA, Cytokeratin, CD104, Podoplanin, CD278, and CD120b. Right: 
Zoomed-in view of the region denoted in the white box in panel (a) shown as a 7-color composite image 
(large panel) and as H&E and 2-color images of Hoechst and each of the indicated markers individually 
(small panels). Scale bars: yellow, 0.04 mm; white, 0.10 mm; black, 0.50 mm. (i) Top left: CODEX image of 
a biopsy section from patient UC1 with Hoechst nuclear stain (gray), CD5 (cyan), Empty (yellow), CD117 
(blue), CD279 (red), Empty (purple), and CollagenIV (green) shown as a 7-color composite image selected 
from a total of 52 protein and 2 nuclear markers stained on the same tissue section. Bottom left: Zoomed-
in view of representative staining for Collagen IV, CD117, CD279, and CD5. Right: Zoomed-in view of the 
region denoted in the white box in panel (a) shown as a 7-color composite image (large panel) and as H&E 
and 2-color images of Hoechst and each of the indicated markers individually (small panels). Scale bars: 
yellow, 0.04 mm; white, 0.10 mm; black, 0.50 mm. (j) Top left: CODEX image of a biopsy section from 
patient UC1 with Hoechst nuclear stain (gray), CD21 (cyan), CD2 (yellow), HLA-DR (blue), CD152 (red), 
CD274 (purple), and CD15 (green) shown as a 7-color composite image selected from a total of 52 protein 
and 2 nuclear markers stained on the same tissue section. Bottom left: Zoomed-in view of representative 
staining for CD15, HLA-DR, CD152, CD21, CD274, and CD2. Right: Zoomed-in view of the region denoted 
in the white box in panel (a) shown as a 7-color composite image (large panel) and as H&E and 2-color 
images of Hoechst and each of the indicated markers individually (small panels). Scale bars: yellow, 0.04 
mm; white, 0.10 mm; black, 0.50 mm. 



Figure S2. Biomarker profiles for VorteX cell clusters. (a) Minimum spanning tree representations of cell 
clusters. Cell types were identified in VorteX based on k-means clustering of cell-marker-intensity profiles, 
using the markers indicated in black. Markers in red were excluded from cluster-based identification. The 
size of each node represents the relative abundance of the corresponding cell type. The color of each 
node, from blue (lowest) to red (highest), represents the relative expression level of each marker. (b) Bar 
plots depicting min-max normalized marker intensities for each cluster. Markers that did not substantially 
impact clustering and some “redundant” markers (markers that strongly correlate with other markers) 
were excluded for visualization purposes only.  



Figure S3a-b. Cell cluster mapping. 



Figure S3c-d. Cell cluster mapping. 



Figure S3e-f. Cell cluster mapping. 



Figure S3g-h. Cell cluster mapping. 



Figure S3i-j. Cell cluster mapping 



Figure S3k-l. Cell cluster mapping. 

Figure S3. Cell cluster mapping. Representative images depicting the indicated cell cluster for each panel 
mapped to the tissue (yellow plus sign). Left: DRAQ5 nuclear staining for the whole tissue specimen with 
the indicated cell cluster overlaid (scale bar 200 μm). Right: Zoomed-in images of representative 
biomarkers that either co-localize or counter-localize with the overlaid cell cluster (scale bar 20 μm). 



Figure S4. Manual gating of cell types and correlation with Vortex clustering. (a) Representative manual 
gating schematic. Manual gating of cell types was performed for each tissue section based on canonical 
biomarker expression. Visual confirmation of gated populations was performed by mapping these 
populations to their corresponding CODEX image as described in Figure S3 for VorteX clusters. Manual cell 
gating was performed blind to the VorteX clustering-based classifications. (b) Correlation between VorteX 
and manual gating for all cell types within a sample (top panel), or for each cell type across multiple 
samples (bottom). In general we observed good correlation between semi-autonomous (VorteX) 
identification and manual identification of cell types. (c) Violin plots indicating cellular abundance, by cell 
type, as a fraction of total cell numbers. Tissue samples are binned within each Mayo Score classification 
(H=healthy, 1= Mayo 1, 2=Mayo 2, 3=Mayo 3).  



Figure S5. Cellular neighborhoods versus clinical Mayo Scores. Violin plots depicting the fraction of cells 
in the indicated cellular neighborhood versus Mayo Score. Tukey’s multiple comparisons test. * p<0.05, 
** p<0.01, ***p<0.001. HC (n=6), 1 (n=2), 2 (n=9) 3 (n=8).  



Figure S6. Biomarker expression across cell populations and disease states. (a-f) Scaffolds depicting 
minimum spanning tree representations of cell populations and expression of a) Ki67, b) CD152, c) CD126, 
d) CD69, e) CD134, and f) HLA-DR along trajectories of UC pathogenesis and healing during TNF therapy.
Node size represents the average frequency of each cell population for each cohort and color represents
the relative expression of indicated biomarker. Color scale: green-low, red-high.



Figure S7. Sex differences in UC. (a) Volcano plot of cell types (yellow), cell contacts (red), and cellular 
neighborhoods (orange) between male and female UC patients. Points to the right are enriched in males, 
points to the left are enriched in females. (b) TNFi responders versus nonresponders, binned by sex and 
disease score. Female patients were more likely to respond than male patients. We did not observe 
substantial differences in responsiveness between patients with Mayo score of 2 versus Mayo score of 3. 
(c-d) Sex difference comparisons between top differential neighborhoods in patients with a Mayo score 
of 2. c) Female patients were enriched for lymphoid aggregates (p=0.014), which are part of the adaptive 
immune response. d) Male patients were enriched for granulocyte aggregates, part of the innate immune 
response (p=0.095).   



Figure S8: tSNE plot of UC patients image patches compared with healthy patches. UC patient patches 
(pink to purple color gradient) demonstrate substantial variability in comparison to image patches from 
healthy patients (green). As the epithelial ratio of the UC patches increase, they become increasingly 
similar to healthy patches though they still remain visibly distinct. This illustrates one reason why 
accounting for the variability in the patch-dependent representation and classification of UC patients, 
rather than using patient-averages, may result in better predictive performance. 



Figure S9. Validation Patient-level Predictions for Patient vs Patch-level Training with CNN 
representation for severe (class 1) vs. mild/moderate (class 0). Patient-level validation predictions for 
patch-level and patient-level training when using the CNN representation (ResNet-50 as pre-trained 
network and 1000x1000px patches as inputs). Patch-level training gives predictions that appear to behave 
more reasonably. The red line gives the threshold which maximizes Youden’s Index on the validation set 
when weighting each patient inversely proportionally to the total number of patients belonging to the 
same class.      



Figure S10. Highest TNFi Patient-Level Validation AUROC: CNN representation (ResNet-50 pretrained 
network, 1000x1000px input patches) with Patient-Level Training. The highest resulting validation 
AUROC over choices of pre-trained neural network, input patch size, and patient vs. patch-level training. 
The p-value from the permutation test is not significant (p=0.13). 



Supplemental Tables 

Table S1. Patient demographics, medical characteristics, TNFi therapy outcomes, and tissue data collected 
through the Inflammatory Bowel Disease Biobank at the University of California, San Diego. 

 Patient Characteristics UCa UC TNFib HCc

Patients (n) 14 15 5 

Female 7 8 1 

Male 7 7 4 

Age, years (mean ± SD) 39.9 ± 14.3 43.3 ± 18.2 65.2 ± 8.8 

Age range, years 21 - 67 23 - 78 50 - 73 

Disease Characteristics 

Disease duration, years (mean ± SD) 8.86 ± 10.8 7.2 ± 5.9 --- 

Disease duration range, years 1 - 40 2 - 26 --- 

Colonic Segment Bx Location 

Rectum 11 (78.6%) 13 (86.7%) 5 (100%) 

Right Colon 3 (21.4%) 0 0 

Left Colon 0 2 (13.3%) 0 

Mayo ES Classification 

Mayo Score 0 0 0 --- 

Mayo Score 1 2 (14.3 %) 2 (13.3%) --- 

Mayo Score 2 7 (50%) 6 (40%) --- 

Mayo Score 3 5 (35.7%) 7 (46.7%) --- 

TNFi Therapy Outcomes 

Subsequent non-responders 3 (21.4%)* 7 (46.7%) --- 

Subsequent responders 3 (21.4%)* 6 (40%) --- 

N/A   8 (57.2%) 2 (13.3%) --- 



a 
Subjects labeled “UC” had not been treated with TNFi at time of biopsy. An asterisk indicates 

that the patient received TNFi therapy subsequently, and response was retrieved from the patient 

history. b Subjects labeled “UC TNFi” were being treated with TNFi at the time of biopsy. c 

Subjects labeled “HC” were controls without IBC.    



Table S2. Antibody panel information 

Antigen Clone(s) Manufacturer Catalog 
No. 

CODEX 
oligo 

Working 
dilution 

Exposure 
time 

Vimentin 
RV202 BD 550513 7 

1:100  1/3 s 

CD85j 

HP-F1 ThermoFisher 

16-5129-

82 8 

1:100  1/3 s 

CD15 
HI98 Biolegend 301902 15 

1:100  1/6 s 

CD21 
Bu32 Biolegend 354902 21 

1:100  1/3 s 

CD4 
A161A1 Biolegend 357402 28 

1:100  1/3 s 

CD66 
B1.1/CD66 BD 551354 41 

1:100  1/4 s 

CD8 
SK1 Biolegend 344702 43 

1:100  1/3 s 

CD11c 
B-ly6 BD 555391 44 

1:100  1/3 s 

CD54 
HA58 BD 555510 46 

1:100  1/1.2 s 

CD7 
CD7-6B7 Biolegend 343102 58 

1:100  1/3 s 

TCRyd B1 Biolegend 331202 63 
1:100  1/3 s 

CD38 HB-7 Biolegend 356602 66 
1:100  1/6 s 

CD90 5 E10 BD 555593 68 
1:100  1/5 s 

CD40 HB14 Biolegend 313002 70 
1:100  1/1.5 s 

CD45RA HI100 Biolegend 304102 72 
1:100  1/3 s 

podoplanin 

NC-

08212.77 Biolegend 337002 32 

1:100  1/3.5 s 

collagen IV ab6586 Abcam ab6586 33 
1:100  1/15 s 



CD19 HIB19 Biolegend 302202 2 
1:100  1/3 s 

TIGIT A15153G Biolegend 372702 5 
1:100  1/2 s 

HLA-DR TU36 Biolegend 361602 11 
1:100  1/10 s 

CD274 29E.2A3 Biolegend 329702 14 
1:100  1/5 s 

CD3 UCHT1 BD 555330 20 
1:100  1/3 s 

CD69 FN50 Biolegend 310902 24 
1:100  1/6 s 

CD57 HCD57 Biolegend 359602 30 
1:100  1/3 s 

HIF-1a 1A3 Abcam ab82832 36 
1:100  1/1.2 s 

CD34 561 Biolegend 343602 38 
1:100  1/3 s 

VCAM-1 51-10c9 BD 555645 48 
1:100  1/2 s 

CD36 CB38 ThermoFisher 

MA1-

10209 49 

1:100 1/3 s 

CD1c L161 Biolegend 331502 55 
1:100  1/3 s 

CD45 HI30 Biolegend 304002 
56 1:100  1/20 s 

FoxP3 236A/E7 ThermoFisher 14-4777-

82

57 1:100  1/4 s 

cytokeratin C-11 Biolegend 628602 67 1:100  1/7.5 s 

CD278 C398.4A Biolegend 313502 71 1:100  1/3 s 

CD117 YB5.B8 ThermoFisher 14-1179-

82

74 1:100  1/3 s 

CD5 UCHT2 Biolegend 300602 75 1:100  1/10 s 



CD31 WM59 Biolegend 303102 3 1:100  1/4 s 

Ki67 B56 BD 556003 6 1:100  1/12 s 

CD152 BNI3 BD 555851 23 1:100  1/3 s 

CD2 RPA-2.10 Biolegend 300202 25 1:100  1/3 s 

CD126 BDm5 BD 551462 81 1:100  1/2 s 

CD134 BerACT35 Biolegend 350002 69 1:100  1/2 s 

CD56 B159 BD 555514 29 1:100  1/3 s 

MMP12 ab137444 Abcam ab137444 45 1:100  1/2.3 s 

CD137 b4-1 Biolegend 309802 53 1:100  1/2 s 

CD49f GoH3 BD 555734 51 1:100  1/3 s 

CD16 3G8 BD 555404 52 1:100  1/3 s 

CD123 656 Biolegend 306002 59 1:100  1/3 s 

HLA-ABC G46-2.6 BD 555551 60 1:100  1/3 s 

CD127 A019D5 Biolegend 351302 61 1:100  1/1.2 s 

CD104 450-9D BD 555721 76 1:100  1/3 s 

TNFR2 BD-htnfr-

m1 

BD 551311 77 1:100  1/2 s 

CD279 EH12.2H7 Biolegend 329902 79 1:100  1/3 s 



Table S3. Reagents 

Reagent Source Identifier 

Antibodies and Proteins 

Purified antibodies, see Table S2 Various Various 

Oligonucleotides 

CODEX oligonucleotides, see Table S3 TriLink Biotechnologies and Integrated DNA 
Technologies 

N/A 

Biological Samples 

Fresh frozen tissue University of California, San Diego N/A 

Chemicals and Reagents 

PBS Thermo Fisher Scientific 14190-250 

NaCl Thermo Fisher Scientific S271-10 

Na2HPO4 Sigma S7907 

NaH2PO4 · 7 H2O Sigma S9390 

MgCl2 · 6 H2O Sigma M2670 

NaN3 Sigma S8032 

EDTA Sigma 93302 

TCEP Sigma C4706 

NaOH Sigma S8263 

BS3 Thermo Fisher Scientific 21580 



Poly-L-Lysine  Sigma P8920 

DMSO Thermo Fisher Scientific D128-4 

DMSO Sigma 472301 

DMSO ampoules Sigma D2650 

Paraformaldehyde ampoules, 16% Thermo Fisher Scientific 50-980-487

BSA Sigma A3059 

Tris 1 M, pH 8.0 Teknova T1080 

Candor PBS antibody stabilizer solution Thermo Fisher Scientific NC0436689 

Salmon sperm DNA, sheared Thermo Fisher Scientific AM9680 

TritonTM X-100 Sigma T8787 

Ethanol, 100% Sigma E7023 

Acetone, 100% Thermo Fisher Scientific A929-4 

Methanol, 100% Thermo Fisher Scientific A412-4 

Trizma® HCl Sigma T3253 

Trizma® Base Sigma T1503 

Drierite indicating desiccant Thermo Fisher Scientific 07-578-3A



Bondic polyacrylamide gel Amazon B018IBEHQU 

Antibody diluent Agilent S080981-2 

Protein block, serum-free Agilent X090930-2 

Dual endogenous enzyme-blocking 
reagent 

Agilent S200380-2 

Hematoxylin, ready-to-use Agilent S330930-2 

Eosin Y solution Sigma HT110116 

Cytoseal XYL Thermo Fisher Scientific 8312-4 

Sally Hansen Nail Polish, clear Amazon B00CMFMYEG 

Critical Commercial Instruments, Consumables, Kits and Assays 

LTS filter tips, 10 μl Rainin 30389225 

LTS filter tips, 200 μl Rainin 30389239 

LTS filter tips, 1000 μl Rainin 30389212 

AmiconTM Ultra Centrifugal Filters, 50kDa Thermo Fisher Scientific UFC505096 

NalgeneTM Rapid Flow 500 ml filter, 0.2 
μm 

Thermo Fisher Scientific 09-740-28C

Glass coverslips, 22x22 mm, # 1 1/2 Electron Microscopy Sciences 72204-01 



Frosted microscope slides Thermo Fisher Scientific 12-550-343

Glass coverslip storage box Qintay CS-22 

22x22 mm coverslip mounting gaskets Qintay TMG-22 

WheatonTM Coverslip glass jars Thermo Fisher Scientific 02-912-637

Dumont #5/45 coverslip forceps Fine Science Tools 11251-33 

8-strip tubes, 0.2 ml E&K Scientific 280008 

8-strip caps, flat top E&K Scientific 491008 

8-strip caps, dome top E&K Scientific 491018 

CODEX acrylic plates Bayview Plastic Solutions custom made 

BZ-X710 fluorescence microscope Keyence N/A 

Hoechst 33342 Thermo Fisher Scientific 62249 

DRAQ5 Cell Signaling Technology 4084L 

CorningTM clear 96-well plates Thermo Fisher Scientific 07-200-762

Axygen aluminum sealing film VWR Scientific 47734-817 

CODEX System Akoya Biosciences N/A 



Software and Algorithms 

BZ-X viewer Keyence N/A 

CODEX driver Akoya Biosciences N/A 

CODEX Toolkit, version 1.3.5 https://github.com/nolanlab/CODEX (27) 

Microvolution software for 
deconvolution 

www.microvolution.com N/A 

ImageJ (Fiji version 2.0.0) http://imagej.net N/A 

VorteX (X-shift clustering algorithm) https://github.com/nolanlab/VORTEX (43) 

CellEngine www.cellengine.com (44) 

R, version 3.4.3 www.r-project.org N/A 

R studio desktop, version 1.1.423 www.rstudio.com N/A 

Neighborhood analysis notebooks https://github.com/nolanlab (28) 

Tensorly Python package http://tensorly.org/ (45) 

Statsmodel Python package https://www.statsmodels.org/ (46) 

Scikit learn Python package https://scikit-learn.org/ (47)



Survival R package https://cran.r-project.org/web/packages/ 
survival/index.html 

(48) 

Glmnet R package https://cran.r-project.org/web/packages/ 
glmnet/index.html 

(49) 

Visreg R package https://cran.r-project.org/web/packages/ 
visreg/index.html 

(50) 

Deldir R package https://cran.r-project.org/web/packages/ 
deldir/index.html 

N/A 

ComplexHeatmap R package release/bioc/html/ ComplexHeatmap.html (51) 

The Human Protein Atlas www.proteinatlas.org N/A 

Pathology Outlines www.pathologyoutlines.com N/A 

Stock Solutions Composition 

Staining solution 1 (S1) 5 mM EDTA, 0.5% w/v bovine serum albumin, and 0.02% w/v NaN3 in 
PBS, store at 4 °C. 

Staining solution 2 (S2) 61 mM NaH2PO4 · 7 H2O, 39 mM NaH2PO4, and 250 mM NaCl in a 1:0.7 
v/v mix of S1 and double-distilled (dd)H2O; final pH 6.8-7.0. 

Staining solution 4 (S4) 0.5 M NaCl in S1. 

TE Buffer 10 mM Tris pH 8.0, 1 mM EDTA and 0.02% w/v NaN3 in ddH2O. 

Tris buffer 50 mM, pH 7.2 (at room temperature/25 °C) was prepared using 7.02 g/L 
Trizma HCl and 0.67 g/L Trizma base in ddH2O. 

Conjugation buffer C (C) 150 mM NaCl, 2 mM Tris buffer solution, pH 7.2, 1 mM EDTA and 0.02% 
w/v NaN3 in ddH2O 



Codex 2.0 buffer (H2) 150 mM NaCl, 10 mM Tris, pH 7.5, 10 mM MgCl2 · 6 H2O, 0.1% w/vTriton 
X-100, and 0.02% w/v NaN3 in ddH2O. [DRH1]

Blocking reagent 1 (B1) 1 mg/ml mouse IgG (Sigma) in S2. 

Blocking reagent 2 (B2) 1 mg/ml rat IgG (Sigma) in S2. 

Blocking reagent 3 (B3) Sheared salmon sperm DNA, 10 mg/ml (Thermo Fisher). 

Blocking reagent 4 (B4) Mixture of 57 non-modified CODEX oligonucleotides (see Table S2) at a 
final concentration of 0.5 mM each. 

BS3 fixative solution (BS3) 200 mg/ml BS3 in DMSO, fresh, stored at -20 °C in 15 μl aliquots. 

TCEP solution 0.5 M TCEP in ddH2O, pH 7.0. 

Rendering buffer 20% DMSO (v/v) in H2 buffer. 

Stripping buffer 80% DMSO (v/v) in H2 buffer. 



Table S4. Patient-level validation AUROC and patient-level validation accuracy for all three 

prediction tasks for both standard and CNN representations, where for CNN representations we 

vary the pre-trained neural network and input patch size. UC corresponds to UC (class 1) versus 

healthy (class 0), MAYO corresponds to severe (class 1) vs. mild/moderate (class 0), and TNFi 

corresponds to responder (class 1) vs. resistor (class 0). We identify a particular CNN 

representation by its pre-trained neural network architecture and input patch size. When reporting 

misclassifications we give the number of false positives (fp) and false negatives (fn). 

Misclassifications are not given for the CNN representation with input patch size 500x500px due 

to computational constraints. Optimal number of misclassifications comes from classifying 

according to the threshold which maximizes Youden’s Index on the validation set when weighting 

each patient inversely proportionally to the total number of patients belonging to the same class. 



UC Patient-level Training UC Patch-level Training 

Representation AUC # of 
Misclass. 

(fp/fn) 

Optimal # of 
Misclass. 

(fp/fn) 

AUC # of 
Misclass. 

(fp/fn) 

Optimal # of 
Misclass. 

(fp/fn) 

Standard 0.98 0/1 0/1 0.98 2/1 0/1 

ResNet-18 
500x500px 

0.95 0/1 0.96 0/1 

ResNet-18 
1000x1000px 

0.95 0/1 0/1 1.00 0/1 0/0 

ResNet-50 
500x500px 

0.97 0/2 0.96 0/1 

ResNet-50 
1000x1000px 

0.96 0/3 0/2 0.95 0/2 0/1 

ResNet-152 
500x500px 

0.98 0/2 0.96 0/1 

ResNet-152 
1000x1000px 

0.98 0/1 0/1 0.98 0/1 0/1 

Shufflenet 
500x500px 

0.96 0/2 0.95 0/1 

Shufflenet 
1000x1000px 

0.95 0/3 0/2 0.95 0/2 0/1 

MAYO Patient-level Training MAYO Patch-level Training 

Representation AUC # of 
Misclass. 

(fp/fn) 

Optimal # of 
Misclass. 

(fp/fn) 

AUC # of 
Misclass. 

(fp/fn) 

Optimal # of 
Misclass. 

(fp/fn) 

Standard 0.80 4/1 3/0 0.84 3/4 4/0 

ResNet-18 
500x500px 

0.74 3/1 0.78 4/0 

ResNet-18 
1000x1000px 

0.76 5/1 5/0 0.81 4/1 4/0 

ResNet-50 0.73 5/0 0.77 3/1 



500x500px 

ResNet-50 
1000x1000px 

0.76 4/0 4/0 0.79 4/1 3/0 

ResNet-152 
500x500px 

0.74 4/1 0.81 4/0 

ResNet-152 
1000x1000px 

0.72 4/3 4/1 0.82 4/1 4/0 

Shufflenet 
500x500px 

0.63 4/1 0.71 4/1 

Shufflenet 
1000x1000px 

0.63 5/1 5/1 0.77 5/1 4/0 

TNF Patient-level Training TNF Patch-level Training 

Representation AUC # of 
Misclass. 

(fp/fn) 

Optimal # of 
Misclass. 

(fp/fn) 

AUC # of 
Misclass. 

(fp/fn) 

Optimal # of 
Misclass. 

(fp/fn) 

Standard 0.46 2/9 2/5 0.49 1/6 2/5 

ResNet-18 
500x500px 

0.47 2/6 0.48 0/7 

ResNet-18 
1000x1000px 

0.53 6/3 5/2 0.51 2/7 0/7 

ResNet-50 
500x500px 

0.74 1/4 0.64 3/3 

ResNet-50 
1000x1000px 

0.74 2/2 4/1 0.66 1/5 1/4 

ResNet-152 
500x500px 

0.61 3/3 0.59 3/4 

ResNet-152 
1000x1000px 

0.61 5/2 6/1 0.64 4/5 5/2 

Shufflenet 
500x500px 

0.46 4/4 0.56 3/4 

Shufflenet 
1000x1000px 

0.49 3/7 1/6 0.54 2/6 3/4 
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