
nature cell biology

https://doi.org/10.1038/s41556-022-01034-3Article

Caveolin-1 dolines form a distinct and rapid 
caveolae-independent mechanoadaptation 
system

In the format provided by the 
authors and unedited

https://doi.org/10.1038/s41556-022-01034-3








1 
 

Supplementary Information  

 

Figure legends  

Supplementary Figure 1. FLIM PTRFKO. 

Gallery containing all the FLIM images from PTRFKO MEFs that were used for quantification 

in Extended Data Figure 4D. 

 

Supplementary Figure 1. FLIM PTRFKO+Cav1. 

Gallery containing all the FLIM images from PTRFKO+Cav1 MEFs that were used for 

quantification in Extended Data Figure 4D. 

 

Supplementary Figure 1. FLIM PTRFKO+PTRF. 

Gallery containing all the FLIM images from PTRFKO+PTRF MEFs that were used for 

quantification in Extended Data Figure 4D. 
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1 Effect of Cholesterol decondensation
Caveolin clustering leads to cholesterol enrichment in caveolae (Parton and Simons, 2007). In this section, we
examine the hypothesis that cholesterol de-condensation in enriched domains may enable membrane buffering in
response to increased tension, Fig. 1(A). Experiments on artificial giant unilamellar vesicles have reported con-
tradictory results in this regard. While mixing of previously phase-separated domains was induced by increasing
tension through micropipette aspiration (Portet et al., 2012), suggesting that de-condensation of cholesterol-rich
domains can release membrane area, de-mixing and domain formation was induced by osmotic shocks leading to
vesicle swelling (Hamada et al., 2011; Oglęcka et al., 2014). To theoretically estimate the degree of membrane area
buffering by cholesterol de-condensation, we refer to quantitative studies of the effect of cholesterol concentration
on the area per lipid for binary mixtures (Hung et al., 2007; de Meyer and Smit, 2009), although generally more
complex lipid mixtures are required for phase separation.

Figure 1: (A) Schematic depiction of the response of a lipid membrane containing cholesterol-rich domains to
increased tension. Cholesterol molecules are depicted in red and the other lipids in green. As the cholesterol
rich domains disperse, a homogeneous state is attained, (B) average area per lipid molecule (weighted average
of non-cholesterol lipids and cholesterol) as a function of molar fraction of cholesterol obtained from Hung et al.
(2007). Two mixtures with high and low cholesterol concentrations, ch and c`, are represented with black dots.
If these two mixtures were different phases co-existing on a membrane, the average area-per-lipid of the phase-
separated mixture would be given by the straight line connecting the black dots, for various proportions of each
of the phases, and hence for each average cholesterol concentration of c̄ (blue dot). If instead, at cholesterol
concentration c̄ the membrane was fully mixed, the average area per lipid would be given by the red dot. Since
the relation between average area per lipid versus cholesterol concentration is convex, the mixed state occupies
less area, and hence mixing does not release area.

Hung et al. (2007) reported how increasing cholesterol concentration reduces the average area per lipid
molecule for membranes made of of binary mixtures of cholesterol and DOPC, SOPC or DMPC, Fig. 1(B).
Assuming a given patch of phase separated membrane having area Ā composed of cholesterol-enriched domains
of area Ah at a molar cholesterol concentration ch and average area per molecule Aeff(ch) in a cholesterol-depraved
matrix at cholesterol concentration c` and average area per molecule Aeff(c`) as shown in Fig. 1(A) and with the
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black dots for DOPC in Fig 1(B). We assume that membrane stretching by an osmotic shock is fast enough so
that the number of lipids in the membrane stays constant after stretch application. We obtain the total number
of lipids as a summation of lipids in the cholesterol enriched domain and the deprived domain through

Ntot =
Ah

Aeff(ch)
+
Ā−Ah

Aeff(c`)
. (1)

Out of these, the total number of cholesterol molecules is given by

N c
tot = ch

Ah

Aeff(ch)
+ c`

Ā−Ah

Aeff(c`)
. (2)

Hence, the average cholesterol concentration in the system is given by

c̄ =
N c

tot

Ntot
= αch + (1− α) c` (3)

where

α =
AhAeff(c`)

AhAeff(c`) + (Ā−Ah)Aeff(ch)
. (4)

is bounded such that 0 < α < 1. Thus, we can obtain that cholesterol concentration for the mixed phase
is bounded above and below by the cholesterol concentrations in enriched and deprived domains such that
c` < c̄ < ch. The average area per lipid for this concentration Aeff(c̄) can be obtained from the data for average
area as a function of cholesterol concentration as shown in Fig. 1(B). Now, we have to compare the area per
lipid in a mixed system at cholesterol concentration c̄, i.e. Aeff(c̄), with the average area per lipid in the demixed
system Ad

eff which can be evaluated by dividing the total area of membrane Ā by the total number of molecules

Ad
eff =

Ā

Ntot
= αAeff(ch) + (1− α)Aeff(c`). (5)

This average area lies along the straight line joining average area per molecules for the phase segregated domains
at an average cholesterol concentration c̄, as shown with blue dot in Fig. 1(B). Comparison of average area
per molecule in the homogenous and the phase segregated domains using Fig. 1(B) shows that Aeff(c̄) < Ad

eff,
i.e. that the average area per molecule should be higher in the de-mixed phase. This inequality holds because the
curves in Fig. 1(B) are convex. Thus, rather than providing excess area, cholesterol de-condensation should lead
according to this estimation to a reduction in area and hence cannot be the mechanism through which membranes
release area in response to stretch. On the contrary we can expect a buffer of area by further de-mixing of phase
separated domains. We can generalize this result to all cases where the average area per molecule is a convex
function of cholesterol concentration and the total number of molecules is fixed. While the lipid mixtures in real
membranes are much more complex, this simple analysis does not support the idea or membrane area buffering
by demixing.

2 Model of individual domains of curvature-active proteins
To model individual curved protein domains, we consider the dynamical chemo-mechanical model presented in
detail in Tozzi et al. (2019) particularized to axisymmetry. In this model, curvature-active proteins are modeled
as a concentration field of a diffusing species impinging a concentration-dependent spontaneous curvature (Sorre
et al., 2012), and the interaction between protein enrichment and membrane curvature is accounted for self-
consistently. We formalize the dynamics of the system using Onsager’s variational principle (Doi, 2011; Arroyo
et al., 2018), according to which the system evolves to minimize a functional accounting for the rate of change
of free energy, dissipation and external power input.

2.1 Free Energy
The free energy of a patch of membrane (Γ) with local area fraction of curvature-active protein (φ) has contri-
butions from the bending energy, the mixing entropy and the self-interaction of proteins

F = Fbend + Fent + Fsi. (6)

Here, the bending energy contribution is given by the standard Helfrich energy neglecting the contributions from
Gaussian curvature

Fbend =

∫
Γ

κ

2
(H − C̄φ)2 dS, (7)
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with H representing twice the sum of principal curvatures and C̄ the spontaneous curvature of the protein-lipid
composite at saturation (corresponding to φ = 1). The mixing entropy of proteins is

Fent =

∫
Γ

kBT

ap
[φ log φ+ (1− φ) log(1− φ)] dS, (8)

where kB is the Boltzmann constant and ap is area per molecule. Finally, the self-interaction is assumed to be
of the form

Fsi =

∫
Γ

χ

2ap
φ2 dS +

∫
Γ

Λ

2ap
|∇Sφ|2 dS, (9)

where the first term models attractive (χ < 0) or repulsive (χ > 0) interactions and the second term regularizes
the boundary of protein-rich domains and governs the interfacial energy between domains. The symbol ∇S

denotes here the surface gradient.

2.2 Dissipation
We consider lipid membrane to be inextensible Newtonian surface fluid with rate-of-deformation tensor d and
coefficient of viscosity η. Proteins diffuse on this surface with velocity w relative to the membrane and drag
coefficient ξ/ap. This allows us to write the total dissipation potential as

D = Dmem +Dprot =

∫
Γ

ηd : d dS +

∫
Γ

ξ

2ap
φ|w|2 dS. (10)

2.3 Power input
In our model, mechanical or chemical power can be provided at the boundary of the membrane patch Γ by fixing
membrane tension or the chemical potential of proteins. Here, we consider that tension σ is applied but that the
number of proteins in our patch remains fixed with average density is φ̄ and hence the flux of proteins w is zero
at the boundary. In this case, the power input is purely mechanical and takes the form of a line integral long the
boundary of the patch, ∂Γ,

P = −
∫
∂Γ

σv · ν d`, (11)

where v is the membrane velocity and ν is the outer normal to ∂Γ tangential to the surface.

2.4 Governing equations and numerical solution
We form the Rayleighian functional as R = Ḟ +D + P an minimize it with respect to v and w subject to mass
conservation of membrane proteins and membrane inextensibility to obtain the transport and mechanical govern-
ing equations. These equations are solved under the hypothesis of axisymmetry using B-Spline approximations
as described in detail in Tozzi et al. (2019).

2.5 Spontaneous phase separation
A flat patch of membrane with uniform distribution of proteins φ̄ and applied tension σ > 0 can become unstable,
and hence lead to the formation of a protein-rich domain, by two different mechanisms. First, domains can form
if the net enthalpic and entropic protein interactions become attractive (Tozzi et al., 2019)

aeff = χ+ apκC̄
2 +

kBT

φ̄(1− φ̄)
< 0, (12)

resulting in a purely chemical phase separation. Second, a tension-dependent chemo-mechanical instability can
occur if

κC̄ −
√
κ(aeff/ap) ≥

√
σeffΛ/ap, (13)

where σeff = σ+
kBT

ap
log(1−φ̄)− χ

2ap
φ̄2−κ

2
C̄2φ̄2. In both cases, the resulting protein-rich domains are curved if C̄

is different from zero, and hence they will both respond to a sufficiently large increase in tension by flattening and
releasing area. However, while in the first mechanism protein-rich domains will remain upon tension application
since the criterion for domain formation is independent of tension, in the second case these domains will dissolve
and release previously clustered proteins to the membrane. This situation is summarized in Fig. 2. Since the
second case is consistent with the tension-induced disassembly of Cav1 domains observed experimentally with
reduced membrane order as shown in Suppl. Figure 5E and F, we choose the model parameters so that Eq. (12)
is not satisfied but Eq. (13) is satisfied for low membrane tensions and for both the Cav1 and the PTRF models
referred to in the main text. All the model parameters used are given in Table 1 unless otherwise stated.
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Table 1: Value of model parameters
Parameter Value

Bending Stiffness, κ 20 kBT
Membrane viscosity, η 5 · 10−9 Ns/m
Drag coefficient, ξ/ap 3 · 108 Ns/m3

Area per protein, ap 100 nm2

Spontaneous curvature of Cav1 model, C̄ 2/200 nm−1

Spontaneous curvature of PTRF model, C̄ 2/50 nm−1

Self-interaction of proteins, χ/ap -0.26 mN/m
Λ/ap 15 kBT

Figure 2: Dissolution of buds in response to stretch depends on the interaction between Cav1 molecules. If net
attractive, stretch leads to flattened but phase separated domain whereas, if net repulsive but phase-separated due
to the chemo-mechanical mechanism of Eq. (13), stretch leads to a flat and homogeneous state of the membrane.
To achieve aeff < 0, in the top panel we have used χ/ap = −0.4 mN/m.

3 Thermodynamic model for an ensemble of domains
The previous model is able to describe the dynamics of formation and flattening of a single curved protein-rich
domain with great detail. However, its 3D implementation to study the collective behavior of an ensemble of
domains is extremely challenging. Instead, we develop here a coarse-grained thermodynamical model in which
the geometry of domains is simplified to spherical caps but which allows for a varying number density of such
domains. In this model, given the average area fraction of proteins (φ̄) and the surface tension (σ), we solve for the
number density of domains ρ, their protein coverage φd, radius R and contact angle ψ, and the protein coverage
in the flat membrane domain φf . We do this by minimizing a free energy accounting for the same contributions
as in the previous model, except for a different implementation of interfacial energy between domains. In the
previous model, the energy of the diffuse interface was controlled by the second term in Eq. (9) whereas here it
is written in terms of the line tension γ of a sharp interface (Reinhard Lipowsky, 1992; Sens and Turner, 2006).
Geometric arguments shows that the membrane area fraction of budded domains is αd = 2πρR2(1− cosψ) and
that of the flat domain αf = 1 − αd. Similarly, the radius of the interface between budded and flat domains is
R sinψ. The free energy per unit area of membrane is then

F(ρ, φd, φf , R, ψ) =
κ

2
(2/R− C̄φd)2αd + µ(φd)αd + 2πγρR sinψ +

κ

2
C̄2φ2

fαf + µ(φf )αf + Fext, (14)

where the chemical potential of proteins in the bud and flat domains are denoted by µ(φd) and µ(φf ) and given
by the expression

µ(φ) = µa,0φ+
kBT

ap
[φ log φ+ (1− φ) log(1− φ)] +

χ

2ap
φ2. (15)

Fext denotes the work done by surface tension σ against changes in projected area, and is given by

Fext = −σ
[
πρ(R sinψ)2 − 1

]
(16)

We assume that total number of proteins with average area fraction φ̄ is fixed, and hence αdφd+αfφf = 1. Hence,
using this constraint one of the protein area fractions, say φf , can be expressed in terms of other variables and
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the mass-conservation constrained free energy depends only on ρ, φd, R, and ψ, which we numerically minimize
to obtain equilibrium states in terms of the number density, geometry and protein enrichment of domain given
φ̄ and σ.

To illustrate the comparison between two models, we considered with the thermodynamic model the specific
case where ρ is fixed, mimicking the ensemble of the continuum model of the previous section, and examining
the equilibrium states predicted by these two different models for the same model parameters and where the line
tension parameter, γ = 0.07 pN for the Cav1 model and 1.24 pN for the PTRF model, was estimated integrating
the free energy density of the continuum model along the diffuse interface and dividing it by its perimeter. Figure
3 shows a good agreement, albeit the geometrical simplification of the second model.

The material parameters used in Fig. 6C coincide with those of the the axisymmetric model in Table 1, except
for the fact that Λ is not used in the thermodynamic model and the line tension parameter is chosen as mentioned
above.

Figure 3: Comparison between the two models for various surface tensions and spontaneous curvatures.

In Fig. 6, we have examined the consequences of the distinct mechanical behavior for ensembles of caveolae
and dolines. Our observations show that both structures coexist on the plasma membrane as shown in Fig 5.
According to our model, a membrane endowed with both of these area-buffering structures should first respond
to an increase of membrane tension taking advantage of the doline system and splitting and flattening these
structures, and only in cases of extreme tension or large stretch would cells require Caveolae to release membrane
area.
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