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Peer Review File



Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

This is an interesting and potentially highly clinically relevant study, using data from patient blood 

samples to try to determine signatures associated with COVID-19 disease severity, primarily using 

machine learning models for classification on the basis of TCR repertoire analysis and then combining 

such data/ analysis with transcriptomic data from single cell studies. Figures are well presented and 

the bioinformatic methods are interesting. 

 

Key concerns are (1) a lack of consideration of bias due to different laboratory sequencing 

methodologies for the different cohorts, which have been drawn together, and (2) the extent to which 

the same samples were used in both training and testing sets, leading to an overestimate of the 

performance of the machine learning methods. 

 

 

Specific major comments: 

 

Page 3, lines 29-32: Introduction - I am unsure of the reason for discussing a largely irrelevant, clonal 

process (lymphoblastic leukaemia), while not properly reviewing the literature in terms of single cell or 

bulk TCR repertoire sequencing work that has contributed to our understanding of SARS-CoV-2 

responses. 

 

Page 4, lines 19-24: Results – This is a key methodological concern: A series of datasets appear to be 

“lumped together” without any consideration of potentially differing laboratory methods, whether CD4/ 

CD8 or all T-cells were sequenced or the amount of starting material (i.e., what numbers of 

lymphocytes the nucleic acid sample used in sequencing equated to). No consideration appears to be 

given to potential bias introduced by any of this. The manuscript is very much written from a 

bioinformatician’s standpoint, without critically considering the “wet lab” methods. If I have 

misunderstood this, I apologise, but it is not at all clear from the manuscript what has been compared 

with what at various points in the analyses. 

 

Page 9, lines 15-17 again demonstrate the mindset on page 4, considering only bioinformatic analysis: 

“By uniformly processing immune sequencing data from multiple cohorts with TCR-seq data, we found 

that antigen exposure during the course of COVID-19 significantly decreased the diversity of 

repertoires and reshaped clonal representation.” Uniform bioinformatic processing cannot negate the 

effects of using potentially mismatched cohorts produced using different laboratory methodology with 

different biases (please see my comment above). I have not had time to go through the various 

cohorts, but the authors need to reassure the reader that they are comparing like with like, rather 

than “apples with oranges”, so to speak. 

 

Page 4, line 5: “fewer differences were found for the ISB-S CD4 and CD8 datasets when comparing 

samples from different disease severities to those from healthy donors”. Following from the two 

concerns above, did the healthy donors’ samples contain sequences from both CD4 and CD8 T-cells? 

This will dilute any signal obtained. 

 

Page 4, lines 7-8: “By comparison, the top CDR3 sequences were different across conditions for both 

the AB and ISB-S datasets.” Again, is this due to differences between laboratory methodology or a 

genuine difference between patients? This does not appear to be considered. 

 

Page 13, lines 28-29: It is very important that the same upsampled data is not present in both the 

training and testing splits, because in that case the authors would be testing on the training data and 

artificially increasing the cross-validation performance. The authors should provide reassurance that 

this isn’t happening. However, from inspection of the code, it appears that they are testing on the 



training data. This is not an appropriate way to assess a machine learning method’s performance. 

 

Page 9 lines 2-3: It would be helpful for clarity if results were specifically attributed to the testing data 

partitions here, if that is the case. 

 

Page 9 lines 6-9: It appears that separate models for CD4 and CD8 analysis are used (which is helpful, 

in light of the above comments), and therefore the authors cannot use the Adaptive dataset for hold-

out testing. However, it would be good practice if they acknowledged that their cross-validation does 

not necessarily indicate good generalisation of their machine learning models. 

 

Page 10 lines 9-10: Given that no hold-out testing was carried out, the claim of successful prediction 

of disease severity cannot be substantiated and should be removed or made substantially more 

speculative. 

 

Page 14 line 1: It would be good to know what the value of K is in the K-nearest neighbour classifier. 

Maybe it was set using the defaults. It would be helpful to mention whether default parameters are 

used in any other methods too, as they may not be appropriate for the analysis being done here. 

 

Page 4 lines 9-10: It might be helpful to explain why different thresholds are used for different 

datasets. 

 

 

Specific minor comments: 

 

Page 7 lines 11-13: This sentence doesn’t make sense to me: “Comparison with the top enriched 

motifs found from the GLIPH2 analysis, including AGQGA%E, S%AAG, SL%AG, SLQGA%YE, 

S%SGTDT, SL%GTDT, SLS%TDT, and S%AGNQP revealed high density of clusters in cluster 6” 

 

Page 11 lines 21-22: This sentence doesn’t make sense to me (either semantically or grammatically): 

“For the ISB-Swedish cohort, patients were first filtered by those were sequenced by 10X Genomics.” 

 

Page 13 line 32: Used acronym SVC instead of SVM. I think support vector machines have been mixed 

up with the name of the sklearn function, support vector classification, which may be confusing to the 

reader. 

 

 

Reviewer #2 (Remarks to the Author): 

 

This article describes an integrative and immunology approach to systematically study more than 4 

million TCR sequences from different sources for COVID-19 patients and healthy donors. Overall, this 

is a valuable effort that helps revealed patterns of the adaptive immune response during SARS-CoV-2 

infection. In addition, through the analysis of biological pathways, the authors also suggested that T 

cell clonal expansion is highly related to some T cell effector functions and TCR signaling. However, 

some issues or concerns need to be addressed. 

1. For k-mers analysis, why did the author set 50,000 top variance unique k-mers for downstream 

analyses e.g., PCA and machine learning pipelines. Will different threshold settings bring different 

clustering and performance? 

2. In addition to K-mers, did the author consider using other methods, such as deep learning, multiple 

sequence alignments and other methods for clustering and other downstream analysis? 

3. In the machine learning part, because the number of healthy donor samples is relatively small, 

even though the author uses the unsampled method, is there any possibility of overfitting? Because I 

have observed that the performance of many classifiers is 1. I suggest that the model performance 

can be re-evaluated on the independent test set collected separately. 

4. Regarding the predictor, the author did not release an independent program or online predictor, so 



it is not available for others to test or use. 

5. Another key question is whether there is any clinical application of the findings in the author's 

article. What is the point of finding these important TCR patterns? Such as the development of 

personalized vaccines, observation of potential COVID-19 patients. 

6. The author constructed 3-mer, 4-mer, 5-mer, and 6-mer frequency matrix representations of ISB-S 

CD4 and CD8 datasets and performed PCA analysis to see whether samples cluster by disease 

severity. I observed that the majority of samples clustered together, although a number of mild and 

moderate samples were separated from the main cluster. So, is it possible that this part of the 

separated samples is caused by sequencing technology or batch effects? I think the conclusion the 

author got here is not supported by statistical significance. 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

This paper is a meta-analysis of TCR data from COVID-19 and healthy controls. The authors bring 

together data from a number of previous studies, and provide the single biggest set of TCR data from 

COVID-19 patients. The paper makes a number of claims about the COVID-19 repertoires. 

As in all such metadata, especially where the data were produced by completely different 

methodologies, it is absolutely crucial to provide full clarity about the composition of the different data 

sets. One key element is to show how many of each cohort were mild, moderate or severe, or HD. I 

may have missed this somewhere in the supplementaries, but it is essential to make this data obvious 

in fig 1. I suspect the cohorts are very unbalanced. 

In fig 1, all the estimators are strongly influenced by sample size. The authors should show their 

conclusions are not influenced by sample size. I could not understand what panel E represented. In F, 

was this just a random sample of 32 AB repertoires ? Why 32 ? Was this repeated multiple times ? 

In Fig 2, the PCAs are not convincing to me. There are a few outlying mild and moderate, but 

otherwise they look totally overlapping.. In the heatmaps, are these averages of multiple 

subsamples ? Is there any obvious separation between condition if the samples are allowed to cluster 

across the different individuals ? I did not really understand the import of the panels G and H. Could 

the authors explain this a bit more clearly ? 

In Fig 3, what is the proportion of cells between different disease subsets ? Can the authors say a bit 

more about the subsets ? Which are naïve ? Is there a proliferating subset ? The authors say there is a 

relationship between the cluster pattern and disease severity – but it looks more like a radically 

different distribution between healthy and COVID-19 repertories. This seems a striking finding, and 

not necessarily what other people have observed ? Ths figure deserves a much more detailed 

discussion and analysis. 

Fig 4 is lacking a lot of detail which is important for interpretation. How balanced are the repertories ? 

What is meant by upsampling the controls ? How were the parameters decided – was this done on a 

independent data set (i.e. before the cross-validation) ? Did the authors try fitting models on one data 

set, and then testing on one of the other data sets ? 

Overall, the attempt to provide a meta analysis of diverse TCRrep data sets is interesting and 

potentially valuable. But in light of the known challenges of meta-analyses, the paper is a bit skimpy 

in providing detail which could be used to assess the validity of the comparisons. Also, at the end of 

the day, each analysis has largely been carried out on an independent data set, which rather reduces 

the value of carrying out a meta-analysis in the first place. Other than the overall reduction in 

diversity shown in fig 1, I am not convinced any of the other findings are generalizable across data 

sets, and so its hard to assess the significance of the findings. 
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Response letter for revision of Park et al., “T cell receptor repertoire signatures associated with 
COVID-19 severity” 
 
Summary of this revision 
 

- Completed all feasible suggested / requested analyses. 
 

- Clarified the rationale for bioinformatics processing pipelines and analysis methods of choice. 
 

- Provided new machine learning models that demonstrate enhanced generalizability using motif-
based data representation approach 
 

- Revised the figures regarding machine-learning performance to new results from rigorous hold-
out testing. 
 

- Provided requested code in a public Github repository. 
 

- Clarified the details of the methodology. 
 

- Addressed all remaining points in a point-by-point manner. 
 
 
Details to follow below. 
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Point-by-point response to the reviewers (Park et al., Communications Biology manuscript) 
 
Reviewer #1: This is an interesting and potentially highly clinically relevant study, using data from 
patient blood samples to try to determine signatures associated with COVID-19 disease severity, 
primarily using machine learning models for classification on the basis of TCR repertoire analysis and 
then combining such data/ analysis with transcriptomic data from single cell studies. Figures are well 
presented and the bioinformatic methods are interesting. 
 
Key concerns are (1) a lack of consideration of bias due to different laboratory sequencing methodologies 
for the different cohorts, which have been drawn together, and (2) the extent to which the same samples 
were used in both training and testing sets, leading to an overestimate of the performance of the machine 
learning methods. 
 
Response: 
We thank the reviewer for an overall accurate summary and positive comments on the importance and 
novelty of the project. We agree with the reviewer that consideration of different laboratory sequencing 
methodologies for different cohorts is critical1.  Batch effect correction, as the reviewers point out, is 
particularly critical for pooled analyses of multiple datasets to ensure biological comparability and the 
discernment of meaningful biological signal from sequencing noise. However, as we will clarify in our 
subsequent responses, each of our analysis pipelines were run separately on the individual datasets, rather 
than being pooled and analyzed together. The separate generation of summary statistics on each dataset, 
albeit using the same computational tools for their generation, highlights that no “merging” or “pooled” 
analyses were conducted. As such, batch effect correction procedures are not critical issues in our 
manuscript.  
 
We acknowledge that with very specific dataset selection criteria, it may be possible to integrate immune 
repertoire datasets together with computational batch effect correction and subsequently analyze in a 
pooled approach. Notably, this approach may be feasible if all datasets are single cell immune repertoire 
sequencing data and are also meaningfully comparable in terms of the cell types included and laboratory 
methods employed. Unfortunately, the datasets in this manuscript includes a bulk-TCR sequencing 
dataset (Adaptive Biotechnologies), which cannot be readily integrated with the single-cell datasets (ISB-
S, PLA-H, WHH). 
 
It is, in theory, possible to perform integrative and pooled analyses for the three single-cell datasets if we 
were primarily interested in gene expression via RNA-seq. In single-cell RNA-seq, powerful 
computational tools such as Seurat2, Harmony3, Mutual Nearest Neighbors4, and LIGER5, have enabled 

 
1 Tung, PY., Blischak, J., Hsiao, C. et al. Batch effects and the effective design of single-cell gene expression 
studies. Sci Rep 7, 39921 (2017). https://doi.org/10.1038/srep39921 
2 Stuart, T., Satija, R., et al. 2019. Comprehensive Integration of Single-Cell Data. Cell, 177(7), pp.1888-1902.e21. 
3 Korsunsky, I., Millard, N., Fan, J. et al. Fast, sensitive and accurate integration of single-cell data with 
Harmony. Nat Methods 16, 1289–1296 (2019). https://doi.org/10.1038/s41592-019-0619-0 
4 Haghverdi, Laleh, et al. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual 
nearest neighbors. Nature biotechnology 36.5 (2018): 421-427. 
5 Welch, Joshua D., et al. Single-cell multi-omic integration compares and contrasts features of brain cell identity. 
Cell 177.7 (2019): 1873-1887. 
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batch-effect corrected integration of multiple datasets. However, our analysis is focused on TCR-seq data 
from the multiple datasets, which has unique challenges compared to RNA-seq data when considering the 
possibility of batch effect correction. While scRNA-seq quantifies expression levels of genes, where 
intuitively, some baseline signal of the “batch” from each dataset can be subtracted from the background 
to separate “signal” from “noise,” in scTCR-seq, the data structure is comprised of sequence information 
rather than quantifiable expression data. We therefore focused our analyses on gaining insights into 
changes in repertoire diversity, specificity, and clonal composition within particular datasets. 
 
Additional considerations that reinforced our decision to pursue our analytical approach were that the 
success of computational approaches for batch effect correction is most salient among datasets with high 
baseline similarity. Single-cell RNA-seq analyses that have seen the most success in employing these 
computational tools for multi-dataset integration were mostly integrating together highly comparable 
individual datasets. For example, the commonly used multi-dataset integration tool in Seurat offers a 
tutorial where integration is performed on two datasets generated by the same lab, using identical 
sequencing methods6. The datasets in our manuscript lack such a high degree of baseline similarity. They 
come from different laboratories located in multiple nations, which, as the reviewers point out, differed in 
wet-lab techniques and sequencing protocol. Crucially, the ISB-S dataset used droplet-based sequencing 
for the TCR sequences, whereas the PLA and Wuhan Hankou dataset used full-length sequencing, which 
reduces the baseline comparability of the datasets in the first place. Also, the three single-cell datasets are 
not of equal size. The ISB-S (Su) dataset vastly outnumbers both the WHH (Wen) and PLA Hospital 
(Zhang) datasets in sample size. If a pooled analysis approach is undertaken, we anticipate that the 
biological signal from the ISB-S dataset will be disproportionately amplified in the results, compared to 
the biological signal from the PLA and WHH datasets. As such, we believe that an analytical pipeline that 
separately analyzes the individual datasets and reports the results from each dataset as well as the 
consensus results, which is the approach in our manuscript, is more methodologically sound than 
attempting a pooled approach. 
 
Our initial machine learning analyses submitted in the initial manuscript (Figure 5, Supplemental Figure 
7) were also conducted only on the ISB datasets, and not on any of the other datasets. We later expanded 
on our machine learning analyses to the other datasets included in our manuscript to demonstrate the 
generalizability of our models, and we show that the performance of our machine learning models are 
robust even in cross-dataset analyses. Thus, we hope to clarify the scope of our analyses and demonstrate 
why some of the key overarching concerns regarding batch effects do not affect our analyses per reviewer 
comments. 
 
Specific major comments: 
 
Page 3, lines 29-32: Introduction - I am unsure of the reason for discussing a largely irrelevant, clonal 
process (lymphoblastic leukaemia), while not properly reviewing the literature in terms of single cell or 
bulk TCR repertoire sequencing work that has contributed to our understanding of SARS-CoV-2 
responses. 

 
6 Kang, H., Subramaniam, M., Targ, S. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic 
variation. Nat Biotechnol 36, 89–94 (2018). https://doi.org/10.1038/nbt.4042 
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We thank the reviewer for this comment and agree that it is important to review the literature of TCR 
repertoire sequencing that has contributed to our understanding of SARS-CoV-2 responses. We have 
updated our manuscript to review the literature in terms of TCR sequencing work that has contributed to 
our understanding of SARS-CoV-2 immunity. In the original submission, the lymphoblastic leukemia 
example was mentioned to illustrate the broader clinical utility of TCR repertoire sequencing studies for 
prognostic biomarker development. 
 
Page 4, lines 19-24: Results – This is a key methodological concern: A series of datasets appear to be 
“lumped together” without any consideration of potentially differing laboratory methods, whether CD4/ 
CD8 or all T-cells were sequenced or the amount of starting material (i.e., what numbers of lymphocytes 
the nucleic acid sample used in sequencing equated to). No consideration appears to be given to potential 
bias introduced by any of this. The manuscript is very much written from a bioinformatician’s standpoint, 
without critically considering the “wet lab” methods. If I have misunderstood this, I apologise, but it is 
not at all clear from the manuscript what has been compared with what at various points in the analyses. 
We thank the reviewer for expressing these concerns. However, once again we clarify that no datasets 
were lumped together for analysis; instead, each dataset was analyzed with a set of bioinformatics tools, 
and the consensus results of this analysis is being reported.  
 
Page 9, lines 15-17 again demonstrate the mindset on page 4, considering only bioinformatic analysis: 
“By uniformly processing immune sequencing data from multiple cohorts with TCR-seq data, we found 
that antigen exposure during the course of COVID-19 significantly decreased the diversity of repertoires 
and reshaped clonal representation.” Uniform bioinformatic processing cannot negate the effects of using 
potentially mismatched cohorts produced using different laboratory methodology with different biases 
(please see my comment above). I have not had time to go through the various cohorts, but the authors 
need to reassure the reader that they are comparing like with like, rather than “apples with oranges”, so to 
speak. 
We thank the reviewer for this comment. Once again, we wish to clarify that uniform bioinformatic 
processing entailed separate but standardized processing of individual datasets using identical pipelines 
(the bioinformatics tools used broadly in the literature), as opposed to combining the data into one pooled 
set prior to analysis. We believe that this key distinction allows us to ensure comparability of results that 
are being compared in this manuscript because all comparisons are made within each dataset. When any 
claims in the paper mention multiple datasets, they are simply reporting consensus results of the within-
dataset comparisons. While we agree with the reviewer that these concerns are important to address when 
multiple datasets are merged together, we believe that these concerns are not applicable in our 
manuscript. 
 
Page 4, line 5: “fewer differences were found for the ISB-S CD4 and CD8 datasets when comparing 
samples from different disease severities to those from healthy donors”. Following from the two concerns 
above, did the healthy donors’ samples contain sequences from both CD4 and CD8 T-cells? This will 
dilute any signal obtained. 
We thank the reviewer for this comment. Yes, the healthy donors’ samples in the ISB dataset contained 
sequences from both CD4 and CD8 T cells. All comparisons between HD and COVID patients are 
performed separately in CD4 vs. CD8 T cell datasets in our manuscript. We believe that confusion here 
may have stemmed from the ambiguity in the language of this sentence on page 4 line 5, and we have 
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reworded this sentence in the manuscript to enhance clarity. For the ISB-S dataset, the authors of the 
original manuscript (Su et al) have provided separate data for CD4 and CD8 T cells, including for healthy 
donors. As such, sequences from healthy donors and COVID come as a set in each of the CD4 and CD8 
datasets. Thus, all our comparisons are technically restricted in this manner: in other words, our 
comparative analyses are partitioned for CD4 (HD vs. COVID) and CD8 (HD vs. COVID). Thus, we 
hope to reassure the reviewers that no such signal dilution has occurred in our analysis. The sentence here 
is trying to convey that the difference between the TCR samples of COVID-19 patients and healthy 
donors from the AB dataset were greater than the differences observed between TCR samples of different 
COVID severities (e.g. Mild vs. Moderate vs. Severe COVID) from the ISB-S datasets. Therefore, the 
presence of both CD4 and CD8 T cells in the healthy donor dataset does not dilute any signal observed, as 
comparisons are made separately among CD4 T cells and among CD8 T cells. 
 
Page 4, lines 7-8: “By comparison, the top CDR3 sequences were different across conditions for both the 
AB and ISB-S datasets.” Again, is this due to differences between laboratory methodology or a genuine 
difference between patients? This does not appear to be considered. 
We thank the reviewer for this comment. We apologize for the lack of clarity in the original manuscript, 
as we now see how this sentence could be misinterpreted as a comparison between the two datasets, rather 
than a comparison of CDR3 representation across the disease severities within each dataset. The wording 
in the manuscript has been modified to enhance clarity. We wish to clarify that all comparisons between 
healthy donors and COVID patients take place within datasets, and any claims in the manuscript that refer 
to multiple datasets are simply reporting the consensus findings of within-dataset comparisons. For 
example, healthy donors in the Adaptive Biotechnologies (AB) dataset are only compared to COVID 
patients in the AB dataset.  Here, we are not making the claim that the sequences in AB and ISB-S 
datasets were different, but rather that in each dataset, the CDR3 sequence that are most frequently 
represented in each level of disease severity are different. We believe this finding is interesting because 
the distinctness of the top CDR3 sequences found in each disease severity is suggestive of how signatures 
of severity of COVID-19 infection can be “read” out in the T cell receptor repertoire.  
 
The differences in the top CDR3 sequences represented at each level of COVID-19 severity may be 
reflective of differences in clonal expansion of relevant T cell subpopulations that may vary in their 
ability to effectively mount an immune response against the SARS-CoV-2 virus. Given the sheer size of 
the Adaptive Biotechnologies dataset, which has TCR repertoires collected data from 1563 patients, we 
are convinced of the robustness of this signal that T cells expressing certain CDR3 sequences are 
disproportionately clonally expanded in patients at different levels of disease severity. The fact that this 
observation of differing CDR3 representations by disease class was found in two of our largest datasets, 
AB and ISB-S, further adds significance to this observed trend. 
 
Page 13, lines 28-29: It is very important that the same upsampled data is not present in both the training 
and testing splits, because in that case the authors would be testing on the training data and artificially 
increasing the cross-validation performance. The authors should provide reassurance that this isn’t 
happening. However, from inspection of the code, it appears that they are testing on the training data. 
This is not an appropriate way to assess a machine learning method’s performance. 
We thank the reviewer for these comments. We agree that the upsampling of the healthy donor and 
COVID-19 sequences prior to training the machine learning algorithms makes it imperative that the same 
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upsampled data is not present in both training and test sets. As this is a crucial step in ensuring the 
integrity of our analyses, we have significantly modified our code to ensure that the data in the train and 
test sets are distinct. We found that the models in the original manuscript had these issues. Nonetheless, 
after correcting for this methodological issue, we still attain high model performance, particularly in the 
CD8 subset where several algorithms attain AUROCs > 0.90, which is consistent with the findings in the 
original manuscript. 
 
Page 9 lines 2-3: It would be helpful for clarity if results were specifically attributed to the testing data 
partitions here, if that is the case. 
The results described are attributed to the classification of a given patient’s TCR repertoire kmer profile 
as either HD or COVID-19. “Each permutation” refers to the length of the kmers (k = 3, k = 6) as well as 
the classifier’s training for classifying HD vs. each level of severity of COVID TCR profiles. We have 
updated the manuscript to enhance the clarity as to what the permutations refer. 
 
Page 9 lines 6-9: It appears that separate models for CD4 and CD8 analysis are used (which is helpful, in 
light of the above comments), and therefore the authors cannot use the Adaptive dataset for hold-out 
testing. However, it would be good practice if they acknowledged that their cross-validation does not 
necessarily indicate good generalisation of their machine learning models. 
Page 10 lines 9-10: Given that no hold-out testing was carried out, the claim of successful prediction of 
disease severity cannot be substantiated and should be removed or made substantially more speculative. 
We thank the reviewer for these comments and suggestions. We agree with the reviewer that the Adaptive 
Biotech dataset is not suitable for hold-out testing. We do not believe it would be appropriate to train 
models on a single cell TCR dataset and then subsequently do hold-out testing on a bulk TCR dataset. 
Such an analysis is neither feasible nor appropriate because they are not comparable data at baseline. As 
the reviewer points out, the separation between CD4 vs. CD8 cell types is also another feature of the AB 
dataset that differs from the ISB dataset, on which our machine learning models were trained. 
 
Still, we agree with the reviewer that using one dataset for training machine learning models and testing 
their performance on another dataset will provide greater assurance of the generalizability of the machine 
learning models. Per the reviewer’s suggestions, we have attempted several different methods for hold-
out testing of our machine learning models. We first tried training our machine learning models on ISB-
S’s 6mer matrices and subsequently testing their performance on PLA and WHH datasets’ 6mer matrices. 
Unfortunately, these models did not attain high performance because very few 6mers that were 
represented in the ISB-S patients’ TCR repertoires were also represented in the PLA and Wuhan Hankou 
patients’ TCR repertoires.  
 
While our kmer models were not generalizable to other datasets, we successfully implemented an 
alternative data curation approach using motif-based clustering, which enabled the generalizability of our 
machine learning models to external validation sets. While the different datasets were unlikely to include 
identical kmers, we hypothesized that CDR3 motifs would still be found in common across datasets, so 
we opted to curate our data as a motif-based counts matrix using GLIPH2 motifs instead of kmers. With 
this new data curation approach, we were able to train our machine learning models on the ISB-S dataset 
and assess performance on the PLA and WHH datasets as an external hold-out testing validation. We 
trained the models on two permutations (HD vs. Moderate and HD vs. Severe) on the ISB-S dataset and 
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tested the models on the equivalent subsets of the PLA (Zhang) and WHH (Wen) datasets. As the PLA 
and WHH datasets lack any mild COVID patients, we did not try this permutation. We also built soft-
voter ensemble classifiers of the five classifiers (Random Forest, Support Vector Machine, Gradient 
Boosting, KNN and Bernoulli Naïve Bayes), which generated highly accurate predictions in the 
validation sets. The results are reported below.  

 
 

ROC Curves of GLIPH2-based models, Five Supervised ML Classifiers:  
External Validation Set Holdout Testing Results –  

Training on ISB-S, Testing on PLA (Zhang) and WHH (Wen) 
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ROC Curves of GLIPH2-based models, Soft Voter Ensemble Classifiers:  

External Validation Set Holdout Testing Results –  
Training on ISB-S, Testing on PLA(Zhang) and WHH (Wen) 
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Page 14 line 1: It would be good to know what the value of K is in the K-nearest neighbour classifier. 
Maybe it was set using the defaults. It would be helpful to mention whether default parameters are used in 
any other methods too, as they may not be appropriate for the analysis being done here. 
We thank the reviewer for these suggestions. The value of K in the K-nearest neighbor classifier is k = 3 
which we have now clarified in the methods section. While default parameters attained high classification 
performance, nevertheless, we agree that it is important to explain the rationale for hyperparameter 
selection. In response to these comments, we have attempted hyperparameter optimization of our models 
via a grid search of candidate parameters using the GridSearchCV function in scikit-learn’s 
model_selection library. The Grid Search was performed on a 6mer dataset that combines CD4 and CD8 
TCR repertoires of the ISB-S dataset to classify HD from all COVID sequences, so that the same 
hyperparameters could be used to train on CD4 and CD8 TCR data for all permutations (HD vs. Severe, 
HD vs. Moderate, HD vs. Mild). 
 

Algorithm Hyperparameters in Grid Search Optimal Hyperparameters 
according to GridSearchCV 

SVM param_grid = { 
'C': [0.1,1, 10, 100], 
'gamma': [1,0.1,0.01,0.001], 
'kernel': ['rbf', 'poly', 'sigmoid', 'linear'] 
} 
Fitted 5 folds for each of 64 candidates, totaling 320 fits. 
 

 
C = 100, 
Gamma = 1, 
Kernel = RBF 

KNN param_grid = { 
'n_neighbors': [3,4,5,6,7,8,9,10], 
'weights': ["uniform","distance"], 
'algorithm': ["auto","ball_tree","kd_tree","brute"], 
'leaf_size': [10,20,30], 
'p': [1, 2] 
} 
Fitted 3 folds for each of 384 candidates, totaling 1152 fits.  
 

 
K = 3, 
Weights = Distance, 
Algorithm = Auto, 
Leaf Size = 10, 
p = 2 (Distance Type is 
Euclidean) 
 

Random Forest param_grid = { 
'n_estimators': [200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000], 
'max_features': [‘auto’, ‘sqrt’], 
'max_depth': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110], 
'min_samples_split': [2, 5, 10], 
'bootstrap': [True, False] 
} 
Fitted 3 folds for each of 1440 candidates, totaling 4320 fits.  
 

 
 
Bootstrap = True, 
Max_Depth = 20, 
Max_Features = Auto, 
Min_Samples_Split = 5,  
N_estimators = 2000 

Bernoulli Naïve 
Bayes 

param_grid = { 
    'alpha': [0, 0.01, 0.1, 10, 50, 100], 
    'binarize': [0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0], 
    'fit_prior': [True, False], 
    'class_prior': [np.array([0.5,0.5]), None] 
} 
Fitted 3 folds for each of 168 candidates, totaling 504 fits. 
 

 
Alpha = 0, 
Binarize = 0.0, 
Class_prior = array([0.5,0.5]), 
Fit_prior = True 
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Gradient 
Boosting 

param_grid = { 
'n_estimators': [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000] 
'max_depth': [1, 2, 5, 10, 20], 
‘learning_rate’: [0.001, 0.01, 0.1, 1.0] 
} 
Fitted 3 folds for each of 300 candidates, totaling 900 fits. 
 

 
N_estimators = 100 
Max_depth = 20 
Learning_rate = 1.0 

Table 1 – Hyperparameters of Machine Learning Algorithms Included in Grid Search 
 
However, the optimal hyperparameters identified in the grid search did not generalize well to the different 
permutations of our models. The “optimal” hyperparameters did not enhance the accuracies of our models 
in individual permutations (HD vs. Severe, HD vs. Moderate, HD vs. Mild). The generalization was 
particularly not good for CD8 models, whereas marginal improvements were found in CD4 models, so we 
left the hyperparameters as is in the CD8 models, while adjusting the hyperparameters in the CD4 models 
where improvements were observed. Notably, during holdout testing, the hyperparameters specified in the 
table above did not improve the performance of our models on the test set of our data in the CD8 data. 
Therefore, we did not find a compelling reason to adopt the entire set of new hyperparameters specified 
by results of the grid search, and selectively adopted them as warranted by improvements to model 
performance. 
 

The parameters that were used in our final reported models are the following. 
Algorithm Final Hyperparameters  

(CD8 models) 
Final Hyperparameters 

(CD4 models) 

SVM kernel='poly', 
C=20,  
degree=5, 
probability=True 

kernel='rbf', 
C=100,  
gamma=1, 
probability=True 

KNN K = 3 
weights='uniform' 
algorithm='auto' 
leaf_size=30 
p=2 
metric='minkowski' 

K =3,  
weights='distance', 
algorithm='auto' 
leaf_size=10,  
p=2 
metric='minkowski' 

Random 
Forest 

n_estimators=100,  
criterion='gini',  
max_depth=None,  
min_samples_split=2,  
max_features='sqrt',  
max_leaf_nodes=None,  
bootstrap=True 

n_estimators = 2000,  
criterion='gini',  
max_depth = 20, 
min_samples_split = 5, 
max_features='sqrt',  
max_leaf_nodes=None,  
bootstrap=True 

Bernoulli 
Naïve Bayes 

Alpha = 1.0 
Binarize = 0.0 
Fit_prior = True 
Class_prior = None 

alpha = 0,  
binarize = 0.0,  
fit_prior = True 
class_prior = 
np.array([0.5,0.5]) 

Gradient 
Boosting 

n_estimators=100,  
learning_rate=1.0,  
max_depth=1 

n_estimators=100, 
learning_rate=1.0, 
max_depth=20 

Table 2: Final Table of Hyperparameters 
 
Page 4 lines 9-10: It might be helpful to explain why different thresholds are used for different datasets. 
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We thank the reviewer for this comment. The reason for the different thresholds used for the AB and ISB-
S datasets is due to the relative sizes of the datasets and the different relative contributions of individual 
CDR3 sequences to the overall proportions due to sequencing depth; moreover, as the AB dataset is more 
than an order of magnitude larger than the ISB-S dataset, we chose to use the proportion threshold of 
0.0001 for ISB-S samples and 0.00001 for AB samples, so that we analyze an overall comparable number 
of sequences in each dataset. These different thresholds are necessary given the differences between bulk 
and single cell TCR sequencing. 
 
Specific minor comments: 
Page 7 lines 11-13: This sentence doesn’t make sense to me: “Comparison with the top enriched motifs 
found from the GLIPH2 analysis, including AGQGA%E, S%AAG, SL%AG, SLQGA%YE, S%SGTDT, 
SL%GTDT, SLS%TDT, and S%AGNQP revealed high density of clusters in cluster 6” 
 
Page 11 lines 21-22: This sentence doesn’t make sense to me (either semantically or grammatically): “For 
the ISB-Swedish cohort, patients were first filtered by those were sequenced by 10X Genomics.” 
 
Page 13 line 32: Used acronym SVC instead of SVM. I think support vector machines have been mixed 
up with the name of the sklearn function, support vector classification, which may be confusing to the 
reader. 
We thank the reviewer for these comments. The sentences has been modified in the manuscript for clarity. 
The acronym has been modified in the manuscript to “SVM.”  
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Reviewer #2:  
 
This article describes an integrative and immunology approach to systematically study more than 4 
million TCR sequences from different sources for COVID-19 patients and healthy donors. Overall, this is 
a valuable effort that helps revealed patterns of the adaptive immune response during SARS-CoV-2 
infection. In addition, through the analysis of biological pathways, the authors also suggested that T cell 
clonal expansion is highly related to some T cell effector functions and TCR signaling. However, some 
issues or concerns need to be addressed. 
 
Response: 
We thank the reviewer for an overall accurate summary and positive comments on the importance and 
novelty of the project. We address specific comments below: 
 
1. For k-mers analysis, why did the author set 50,000 top variance unique k-mers for downstream 
analyses e.g., PCA and machine learning pipelines. Will different threshold settings bring different 
clustering and performance? 
 
For the k-mers analysis, we selected the 50,000 top variance unique k-mers to 1) keep the data 
dimensions consistent, 2) increase the efficiency of the pipelines, and 3) use data features that are most 
likely to be the most biologically meaningful. As the -mer increases, the total number of unique kmers in 
the dataset increases— the likelihood of observing a common 3mer string is much higher than the 
likelihood of observing a common 6mer string, which means we observe a greater number of unique 
6mers than 3mers. However, not all of these 6mers are expected to be meaningful immune signatures. 
Low-variance kmers, either due to lack of representation (i.e. only in one patient or one T cell clone) or 
due to conservation between healthy and disease samples are unlikely to be significant in the T cell 
response to COVID given that the signature is not shared or enriched by disease status. Highly variable 
kmers, on the other hand, may be reflective of T cell clones that are expanded because of infection, and 
may also capture correlative information about the clinical severity of symptoms and the T cell signatures 
of infection.  
 
By reducing the number of kmers that we study in our analysis based on variance, we filter out data that is 
likely uninformative. It is the same intuition for performing dimensionality reduction prior to machine 
learning analyses to first identify the most meaningful features of the data. We also keep the data 
dimensions consistent by using this threshold. Changing the inclusion threshold is unlikely to show 
different clustering or performance. Including more low-variance kmers by applying a more lenient 
threshold is unlikely to capture more biologically meaningful signals; reducing the kmers by applying a 
more stringent threshold will further tailor the analyses to the highest variance kmers, which are features 
that the machine learning analysis is likely detecting.  
 
2. In addition to K-mers, did the author consider using other methods, such as deep learning, multiple 
sequence alignments and other methods for clustering and other downstream analysis? 
 
We thank the reviewer for this comment. Yes, we have tried methods such as multiple sequence 
alignments and deep learning before trying our kmer-based methods. One approach that we attempted 
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was: 1) multiple sequence alignment on all TCR CDR3 sequences, 2) representation of each patient’s 
TCR repertoire as a matrix of one-hot encoded, MSA-aligned vectors of CDR3 sequences, like an image, 
and 3) training a convolutional neural network (CNN) to classify each patient’s TCR repertoire as HD or 
COVID. This approach was similar to the CNN-based algorithm described by Beshnova et al. (2020) to 
detect cancer-associated T cell receptors, where TCR sequences were similarly represented as data 
matrices the way images are represented prior to training a CNN7. While this approach initially appeared 
promising for our research question, we did not observe high classification accuracy, so we opted not to 
present these findings in our manuscript. We believe that this approach was unsuccessful because the 
CNN was overfitting on the training data. Representing the TCR data as one-hot encoded matrices 
following MSA alignment likely introduced a lot of “zeros” as MSA allowed for “gapped” alignments, 
and all such “gaps” were treated as zeros in the one-hot encodings — consequently, the data 
representation may have been too sparse for the algorithm to learn meaningful features. Below are the 
original plots of the ROC curve, training vs. validation losses, and training vs. validation accuracies. 
 

 

 

 
Performance of the Convolutional Neural Network Classifier (HD vs. COVID) trained on Multiple-

Sequence-Aligned TCR CDR3 Sequences 

 

7 Beshnova, Daria, et al. “De Novo Prediction of Cancer-Associated T Cell Receptors for Noninvasive Cancer 
Detection.” Science Translational Medicine, vol. 12, no. 557, 2020, 
https://doi.org/10.1126/scitranslmed.aaz3738.  
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3. In the machine learning part, because the number of healthy donor samples is relatively small, even 
though the author uses the unsampled method, is there any possibility of overfitting? Because I have 
observed that the performance of many classifiers is 1. I suggest that the model performance can be re-
evaluated on the independent test set collected separately. 
 
We thank the reviewer for this comment. Upon re-examination of our code, we discovered that during the 
process of up-sampling the data and subsequent test-train set partitioning, we generated train and test sets 
that contained the same data due to the up-sampling procedure (which was done to balance the number of 
COVID and HD samples in the testing and training sets). The reviewer is correct that this resulted in 
overfitting of our models. In our revision, we have corrected for this methodological error by partitioning 
our data into test and train sets prior to balancing the datasets. This way, we have ensured that no 
duplicate data is present in both test and train sets. In our new figures, our algorithms are being trained on 
data that is distinct from the data that the algorithms’ performance is evaluated on. 
 
We also agree with the reviewer that it would be valuable to train our algorithms on one dataset, and then 
test performance on a completely independent dataset, as this external validation set will prove the 
generalizability of our machine learning models to multiple TCR datasets. We included above the results 
of several new machine learning models that we trained on the ISB-S dataset that we subsequently tested 
on the PLA and WHH datasets as external validation sets. 
 
4. Regarding the predictor, the author did not release an independent program or online predictor, so it is 
not available for others to test or use. 
 
We thank the reviewer for this comment. We have included in our resubmission the refactored code with 
our final trained models that can be evaluated by user-defined input files.  
 
5. Another key question is whether there is any clinical application of the findings in the author's article. 
What is the point of finding these important TCR patterns? Such as the development of personalized 
vaccines, observation of potential COVID-19 patients. 
 
We thank the reviewer for this comment. In the context of COVID-19, our findings elucidate distinct 
clonal expansion patterns and TCR repertoire features in patients experiencing symptoms of varying 
clinical severity, and potential TCR sequence motifs of interest. With further validation studies, these 
motifs present in clonally expanded T cells may serve as prognostic and diagnostic biomarkers in COVID 
infection. Sequence motif studies can be of great clinical significance in broad contexts. Immune cell 
receptor motif-based investigations are increasingly become high utility, where systematic investigations 
of the specific motifs in the CDR3 region have identified T cell clones associated with specific immune 
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functions like gluten hypersensitivity in celiac disease8, hyperinflammation in Ankylosing spondylitis9, 
and reactivity to cancer neoepitopes10. As longitudinal studies further uncover physiological and 
immunological effects of long COVID, where patients experience long-term adverse effects from past 
COVID infection, it is of potential interest to compare the TCR repertoire profiles of these patients to the 
TCR repertoire features that have been identified in our manuscript.  
 
Broadly, immune repertoire analysis has become a fundamental tool to understand the biology of 
immune-mediated diseases as well as immune responses to therapies11. T cell receptor motifs have been 
used as prognostic and diagnostic biomarkers. For example, TCR repertoire studies have shown that 
improved TCR diversity is linked to better prognostic outcomes for cancer patients who receive 
immunotherapies12 13. TCR sequencing was used to predict patient prognosis in melanoma patients who 
received anti-PD1 checkpoint blockade therapy: increased diversity of T cell receptors in patients was 
linked to better outcomes in terms of tumor progression and progression-free survival14. This analysis is 
similar to the analysis we have conducted in our manuscript, where we show the effect of COVID-19 
infection in the clonal diversity of T cells. Moreover, TCR repertoire sequencing revealed an increase in 
hyperexpanded TCR clonal frequencies following the administration of a neoantigen vaccine, elucidating 
the role of T cell dynamics in tumor immunology15. In light of these findings, similar TCR studies in the 
context of COVID-19, with a particular emphasis on convalescent patients upon treatment with 
investigational COVID therapies such as Nirmatrelvir or Bebtelovimab are of potential interest, to study 
the T cell dynamics in investigative COVID treatments. 
 
6. The author constructed 3-mer, 4-mer, 5-mer, and 6-mer frequency matrix representations of ISB-S CD4 
and CD8 datasets and performed PCA analysis to see whether samples cluster by disease severity. I 
observed that the majority of samples clustered together, although a number of mild and moderate 
samples were separated from the main cluster. So, is it possible that this part of the separated samples is 

 
8 Dahal-Koirala, S., Risnes, L., Neumann, R., Christophersen, A., Lundin, K., Sandve, G., Qiao, S. and Sollid, L., 
2021. Comprehensive Analysis of CDR3 Sequences in Gluten-Specific T-Cell Receptors Reveals a Dominant R-
Motif and Several New Minor Motifs. Frontiers in Immunology, 12. 
9 Zheng, M., Zhang, X., Zhou, Y., Tang, J., Han, Q., Zhang, Y., Ni, Q., Chen, G., Jia, Q., Yu, H., Liu, S., Robins, E., 
Jiang, N., Wan, Y., Li, Q., Chen, Z. and Zhu, P., 2019. TCR repertoire and CDR3 motif analyses depict the role of 
αβ T cells in Ankylosing spondylitis. EBioMedicine, 47, pp.414-426. 
10 Bravi, B., Balachandran, V., Greenbaum, B., Walczak, A., Mora, T., Monasson, R. and Cocco, S., 2021. Probing 
T-cell response by sequence-based probabilistic modeling. PLOS Computational Biology, 17(9), p.e1009297. 
11 De Simone, M., Rossetti, G. and Pagani, M., 2018. Single Cell T Cell Receptor Sequencing: Techniques and 
Future Challenges. Frontiers in Immunology, 9. 
12 Hogan, Sabrina A., et al. “Peripheral Blood TCR Repertoire Profiling May Facilitate Patient Stratification for 

Immunotherapy against Melanoma.” Cancer Immunology Research, vol. 7, no. 1, 2018, pp. 77–85., 
https://doi.org/10.1158/2326-6066.cir-18-0136.  

13 Hosoi, A., Takeda, K., Nagaoka, K. et al. Increased diversity with reduced “diversity evenness” of tumor 
infiltrating T-cells for the successful cancer immunotherapy. Sci Rep 8, 1058 (2018). 
https://doi.org/10.1038/s41598-018-19548-y 
14 Poran, Asaf, et al. “Combined TCR Repertoire Profiles and Blood Cell Phenotypes Predict Melanoma Patient 

Response to Personalized Neoantigen Therapy plus Anti-PD-1.” Cell Reports Medicine, vol. 1, no. 8, 2020, 
p. 100141., https://doi.org/10.1016/j.xcrm.2020.100141. 

15 Poran, Asaf, et al. “Combined TCR Repertoire Profiles and Blood Cell Phenotypes Predict Melanoma Patient 
Response to Personalized Neoantigen Therapy plus Anti-PD-1.” Cell Reports Medicine, vol. 1, no. 8, 2020, 
p. 100141., https://doi.org/10.1016/j.xcrm.2020.100141. 
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caused by sequencing technology or batch effects? I think the conclusion the author got here is not 
supported by statistical significance? 
 
We thank the reviewer for this comment. It is not possible to attribute the separation of these mild and 
moderate samples to batch effects or sequencing technology, as all the data being shown in the PCA plots 
were generated from the same “batch.” To clarify what is being shown, dimensionality reduction in this 
plot was performed only the ISB-S dataset, all of whose samples were sequenced under uniform protocol 
and processed identically. While such batch effects may be a relevant concern in a dimensionality 
reduction plot that integrates samples from differing wet lab protocols and sequencing technologies, we 
do not believe that this is a relevant concern here. 
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Reviewer #3: This paper is a meta-analysis of TCR data from COVID-19 and healthy controls. The 
authors bring together data from a number of previous studies, and provide the single biggest set of TCR 
data from COVID-19 patients. The paper makes a number of claims about the COVID-19 repertoires. 
As in all such metadata, especially where the data were produced by completely different methodologies, 
it is absolutely crucial to provide full clarity about the composition of the different data sets. One key 
element is to show how many of each cohort were mild, moderate or severe, or HD. I may have missed 
this somewhere in the supplementaries, but it is essential to make this data obvious in fig 1. I suspect the 
cohorts are very unbalanced. 
 
Response: 
We thank the reviewer for an overall accurate summary of this project. We agree that it is important to 
clarify the nature of the datasets in our meta-analysis. The four datasets that are used in our manuscript 
are delineated in Figure 1A: 1) Adaptive Biotechnologies, 2) ISB-Swedish COVID-19 Biobanking Unit, 
3) PLA General Hospital and 4) Wuhan Hankou Hospital. Regarding the breakdown of how many of each 
cohort were mild, moderate, severe, or HD, we provide a table of counts below, labeled “Table 2,” which 
has also been included in Figure 1 in the resubmission. The reviewer is correct that the cohorts are not 
balanced. However, despite the imbalanced data, the large sample size of the Adaptive Biotech and ISB-S 
datasets enable statistically meaningful analyses of all categories of COVID severity and a meaningful 
comparison to the healthy donors. 
 

Dataset HD Count Mild Count Moderate 
Count 

Severe 
Count 

Convalescent 
Count 

AB 88 1475 0 
 

ISB-S 16 108 93 49 0 

PLA 5 0 7 4 6 
WHH 5 0 5 5 0 

Table 3 – Tabulated Summary of Number of Patients in Each Category per Dataset 
 
In fig 1, all the estimators are strongly influenced by sample size. The authors should show their 
conclusions are not influenced by sample size. I could not understand what panel E represented. In F, was 
this just a random sample of 32 AB repertoires? Why 32? Was this repeated multiple times? 
 
We thank the reviewer for this comment. We acknowledge that in Figure 1B, which shows comparisons 
of clonal diversity between HD and COVID TCR repertoires, the p-values of the differences are 
inevitably influenced by sample size. For this reason, the figure also presents a more holistic visualization 
of the boxplot with individual data points, so that the basis of comparison is not solely the p-value. As 
AB, ISB-S CD4, ISB-S CD8 datasets have much greater sample size than the PLAGH and WHH datasets, 
even with similar effect sizes, the larger datasets are expected to generate a much smaller p-value. It is not 
surprising that even with large effect size, the p-values are not as statistically significant in the smaller 
datasets, PLAGH and WHH. Nonetheless, we do not believe the different sample sizes diminish our 
general claim that on average, COVID patients have TCR repertoires with lesser clonal diversity than 
healthy donors. Even without considering the p-value, visualization of the effect size appears significant 
in all datasets except perhaps in AB, where we observe much higher variance in the clonal diversity of the 
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COVID group. Perhaps this variance is intrinsically interesting, even if it makes the effect size less clear 
— while healthy donors have similar degrees of clonal diversity, COVID patients vary widely in the AB 
dataset.  
 
We believe that the greater number of outliers in just the COVID group across all datasets in Figures 1B 
and 1C, and the wider spread in clonal diversity in the COVID group compared to HD group, are 
interesting findings, even if the mean comparisons are not as convincing to the reader. They reflect 
heterogeneity in T cell repertoire changes upon COVID infection, the directionality of which is generally 
a decrease in diversity. We have also included multiple metrics of clonal diversity in our manuscript to 
support the claims being made in Figure 1B. Figure 1C uses an alternate metric, the Gini-Simpson index, 
to support this claim. The boxplot visualizations in 1C, which include the distribution of individual data 
points, support our observation even in the datasets where the p-value is not statistically significant — in 
the WHH and PLAGH datasets, where the p-values are not statistically significant at the typical threshold 
of alpha = 0.05, visually, we still see a clear difference in the Chao diversity metric between healthy 
donors and COVID patients. While sample size inevitably affects the p-value, we believe that the general 
claim of this figure regarding clonal diversity still stands.  
 
We apologize that Figure 1E was not clear to the reviewer. Figure 1E is showing that the CDR3 
sequences enriched in the COVID patients had significant overlap (among mild, moderate and severe 
patients), while there was almost no overlap in CDR3 enrichment between healthy donors and covid-19 
patients. The figure legends have been updated for clarity. Regarding Figure 1F, yes, we are showing a 
random sample of 32 AB repertoires each from HD and COVID-19. We deemed this sample to be 
representative of all of the repertoires because repeated sampling generated very similar plots. We chose 
to visualize a sample of the healthy donor and COVID repertoires because it is not feasible to show 
properties of the entire repertoire in such a visualization due to the sheer size of the dataset. Also, because 
the dataset is imbalanced, this random sampling allows us to show representative numbers of healthy 
donor and COVID repertoires for visualization purposes. Overall, we aim to show in Figure 1F that the 
overrepresentation of specific clonotypes in COVID-19 patients is consistent with the observation of 
reduced clonal diversity in Figures 1B and 1C. 
 
In Fig 2, the PCAs are not convincing to me. There are a few outlying mild and moderate, but otherwise 
they look totally overlapping.. In the heatmaps, are these averages of multiple subsamples ? Is there any 
obvious separation between condition if the samples are allowed to cluster across the different 
individuals ? I did not really understand the import of the panels G and H. Could the authors explain this a 
bit more clearly ? 
 
We thank the reviewer for this comment. In the PCA plots in Figure 2, we agree that it is difficult to 
discern discrete clusters by disease severity. However, we hope to show in this figure that there are a 
greater number of outliers in mild and moderate disease compared to HD or severe, even though we 
cannot discern clear clusters by severity.  
 
In retrospect, it is not surprising that the data cluster together because there are general rules that define 
many CDR3 amino acid sequences that are common to all individuals. For example, “CASS” are four 
amino acids that are commonly found at the beginning of many CDR3 sequences regardless of the 
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individual, so this motif will be highly represented in the repertoires of healthy donors and COVID 
patients alike. Similarly, numerous CDR3 sequences share an “end” motif, which also contributes to the 
homogeneity of motif signal. In other words, many people will share kmer motifs that are part of the 
“governing motifs” of CDR3 sequences like the “CASS” start motif. Given this information, upon 
dimensionality reduction based on kmer data, this homogenous signal is likely to dominate the 
heterogeneous CDR3 kmers that differentiate individuals’ repertoires. 
 
In light of this information, perhaps the outliers in the PCA that fail to fall into the large central cluster are 
more interesting — the PCA is detecting from the kmers in these patients’ repertoires that these outliers 
harbor high-variance data features. Rather than looking at the “bulk signal,” which is the large central 
cluster, in the outliers that do not fall into this cluster, we may be observing the rare variations in CDR3s 
that have “signal” that is differentiated by unique enrichment of these sequences. Notably, these data 
points come from mild and moderate patients, rather than severe disease patients, which may suggest that 
as part of mounting an effective adaptive immune response to COVID infection, the T cell repertoires 
may be undergoing changes that selectively enrich certain clones that harbor specific TCR motifs, which 
are being captured in the PCA plot. 
 
We acknowledge that we cannot expect to observe clear, discrete clusters by disease severity in the PCA 
due to the intrinsic properties and similarities of CDR3 amino acid sequences. However, perhaps the 
signal of outliers in the PCA comprising only mild and moderate repertoires is potentially interesting. 
 
In Fig 3, what is the proportion of cells between different disease subsets? Can the authors say a bit more 
about the subsets? Which are naïve? Is there a proliferating subset? The authors say there is a relationship 
between the cluster pattern and disease severity – but it looks more like a radically different distribution 
between healthy and COVID-19 repertories. This seems a striking finding, and not necessarily what other 
people have observed? This figure deserves a much more detailed discussion and analysis. 
 
We thank the reviewer for this comment. Here is a summary table of the cells shown in Figure 3. 

Disease 
Condition 

Sum of Cell Count Proportion of Cells 

HD 14096 10.33% 
Mild 50625 37.11% 
Moderate 47067 34.50% 
Severe 24641 18.06% 
Grand Total 136429 100% 

Table 4: Cell Counts in scRNAseq UMAP Plots in Figure 3 
 
Figure S5 shows some gene markers that may be informative for the reviewer. The proliferating subset is 
shown in the UMAP plot in Figure S5B, in the supplemental figures, where we indicate the clonally 
expanded cluster in red. Putting Figures 3 and S5 side by side, we can juxtapose the clonally expanded T 
cells containing the COVID-enriched motifs shown in Figure 3C with the differential gene expression 
shown in Figure S5D. GNLY encodes the cytotoxic granules of T cells, which are released upon antigen 
stimulation, and it is highly expressed in the cells of cluster 6. This shows that the cells of cluster 6 are 
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activated, proliferating cytotoxic T cells, which is consistent with what we expect from the clonally 
expanded cells containing COVID-enriched GLIPH2 motifs that are shown in Figure 3C and Figure 3B.  

 
Juxtaposition of Figure 3 and Figure S5: Proliferating Subset 

 
The naive subset is shown in the UMAP plot of the naïve phenotype-related markers TCF7 and LEF1, 
where the naïve subset corresponds to the cells marked in yellow / orange in the plots below (high 
expression of TCF7 and LEF1 indicates naïve phenotype). Comparing all of these plots below at first 
glance, we observe that there is an abundance of naïve subset in the “healthy donor” T cell section of the 
UMAP, whereas we do not observe many naïve T cells that are in cluster 6, which is the clonally 
expanded cluster with COVID-enriched motifs. 

 

 
Juxtaposition of Figure 3 and Figure S5: Naïve Subset 

 
Regarding the reviewer’s comment that Figure 3 appears to point more to a radically different distribution 
between HD vs. COVID patients as opposed to cluster patterns by disease severity, we agree with the 
reviewer that we observe a very salient contrast between healthy donors and COVID patients (especially 
in Figure 3B), but also we see that while moderate and mild cells are enriched in the center of cluster 6, 
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the severe cells are enriched in the rightmost corner of cluster 6, suggesting slight differences in the 
clustering across disease severity states. Nonetheless, we agree with the reviewer that the cells cluster 
much more saliently between HD vs. COVID, and the differences across COVID severities is not quite as 
obvious. 

 
Figure 3B, for the reviewer’s convenience. 

 
Fig 4 is lacking a lot of detail which is important for interpretation. How balanced are the repertories ? 
What is meant by upsampling the controls ? How were the parameters decided – was this done on a 
independent data set (i.e. before the cross-validation) ? Did the authors try fitting models on one data set, 
and then testing on one of the other data sets ? 
 
We thank the reviewer for this comment. In our revision, we have clarified the number of samples in each 
category in each of the datasets in Figure 1 of the manuscript, and in Table 2 above in this response letter. 
As the reviewer pointed out in an earlier comment, our datasets are not balanced with respect to the 
number of healthy donors vs. mild COVID vs. moderate COVID vs. severe COVID. Notably, there are 
fewer healthy donor TCR repertoires in the ISB-S dataset (which is the dataset that all of our kmer 
machine learning models were constructed on) compared to the number of TCR repertoires in all disease 
classes.  
 
This imbalance was the reason for upsampling the controls, by which we mean duplicating the number of 
Healthy Donor sequences such that the number of HD repertoires in the training set matches the number 
of COVID repertoires in the training set. Most machine learning models do not perform well when there 
is a significant imbalance in the data. In imbalanced classification problems, algorithms often generate 
biased predictions that predict all test set data as the over-represented category, or the “majority class.” 
There are several ways to address this issue. One approach is to take a subsample of the overrepresented 
category of the dataset such that it matches the amount of data in the underrepresented category. Another 
approach, which is the approach we take, is to resample the data such that data in the underrepresented 
category is randomly duplicated to match the amount of data in the overrepresented category. A key 
advantage of the oversampling approach is that we do not discard any data during the training of our 
machine learning algorithms. Having a high sample size is a critical issue in attaining good machine 
learning performance. Due to sample size concerns, we chose our approach of balancing our training data 
via oversampling the minority class, as opposed to under-sampling the majority class.  
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Regarding the hyperparameters of the model, we initially opted for default parameters provided by the 
scikit-learn library. However, as explained above, we subsequently tried a more rigorous approach in 
selecting the hyperparameters by performing a grid search of several hundreds of hyperparameter 
combinations. This grid search was performed on the combined ISB-S CD4 and ISB-S CD8 datasets for 
classification of HD vs all COVID repertoires (6mer data). Nevertheless, as explained previously, the 
“optimal” hyperparameters identified through this grid search did not substantially affect or improve the 
models’ performance during holdout testing of individual permutations (HD vs. Mild COVID, HD vs. 
Moderate COVID, HD vs. Severe COVID). Therefore, the hyperparameters of our models are as written 
in our methods section, as there was no clear justification for opting for a different set of parameters than 
the default. 
 
We have explored alternative methods to try fitting models on one data set, and then testing on one of the 
other data set. To evaluate whether machine learning algorithms trained on T cell repertoire data are 
generalizable, we have tested several data curation methods and algorithms that allow us to train our 
models on the ISB-S dataset and test performance on the PLA and WHH datasets.  
 
 
While our kmer models were not generalizable to other datasets, we successfully implemented an 
alternative data curation approach using motif-based clustering, which enabled the generalizability of our 
machine learning models to external validation sets. While the different datasets were unlikely to include 
identical kmers, we hypothesized that CDR3 motifs would still be found in common across datasets, so 
we opted to curate our data as a motif-based counts matrix using GLIPH2 motifs instead of kmers. With 
this new data curation approach, we were able to train our machine learning models on the ISB-S dataset 
and assess performance on the PLA and WHH datasets as an external hold-out testing validation. We 
trained the models on two permutations (HD vs. Moderate and HD vs. Severe) on the ISB-S dataset and 
tested the models on the equivalent subsets of the PLA (Zhang) and WHH (Wen) datasets. As the PLA 
and WHH datasets lack any mild COVID patients, we did not try this permutation. We also built soft-
voter ensemble classifiers of the five classifiers (Random Forest, Support Vector Machine, Gradient 
Boosting, KNN and Bernoulli Naïve Bayes), which generated highly accurate predictions in the 
validation sets. The results are reported below.  
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ROC Curves of GLIPH2-based models, Five Supervised ML Classifiers:  
External Validation Set Holdout Testing Results –  

Training on ISB-S, Testing on PLA (Zhang) and WHH (Wen) 
  

  



 24 

 
ROC Curves of GLIPH2-based models, Soft Voter Ensemble Classifiers:  

External Validation Set Holdout Testing Results –  
Training on ISB-S, Testing on PLA(Zhang) and WHH (Wen) 

 
 
Overall, the attempt to provide a meta-analysis of diverse TCRrep data sets is interesting and potentially 
valuable. But in light of the known challenges of meta-analyses, the paper is a bit skimpy in providing 
detail which could be used to assess the validity of the comparisons. Also, at the end of the day, each 
analysis has largely been carried out on an independent data set, which rather reduces the value of 
carrying out a meta-analysis in the first place. Other than the overall reduction in diversity shown in fig 1, 
I am not convinced any of the other findings are generalizable across data sets, and so its hard to assess 
the significance of the findings. 
 
We thank the reviewer for this comment. We acknowledge that our study has limitations due to the design 
of our analyses, which have more extensively focused on the ISB-S dataset compared to the other three 
datasets included in our manuscript. The primary reasons for devoting more extensive analyses on the 
ISB-S dataset are 1) its large sample size and 2) availability of both scTCR-seq and scRNA-seq data, 
which allowed for our study to relate TCR motif-based insights to gene expression data and thereby 
integrate several phenotypic information together. This depth of analyses was not possible for the other 
datasets — nonetheless, as this analytical approach is novel and not previously described in the literature, 
we still believe that our findings positively contribute to the body of COVID-19 research. The AB dataset 
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offered other advantages, such as even larger sample size, which enabled high-powered, broader insights 
about changes to T cell clonal dynamics — although it was not possible to conduct single-cell 
transcriptomics analyses and identify individual T cell populations of interest as it is a bulk sequencing 
dataset. We acknowledge that fewer of our analyses have focused on the PLA and WHH datasets, 
although the analyses in Figure 1 still illuminate several consensus results of TCR repertoire features in 
COVID that are shared by PLA and WHH datasets, which have served to add validity to our findings. The 
less extensive focus on the PLA and WHH datasets was an unfortunate limitation of the small sample size 
of these datasets and the unique challenges of performing integrative analyses in scTCR-seq data. 
 
A major reason for our largely separate analyses pipelines conducted on individual datasets, rather than 
attempting a pooled, integrative analysis, is that the datasets in our manuscript are not highly comparable 
at baseline, and integrative analyses would require additional challenging considerations of batch effect 
correction. As the reviewer points out, meta-analyses may apply analyses pipelines uniformly on an 
integrative dataset that combines data from multiple sources. Notably, this approach may be feasible if all 
datasets are single cell immune repertoire sequencing data and are also meaningfully comparable in terms 
of the cell types included and laboratory methods employed. Unfortunately, this approach was not 
possible for our manuscript, because the datasets in this manuscript includes a bulk-TCR sequencing 
dataset (Adaptive Biotechnologies), which cannot be readily integrated with the single-cell datasets (ISB-
S, PLA-H, WHH). 
 
It is, in theory, possible to perform integrative and pooled analyses for the three single-cell datasets if we 
were primarily interested in gene expression via RNA-seq. However, our analysis is focused on TCR-seq 
data from the multiple datasets, which has unique challenges compared to RNA-seq data when 
considering the possibility of batch effect correction. While scRNA-seq quantifies expression levels of 
genes, where intuitively, some baseline signal of the “batch” from each dataset can be subtracted from the 
background to separate “signal” from “noise,” in scTCR-seq, the data structure is comprised of sequence 
information rather than quantifiable expression data. We therefore focused our analyses on gaining 
insights into changes in repertoire diversity, specificity, and clonal composition within particular datasets. 
 
Additional considerations that reinforced our decision to pursue our analytical approach were that the 
success of computational approaches for batch effect correction is the most salient among datasets with 
high baseline similarity. The datasets in our manuscript lack such a high degree of baseline similarity. 
Crucially, the ISB-S dataset used droplet-based sequencing for the TCR sequences, whereas the PLA and 
Wuhan Hankou dataset used full-length sequencing, which reduces the baseline comparability of the 
datasets in the first place. Also, the three single-cell datasets are not of equal size. The ISB-S (Su) dataset 
vastly outnumbers both the WHH (Wen) and PLA Hospital (Zhang) datasets in sample size. If a pooled 
analysis approach is undertaken, we anticipate that the biological signal from the ISB-S dataset will be 
disproportionately amplified in the results, compared to the biological signal from the PLA and WHH 
datasets. Even if we were to obtain scRNA-seq data of the WHH and PLA datasets to generate a pooled 
scRNA-seq UMAP of WHH, PLA and ISB-S T cells, we would generate a scRNA-seq plot that is so 
highly dominated with cells from the ISB-S dataset that it would be difficult to obtain any signal from 
WHH or PLA datasets. This can also be intuited from the table of cell counts provided in Table 4 of this 
response letter.  
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As such, we believe that an analytical pipeline that separately analyzes the individual datasets and reports 
the results from each dataset as well as the consensus results, which is the approach in our manuscript, is 
more methodologically sound than attempting a pooled approach. Regarding the generalizability of the 
machine learning models, we investigated using one dataset for training machine learning models and 
testing their performance on other datasets as described in the previous sections.  



Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

Given the significant amount of helpful additional explanation in the 26 page rebuttal letter, I am 

genuinely surprised how little of this explanation has found its way into the text, which has not 

changed much. For the majority of readers, I think it will remain exceptionally hard to understand 

what has been done here. I agree with the comments of the other reviewers in their round 1 reviews. 

Unfortunately, I am not clear that many of their concerns have been addressed in the manuscript 

either, although they have been addressed at length in the rebuttal letter. 

 

 

Reviewer #2 (Remarks to the Author): 

 

The author addressed my concerns very well. I have no more comments. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The underlying problems associated with this analysis remain. The datasets are highly unbalanced. 

The size of the repertoires will influence the diversity measurements - this has nothing to do with p-

values, but arises from the distributions of TCR frequencies which are not linearly scalable. However 

the authors have added significant additonal information and clarification so that the readers may be 

aware of these limitations, and take them into account in evaluating the results. 
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Response letter for revision of Park et al., “Machine learning identifies T cell receptor repertoire 
signatures associated with COVID-19 severity” 
 
Summary of this revision 

• Incorporated suggested changes into the new manuscript with page and line numbers to indicate 
their locations. 

• Acknowledged important limitations of the study in the Discussion section (pages 11-13), 
including the limited generalizability of kmer-based machine learning models, unbalanced 
datasets, and the limitations as a meta-analysis due to separate analyses pipelines on each 
dataset as opposed to an integrative, pooled approach. 

• Ensured no sample overlap between training and validation datasets (pertinent to Figure 5) by 
fixing an error in upsampling process 

• Acknowledged the sample size-related limitations in our findings regarding COVID-related clonal 
expansion/diversity reduction in Figure 1B-C. 

• Elaborated upon the differences in wet-lab sequencing methodologies in each of our four datasets 
to explain why a typical meta-analysis approach of pooled, integrative analysis was not feasible in 
our study. 

• Reworded a number of sentences and defined a few terminologies to avoid ambiguity and 
improve readability. 

• Described the sample size in each dataset/group as well as the optimization process of parameters 
of machine learning models. 

 
Details to follow below. 
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Point-by-point response to the reviewers (Park et al., Communications Biology manuscript) 
 
Reviewer 1 comments 
Given the significant amount of helpful additional explanation in the 26-page rebuttal letter, I am 
genuinely surprised how little of this explanation has found its way into the text, which has not changed 
much. For the majority of readers, I think it will remain exceptionally hard to understand what has been 
done here. I agree with the comments of the other reviewers in their round 1 reviews. Unfortunately, I 
am not clear that many of their concerns have been addressed in the manuscript either, although they 
have been addressed at length in the rebuttal letter. 
 
We thank the reviewer for this feedback. In this revision, we have focused on incorporating the responses 
in the previous rebuttal letter into the body of the manuscript. Here, we also include the page numbers 
of the incorporated changes, and in some cases, the direct quotes, to highlight the changes in the 
manuscript. We hope that these changes enhance the clarity of our analyses to the readers.  
 
Reviewer 1 comments from last revision: Key concerns are (1) a lack of consideration of bias due to 
different laboratory sequencing methodologies for the different cohorts, which have been drawn 
together, and (2) the extent to which the same samples were used in both training and testing sets, leading 
to an overestimate of the performance of the machine learning methods. 
 
Last revision, we acknowledged that the reviewer makes a great point regarding the differences in 
laboratory sequencing methodologies among the four datasets. We further explained in our response 
letter that these differences have precluded the possibility for integrative, pooled analysis in our 
manuscript, which is the reason why we opted to conduct a separate analysis of each dataset 
independently and report consensus findings. Our analysis approach has thus circumvented the need to 
consider these sequencing biases and batch effects. In this revision, we make this important 
methodological distinction clearer in the main body of the manuscript in both the methods (page 15) and 
discussion sections (page 13). 
 

• This paragraph was included on Page 15 (Methods):  “The Adaptive Biotechnologies dataset 
comprised bulk TCR-seq data, while the ISB-S, PLA, and WHH datasets comprised single-cell TCR-
seq data, with variations in sequencing modalities, patient populations, and sample sizes. Due to 
the differences in wet lab protocols and the potential presence of batch effects in each of these 
four datasets, all downstream analyses were performed separately on each individual dataset, 
and the result from each dataset as well as the consensus findings are reported. 

• This paragraph was included on Page 13 (Discussion): “Finally, while a pooled integrative analysis 
approach is preferable in a meta-analysis to show the generalizability of findings across datasets, 
this approach was impractical for our study due to the lack of baseline comparability including 
variations in sequencing modalities, patient populations, and sample sizes. Due to differences in 
data collection protocols among the four datasets, a pooled analysis approach would have likely 
introduced significant batch effects that obscure true biological signal. Instead, separate 
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bioinformatics analyses pipelines were conducted on individual datasets, which allowed all 
analyses to remain free of batch effects.” 

 
Moreover, in the last revision, we acknowledged and addressed the issue that there was overfitting in our 
first submission’s machine learning models because of the overlap between training and testing sets. The 
overlap between training and testing sets was due to an error occurred during up-sampling procedure, 
which was done to balance the number of COVID and HD samples in the testing and training sets. In our 
last revision, we have corrected for this mistake in our code and submitted revised figures (Figure 5) that 
confirm that this is no longer affecting our analyses. We have corrected this methodological error by 
partitioning our data into test and train sets prior to balancing the datasets. This way, we have ensured 
that no duplicate data is present in both test and train sets. In our new figures, our algorithms are being 
trained on data that is distinct from the data on which the algorithm performance is evaluated. 
 
Reviewer 1 comments from last revision: Page 3, lines 29-32: Introduction - I am unsure of the reason for 
discussing a largely irrelevant, clonal process (lymphoblastic leukaemia), while not properly reviewing the 
literature in terms of single cell or bulk TCR repertoire sequencing work that has contributed to our 
understanding of SARS-CoV-2 responses. 
 
In the revised manuscript, we have removed the discussion about clonal process and reviewed the 
literature related to single cell or bulk TCR repertoire sequencing that has contributed to our 
understanding of SARS-CoV-2 responses (pages 3-4).  
 
Reviewer 1 comments from last revision: Page 4, lines 19-24: Results – This is a key methodological 
concern: A series of datasets appear to be “lumped together” without any consideration of potentially 
differing laboratory methods, whether CD4/ CD8 or all T-cells were sequenced or the amount of starting 
material (i.e., what numbers of lymphocytes the nucleic acid sample used in sequencing equated to). No 
consideration appears to be given to potential bias introduced by any of this. The manuscript is very much 
written from a bioinformatician’s standpoint, without critically considering the “wet lab” methods. If I 
have misunderstood this, I apologise, but it is not at all clear from the manuscript what has been compared 
with what at various points in the analyses. 
Page 9, lines 15-17 again demonstrate the mindset on page 4, considering only bioinformatic analysis: “By 
uniformly processing immune sequencing data from multiple cohorts with TCR-seq data, we found that 
antigen exposure during the course of COVID-19 significantly decreased the diversity of repertoires and 
reshaped clonal representation.” Uniform bioinformatic processing cannot negate the effects of using 
potentially mismatched cohorts produced using different laboratory methodology with different biases 
(please see my comment above). I have not had time to go through the various cohorts, but the authors 
need to reassure the reader that they are comparing like with like, rather than “apples with oranges”, so 
to speak. 
 
In the revised manuscript, we have highlighted these considerations regarding the differences in 
laboratory methods that were used to sequence the four T cell datasets included in our study (pages 12-
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13) and further discussed how these differences prompted us to choose a separate and independent 
analysis of each dataset, while using consistent bioinformatics tools.  
 
Reviewer 1 comments from last revision: Page 4, line 5: “fewer differences were found for the ISB-S CD4 
and CD8 datasets when comparing samples from different disease severities to those from healthy 
donors”. Following from the two concerns above, did the healthy donors’ samples contain sequences from 
both CD4 and CD8 T-cells? This will dilute any signal obtained. 
 
In the revised manuscript, we have clarified that the healthy donors’ samples contained sequences from 
both CD4 and CD8 T cells. Also, to avoid comparing “apples with oranges”, we have clarified that the ISB-
S dataset was partitioned into the ISB-S CD4 dataset and ISB-S CD8 dataset, in the revised manuscript. 
This sentence was included on Page 5: “The analyses for the ISB-S dataset were further stratified by cell 
type (CD4 vs. CD8), separated into ISB-S CD4 and ISB-S CD8 datasets, both of which contain TCR sequences 
of healthy donors and COVID-19 patients.” 
 
Reviewer 1 comments from last revision: Page 4, lines 7-8: “By comparison, the top CDR3 sequences were 
different across conditions for both the AB and ISB-S datasets.” Again, is this due to differences between 
laboratory methodology or a genuine difference between patients? This does not appear to be 
considered. 
 
We thank the reviewer for this comment. Since samples were only compared within a given dataset, these 
differences are due to patient differences rather than due to methodology. In the revised manuscript, we 
reworded this sentence to avoid ambiguity or misunderstanding. This sentence was included on Page 6: 
“By comparison, the top CDR3 sequences of healthy donor, mild COVID, moderate COVID, and severe 
COVID TCR repertoires were different within the AB dataset, as well as within the ISB-S datasets (Figures 
1D, S3A-B).” 
 
Reviewer 1 comments from last revision: Page 13, lines 28-29: It is very important that the same 
upsampled data is not present in both the training and testing splits, because in that case the authors 
would be testing on the training data and artificially increasing the cross-validation performance. The 
authors should provide reassurance that this isn’t happening. However, from inspection of the code, it 
appears that they are testing on the training data. This is not an appropriate way to assess a machine 
learning method’s performance. 
 
The revised submission includes substantially modified code as well as the updated ROC curves in Figure 
5 and Figure S7 that demonstrate the results after this issue has been resolved. We corrected the 
upsampling issue by partitioning our data into test and train sets prior to balancing the datasets, thereby 
ensuring that no duplicate data is present in both test and train sets. This led to a decrease in AUROC 
values, but the machine learning based approaches still maintained high performances depending on the 
dataset and pipeline permutation. 
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Reviewer 1 comments from last revision: Page 9 lines 2-3: It would be helpful for clarity if results were 
specifically attributed to the testing data partitions here, if that is the case. 
 
Results were specifically attributed to the specific classification task: for example, one model was trained 
on 6mers to classify moderate COVID from healthy donors from the ISB-S CD8 TCR sequences. Another 
model was trained on 3mers to classify mild COVID from healthy donors from the ISB-S CD4 TCR 
sequences. This sentence was included on page 10: “A total of 12 models were trained, with the 
permutations varying in 1) classifying different levels of COVID severity (HD vs Mild, HD vs Moderate, HD 
vs Severe), 2) CD4 vs CD8 T cell receptors, and 3) 3mer vs 6mer representation of the TCR data. 
 
Reviewer 1 comments from last revision: Page 9 lines 6-9: It appears that separate models for CD4 and 
CD8 analysis are used (which is helpful, in light of the above comments), and therefore the authors cannot 
use the Adaptive dataset for hold-out testing. However, it would be good practice if they acknowledged 
that their cross-validation does not necessarily indicate good generalisation of their machine learning 
models. 
Page 10 lines 9-10: Given that no hold-out testing was carried out, the claim of successful prediction of 
disease severity cannot be substantiated and should be removed or made substantially more speculative. 
 
We agree with the points raised by the reviewer here and have added caveats to page 10. Specifically, we 
have added the sentence on page 10 lines 25-27: “however, it should be noted that the performance of 
these methods have only been demonstrated using the ISB-S datasets and may not be generalizable to 
other TCR repertoire datasets or for COVID-19 patients more broadly.” 
 
Reviewer 1 comments from last revision: Page 14 line 1: It would be good to know what the value of K is 
in the K-nearest neighbour classifier. Maybe it was set using the defaults. It would be helpful to mention 
whether default parameters are used in any other methods too, as they may not be appropriate for the 
analysis being done here. 
 
We thank the reviewer for these suggestions. The value of K in the K-nearest neighbor classifier is k = 3 
which we have now clarified in the methods section (page 18, which clarifies all of the hyperparameters 
used in our manuscript). Not all parameters are default parameters. We have attempted hyperparameter 
optimization of our models via a grid search of candidate parameters using the GridSearchCV function in 
scikit-learn’s model selection library. The table of hyperparameters is shown in our last letter to reviewers. 
 
Reviewer 1 Comments from last revision: Page 4 lines 9-10: It might be helpful to explain why different 
thresholds are used for different datasets. 
 
We thank the reviewer for this comment. The reason for the different thresholds used for the AB and ISB-
S datasets is due to the relative sizes of the datasets. As the AB dataset is more than an order of magnitude 
larger than the ISB-S dataset, we chose to use the proportion threshold of 0.0001 for ISB-S samples and 
0.00001 for AB samples, so that we analyze an overall comparable number of sequences in each dataset 
(this explanation was included on page 6 lines 2-3). 
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Reviewer 2 comments 
The author addressed my concerns very well. I have no more comments. 
 
We thank reviewer 2 for their positive feedback.  
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Reviewer 3 comments  
The underlying problems associated with this analysis remain. The datasets are highly unbalanced. The 
size of the repertoires will influence the diversity measurements - this has nothing to do with p-values, 
but arises from the distributions of TCR frequencies which are not linearly scalable. However the authors 
have added significant additonal information and clarification so that the readers may be aware of these 
limitations, and take them into account in evaluating the results. 
 
We thank the reviewer for these comments, and we acknowledge that the unbalanced nature of our 
datasets and their different sizes are intrinsic limitations to some of our analyses. In this revision, we have 
incorporated the acknowledgement of these limitations into the main body of the manuscript, which can 
be found in the Discussion (pages 12-13). We have also provided a table of sample counts in Figure 1A to 
show the differences of size sample in four datasets and add transparency. Moreover, in this revision, we 
have focused on incorporating the responses in the previous rebuttal letter into the body of the 
manuscript. We include the page and line numbers of the incorporated changes to indicate their location 
in the manuscript. We hope that these changes enhance the clarity of our analyses to the readers.  
 
Reviewer 3 comments from last revision: As in all such metadata, especially where the data were 
produced by completely different methodologies, it is absolutely crucial to provide full clarity about the 
composition of the different data sets. One key element is to show how many of each cohort were mild, 
moderate or severe, or HD. I may have missed this somewhere in the supplementaries, but it is essential 
to make this data obvious in fig 1. I suspect the cohorts are very unbalanced. 
 
We thank the reviewer for this comment. We have ensured transparency of this information by providing 
a table of sample counts in Figure 1 to show the differences of sample sizes in the four datasets. 
 
Reviewer 3 comments from last revision: In fig 1, all the estimators are strongly influenced by sample size. 
The authors should show their conclusions are not influenced by sample size. I could not understand what 
panel E represented. In F, was this just a random sample of 32 AB repertoires? Why 32? Was this repeated 
multiple times? 
 
We thank the reviewer for pointing this out, and we acknowledge a limitation of our study that certain 
conclusions, such as COVID-related TCR diversity reduction, are inevitably influenced by different sample 
sizes in datasets (page 12 and lines 18-21). As for Figure 1E, we have updated figure legends for clarity 
and we have added a subtitle in Figure 1E (CDR3 overlap between samples). Figure 1E is showing that the 
CDR3 sequences enriched in the COVID patients had significant overlap (among mild, moderate and 
severe patients), while there was almost no overlap in CDR3 enrichment between healthy donors and 
COVID-19 patients. This information was added to the figure legend for Figure 1E. For Figure 1F, the 32 
samples are random samples from AB dataset. We clarified this in the manuscript figure legends for Figure 
1F. We deemed this sample to be representative of the repertoires because repeated sampling generated 
very similar plots. We chose to visualize a sample of the healthy donor and COVID repertoires because it 
is not feasible to show properties of the entire repertoire in such a visualization due to the sheer size of 
the dataset. 
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Reviewer 3 comments from last revision: In Fig 2, the PCAs are not convincing to me. There are a few 
outlying mild and moderate, but otherwise they look totally overlapping. In the heatmaps, are these 
averages of multiple subsamples? Is there any obvious separation between condition if the samples are 
allowed to cluster across the different individuals? I did not really understand the import of the panels G 
and H. Could the authors explain this a bit more clearly? 
 
In order the improve clarity of the PCA results in Figure 2, we further discussed the PCA’s results in the 
manuscript (pages 6-7). We added the following paragraph: “Because there are general rules that define 
many CDR3 amino acid sequences, such as the “CASS” motif that is commonly found at the beginning of 
many CDR3 sequences, it was expected that the majority of the data clustered together regardless of 
COVID infection status. The homogenous signal of shared CDR3 characteristics was likely to dominate the 
heterogenous CDR3 kmers that differentiate individuals’ repertoires. However, the outliers in the PCA 
that failed to fall into the large central cluster, which came from mild and moderate COVID samples, 
possibly indicated that the PCA is detecting high-variance data features that differentiate them from other 
CDR3 kmers, while all severe COVID samples were found within the homogenous main cluster. Machine 
learning is a broadly useful tool to detect and identify these fine differences in biological signal. The 
outliers from mild and moderate COVID patient samples may suggest that T cell repertoires may be 
undergoing changes that selectively enrich certain clones that harbor specific TCR motifs, in response to 
COVID infection, which are being captured in the PCA plot. No such changes were detected in severe 
COVID patients’ TCR motifs in the PCA.”  
 
In the heatmaps in Figure 2B and 2D, similar to Figure 1F, we are showing the results from a random 
sample, of 16 patient repertoires per disease condition. It is not the average of multiple subsamples. We 
have clarified this in the figure legends, revising the Figure 2B and 2D legends to “Heatmaps of 3-mer 
abundances of a random sample of repertoires from the ISB-S CD4/CD8 dataset by disease condition 
(healthy donor = 16, mild = 16, moderate = 16, severe = 16).” In the visualization in Figure 2G and Figure 
2H, we were interested in showing that our methods identified TCR specificity clusters that were 
exclusively found in COVID-19 patients, with no overlap with the TCR specificity clusters found in healthy 
donors. In Figure 2G we show that 677 TCR specificity clusters were found in common across the different 
severities of COVID-19, and in Figure 2H we show that among these 677 TCR specificity clusters, 474 were 
exclusive to COVID-19 and not found within healthy donors. The overall significance of Figure 2G and 2H 
is in showing that the motif-based prediction of antigen specificity identified TCR clusters that were 
exclusive to COVID-19 patients: the unique immune signatures of COVID-19. 
 
Reviewer 3 comments from last revision: In Fig 3, what is the proportion of cells between different disease 
subsets? Can the authors say a bit more about the subsets? Which are naïve? Is there a proliferating 
subset? The authors say there is a relationship between the cluster pattern and disease severity – but it 
looks more like a radically different distribution between healthy and COVID-19 repertories. This seems a 
striking finding, and not necessarily what other people have observed? This figure deserves a much more 
detailed discussion and analysis. 
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This paragraph on page 8 elaborates upon this discussion:  “Overall, a stark contrast was observed in the 
clustering patterns of cells from healthy donors and COVID-19 patients in the UMAP, where cells from 
healthy donors were concentrated in clusters 3 and 4, while the cells from COVID patients were mostly 
found in cluster 6. Cluster 6 contained the proliferating subset of T cells with high degrees of clonality 
(Figures 3A, S5B), suggesting phenotypic correlates of clonal expansion. Moreover, a high density of cells 
in cluster 6 contained the top COVID-enriched TCR sequence motifs identified from GLIPH2 motif analysis, 
such as AGQGA%E, S%AAG, SL%AG, SLQGA%YE, S%SGTDT, SL%GTDT, SLS%TDT, and S%AGNQP (Figures 
3C, 2F). These clonally expanded cells containing COVID-enriched TCR sequence motifs highly expressed 
the gene GNLY, which encodes the cytotoxic granules of T cells, indicating that the cells in cluster 6 are 
primarily activated, proliferating cytotoxic T cells. We also found a correlation between clonotype 
expansion and COVID infection, with cells from COVID-19 patients exhibiting the highest density in 
effector phenotype associated cluster 6, while healthy donor cells exhibiting density in the naïve 
phenotype associated clusters (Figure 3B). We also found a higher association of lower pGen score, or 
private, clonotypes with cluster 6 compared to the high pGen score clonotypes (Figure 3D), suggesting 
that these clones may be specific. However, comparison of the proportion of cells for each disease 
condition in cluster 6 with healthy donors revealed statistically significant cell proportion increases only 
for the moderate condition (Figure 3E), despite increasing trends for all conditions. In contrast, the naïve 
cell subset in the UMAP plots indicated by the gene markers TCF7 and LEF1, were most abundant among 
healthy donors’ T cells in clusters 3 and 4, whereas few naïve T cells were observed in cluster 6 (Figure 3B, 
S5D). Altogether, these results demonstrate relationships between clonal expansion, disease status, and 
cell phenotype, which can be extended to subsequence motifs.” 
 
Reviewer 3 comments from last revision: Fig 4 is lacking a lot of detail which is important for 
interpretation. How balanced are the repertories? What is meant by upsampling the controls? How were 
the parameters decided – was this done on an independent data set (i.e. before the cross-validation)? Did 
the authors try fitting models on one data set, and then testing on one of the other data sets? 
 
We thank the reviewer for this comment. In our revision, we have clarified the number of samples in each 
category in each of the datasets in Figure 1A of the manuscript. We have incorporated into the manuscript 
a description of how the parameters were decided, based on a grid search of candidate parameters using 
the GridSearchCV function in scikit-learn’s model selection library (method described in page 17). The Grid 
Search was performed on a 6mer dataset that combines CD4 and CD8 TCR repertoires of the ISB-S dataset 
to classify HD from all COVID sequences, so that the same hyperparameters could be used to train on CD4 
and CD8 TCR data for all permutations (HD vs. Severe, HD vs. Moderate, HD vs. Mild). We have clarified 
the term “upsampling” in manuscript (page 17, “Following this test-train partition, to address imbalanced 
data, healthy donor samples were randomly resampled to be equal to the number of COVID-19 samples 
represented in the dataset, prior to training.”)  
 

The parameters that were used in our final reported models are the following. 
Algorithm Final Hyperparameters  

(CD8 models) 
Final Hyperparameters 

(CD4 models) 
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SVM kernel='poly', 
C=20,  
degree=5, 
probability=True 

kernel='rbf', 
C=100,  
gamma=1, 
probability=True 

KNN K = 3 
weights='uniform' 
algorithm='auto' 
leaf_size=30 
p=2 
metric='minkowski' 

K =3,  
weights='distance', 
algorithm='auto' 
leaf_size=10,  
p=2 
metric='minkowski' 

Random 
Forest 

n_estimators=100,  
criterion='gini',  
max_depth=None,  
min_samples_split=2,  
max_features='sqrt',  
max_leaf_nodes=None,  
bootstrap=True 

n_estimators = 2000,  
criterion='gini',  
max_depth = 20, 
min_samples_split = 5, 
max_features='sqrt',  
max_leaf_nodes=None,  
bootstrap=True 

Bernoulli 
Naïve 
Bayes 

Alpha = 1.0 
Binarize = 0.0 
Fit_prior = True 
Class_prior = None 

alpha = 0,  
binarize = 0.0,  
fit_prior = True 
class_prior = 
np.array([0.5,0.5]) 

Gradient 
Boosting 

n_estimators=100,  
learning_rate=1.0,  
max_depth=1 

n_estimators=100, 
learning_rate=1.0, 
max_depth=20 

Table 2: Final Table of Hyperparameters 
 
Reviewer 3 comments from last revision: Overall, the attempt to provide a meta-analysis of diverse 
TCRrep data sets is interesting and potentially valuable. But in light of the known challenges of meta-
analyses, the paper is a bit skimpy in providing detail which could be used to assess the validity of the 
comparisons. Also, at the end of the day, each analysis has largely been carried out on an independent 
data set, which rather reduces the value of carrying out a meta-analysis in the first place. Other than the 
overall reduction in diversity shown in fig 1, I am not convinced any of the other findings are generalizable 
across data sets, and so its hard to assess the significance of the findings. 
 
We thank reviewer 3 for this feedback, and acknowledge that our manuscript has several limitations. In 
our revised manuscript we have elaborated upon the limitations of our study. Different aspects of these 
limitations are discussed throughout the paper, including page 5, which discusses the limitations of the 
diversity metric finding, page 6, which discusses the limitations of the PCA finding, and page 13, which 
discusses the limitations of conducting separate analyses on individual datasets that limits this 
manuscript’s ability to serve as a true meta-analysis. 



REVIEWERS' COMMENTS: 

 

Reviewer #3 (Remarks to the Author): 

 

I don ;t have anything much to add to my previous comments. Some significant underlying problems, 

raised by all the reviewers remain, and cannot really be addressed without essentialy a new study. 

However, the authors have made a reasonable effort to highlight the limitations of the study in the 

text. 



Response to review 

REVIEWERS' COMMENTS: 
 
Reviewer #3 (Remarks to the Author): 
 
I don ;t have anything much to add to my previous comments. Some significant underlying problems, 
raised by all the reviewers remain, and cannot really be addressed without essentialy a new study. 
However, the authors have made a reasonable effort to highlight the limitations of the study in the text. 

We thank the reviewer for the final comment on this paper. 
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