a.

C.

Supplementary Figure 1: The CFP-SKL reporter assay

a. 256 copies of lacO array provide examination of the reporter through a mCherry protein fused to lacR. Tetracycline response elements (TREs) control expression of the unique *CFP-SKL* mRNA transcript upon dox treatment. *CFP-SKL* transcription is detected through the binding of YFP-MS2 and encoded CFP-SKL protein that can be detected by WB.

b. U-2 OS were treated with dox as indicated and *CFP-SKL* mRNA expression was quantified. Results are expressed as % of cells showing YFP-MS2 accumulation at a single locus (n= 3x20 cells, biological triplicates). Bars represent mean values of three different experiments (Biological triplicates) (+/- SD). Representative confocal images of MS2-YFP accumulation at *CFP-SKL* is shown. The reporter locus is detected with a mCherry-LacR fusion construct.

c. Immuno-blot for CFP-SKL and YFP-MS2 in U-2 OS cells treated with dox and subsequently let to recover in dox-free medium. Extracts were immuno-blotted with anti-GFP. CFP-SKL signals were normalized with YFP-MS2 signals (+/-SEM). Three independent immunoblots were performed (technical triplicates). Source data are provided as a Source Data file.

d. U-2 OS cells were transfected with siCTL or siXPA for 24 hours and with a construct expressing mCherry-lacR for 24 hours before UV irradiation (30J/m²) and subsequent 2-hour pulse-incubation with dox. **Left panel**; cell extracts were immunoblotted against XPB and XPA. **Right panel**; Newly transcribed *CFP-SKL* were detected at the reporter locus. Quantification of the transcribing locus was done and results are expressed as % of cells showing YFP-MS2 accumulation at a single locus (n= 3x20 cells, biological triplicates). Bars represent mean values of three different experiments (Biological triplicates) (+/- SD). One-way ANOVA with post-hoc Tukey adjustment comparisons were used to determine the p-values. Source data are provided as a Source Data file.

e. U-2 OS cells were UV-irradiated (30 J/m²) and pulse-incubated for 2 hours with dox. Cells were allowed to recover for 4 hours in the absence of dox. Extracts were immuno-blotted with anti-GFP antibody. Lane 1; cells were not treated with dox. Lane 2; cells were treated with dox for 2 hours before to recover 4 hours in the absence of dox. CFP-SKL signals were normalized

with YFP-MS2 signals (+/-SEM). Three independent immunoblots were performed (technical triplicates). Source data are provided as a Source Data file.

a.

C.

Supplementary Figure 2: Lack of EXD2 induces inhibition of RRS

a. Representative confocal images of EXD2^{+/+} and EXD2^{-/-}-cl1. Cells were mock or UVirradiated (15J/m²) and mRNA was labelled with EU 1, 16 and 24 hours after UV-irradiation. Images of the cells were obtained with the same microscopy system and constant acquisition parameters.

b. CS1ANSV and CS1ANSV+CSB^{WT} were UV-irradiated (15J/m²) and mRNA was labelled with EU at 1, 16 and 24 hours after UV-irradiation. EU signal was quantified by ImageJ and relative integrated density normalized to mock-treated level set to 100% are reported on the graph (n=at least 20 cells per condition). Red bars indicate mean integrated density. One-way ANOVA with post-hoc Tukey adjustment comparisons were used to determine the p-values. Source data are provided as a Source Data file.

c. HeLa were mock or UV-irradiated (15J/m²) and let to recover for the indicated times before lysis. Protein lysates were immuno-blotted for RPB1 subunit of RNAPII. Molecular mass of the proteins is indicated on the left (kDa). RT; recovery time. IIO, phosphorylated form of RPB1. IIA non-phosphorylated form. Source data are provided as a Source Data file.

d. Protein lysates were immuno-blotted for proteins as indicated. Molecular mass of the proteins is indicated (kDa). Source data are provided as a Source Data file.

e. HeLa cells were mock or UV-irradiated (15J/m²) and mRNA was labelled with EU 1, 16 and 24 hours after UV-irradiation. EU signal was quantified by ImageJ and relative integrated density normalized to mock-treated level set to 100% are reported on the graph (n=at least 20 cells per condition). Red bars indicate mean integrated density. One-way ANOVA with posthoc Tukey adjustment comparisons were used to determine the p-values. Source data are provided as a Source Data file.

f. EXD2^{+/+} and EXD2^{-/-}-cl 1 cells were grown to 80% confluence and further incubated 24 hours in medium containing 0.5% FCS. Cells were mock or UV-irradiated (15J/m²) and mRNA was labelled with EU at 1 and 16 hours after UV-irradiation. EU signal was quantified by ImageJ and relative integrated density normalized to mock-treated level set to 100% are reported on the graph (n= at least 50 cells per condition). Red bars indicate mean integrated density. One-

way ANOVA with post-hoc Tukey adjustment comparisons were used to determine the pvalues. Source data are provided as a Source Data file.

EU

Supplementary Figure 3: EXD2 is not involved is RRS after DRB or cold-shock treatment

DRB: EXD2^{+/+}, EXD2^{-/-} + EXD2^{WT}-cl1 and EXD2^{-/-} + EXD2^{D108A/E110A}-cl1 were treated with DRB (100 μM) for 1 hour before chase and cells were let to recover for 30 minutes. mRNA was labelled with EU before (DMSO), during (DRB) or after the chase (DRB + chase) of DRB treatment. **Cold-Shock**: EXD2^{+/+}, EXD2^{-/-} + EXD2^{WT}-cl1 and EXD2^{-/-} + EXD2^{D108A/E110A}-cl1 were incubated at 4°C for 15 minutes and let to recover at 37°C for 30 minutes. mRNA was labelled with EU before (37°C), after 15 minutes at 4°C (4°C) or after the recovery at 37°C (4°C+37°C). For both experiments, EU signal was quantified by ImageJ and relative integrated densities normalized to mock-treated level set to 100% are reported on the graph (n= at least 20 cells per condition). Red bars indicate mean integrated density. One-way ANOVA with post-hoc Tukey adjustment comparisons were used to determine the p-values. Source data are provided as a Source Data file.

Supplementary Figure 4: NER is not affected by the lack of EXD2

EXD2^{+/+} and EXD2^{-/-}-cl1 were mock or UV-irradiated (15J/m²) and let to recover for the indicated times before lysis. Protein lysates were immuno-blotted for EXD2, γ H2AX or Vinculin. Molecular mass of the proteins is indicated (kDa). RT; recovery time. Source data are provided as a Source Data file.

a.

Supplementary Figure 5: mRNAs under synthesis are degraded by EXD2 following UV irradiation

a. Representative confocal images of EXD2^{+/+}, EXD2^{-/-}, EXD2^{-/-} + EXD2^{WT}-cl1 and EXD2^{-/-} + EXD2^{D108A/E110A}-cl1 showing newly synthetized mRNA (1 hour or 16 hours after mock-treatment or UV irradiation at 15J/m²). Images of the cells were obtained with the same microscopy system and constant acquisition parameters.

b. CS1ANSV and CS1ANSV+CSB^{WT} were treated as indicated in Figure 4a, upper panel, and EU signals were quantified using ImageJ and normalized to the value obtained at 1 hour set to 100%. Values are reported on the graph (n= at least 50 cells). Red bars indicate mean integrated density. *RT*; recovery time. One-way ANOVA with post-hoc Tukey adjustment comparisons were used to determine the p-values. Source data are provided as a Source Data file.

b.

Supplementary Figure 6: EXD2^{WT}-GFP localization in U-2 OS cell

a. Representative confocal images of U-2 OS cells stably expressing EXD2^{WT}-GFP with or without Flavopiridol treatment. Images of the cells were obtained with the same microscopy system and constant acquisition parameters.

b. Quantification of the EXD2-GFP nuclear signal in U-2 OS cells treated or not with Flavopiridol (n= at least 400 cells). Red bars indicate mean integrated density. One-way ANOVA with post-hoc Tukey adjustment comparisons were used to determine the p-values. Source data are provided as a Source Data file.

Supplementary Table 1: Reagents and chemicals

REAGENT or RESOURCE	SOURCE	IDENTIFIER	
Antibodies			
ACTIN 1/1000	Abcam	AB209856	
CPD 1/500	Cosmo Bio	CAC-NM-DND-001	
ATP5A 1/1000	ProteinTech Europe	66037-1-IG	
EXD2 1/2000	Sigma-Aldrich	HPA005848	
FLAG M2 1/1000	Sigma-Aldrich	F1804	
GAPDH 1/2000	Abcam	AB8245	
GFP 1/2000	Amsbio	TP401	
GFP (PLA)	Roche	11814460001	
GST 1/1000	Abcam	ab19256	
γH2AX 1/1000	Abcam	ab22551	
Histone H3 1/5000	Abcam	ab1791100	
RPB1 1/5000	Homemade IGBMC	7C2	
RNA Pol II (PLA)	Bethyl	A300-653A	
TFIIEα 1/1000	Homemade, IGBMC	2A1	
Vinculin 1/1000	Sigma Aldrich	V9131	
XPA 1/500	SCBT	SC-853	
6-4PP 1/1000	Cosmo Bio	CAC-NM-DND-002	
Chemicals, peptides, and re	combinant proteins		
Actinomycin D	Sigma Aldrich	A-1410	
DRB	Merck Chemicals	287891	
Et743	PharmaMar	(Feuerhahn et al., 2011)	
LightCycler 480 SYBR Green I Master	Roche	04887352001	
MitoTracker Red CMXRos	Invitrogen	M7512	
Streptavidin magnetic beads	Fisher Scientific	88816	
	SAS		
TriReagent	Molecular Research Center	TR118	
Vectashield	VectorLaboratories	H-1000-10	
Critical commercial assays			
Click-iT EU Alexa Fluor 488 Imaging Kit	ThermoFisher	C10329	
Click-iT EdU Alexa Fluor 488 Imaging Kit	ThermoFisher	C10337	
Lipofectamine RNAiMAX Transfection Reagent	Fisher Scientific SAS	13778030	
SuperScript IV kit	Invitrogen	18090050	
X-tremeGene DNA Transfection Reagent	Roche	063657870001	
Qproteome Mitochondria Isolation Kit	Qiagen	37612	
Experimental models: Cell lines			
U-2 OS and U-2 OS pTuner 263		(Nagy et al., 2016)	
CS1ANSV and CS1ANSV+CSB		(Kristensen et al., 2013)	
HeLa		Nieminuszczy et al., 2019)	
HeLa EXD2 ^{-/-} -cl1 and 2		(Nieminuszczv et	
		al., 2019)	

HeLa EXD2 ^{-/-} +EXD2 ^{WT} -cl1 and 2		(Nieminuszczy et al., 2019)	
HeLa EXD2 ^{-/-} +EXD2 ^{D108A/E110A} -cl1 and 2		(Nieminuszczy et al., 2019)	
U-2 OS ^{GFP}		(Nieminuszczy et al., 2019)	
U-2 OS ^{EXD2-GFP}		(Nieminuszczy et al., 2019)	
XP4PA-SV		(Donnio et al., 2019)	
XPC HeLa Silencix		(Le May et al., 2010)	
Oligonucleotides			
F: GCAGAAGAACGGCATCAAGG	CFP-SKL	This paper	
R: GTCCATGCCGAGAGTGATCC	CFP-SKL	This paper	
F: CTTCCCCGATGAGAACTTCAAACT	СусВ	This paper	
R: CACCTCCATGCCCTCTAGAACTTT	СусВ	This paper	
siXPF	Dharmacon	019946-00	
siXAB2	Dharmacon	004914-01	
siEXD2	Dharmacon	020899-02	
siCTL	Dharmacon	001810-02	
siXPA	Dharmacon	005067-01	
siCSB	Dharmacon	004888-00	
siCSA	Dharmacon	011008-00	
siUSP33	Dharmacon	006081-00	
siBPTF	Dharmacon	004025-00	
siYLPM1	Dharmacon	032696-00	
Recombinant DNA			
mCherry-LacR		(Nagy et al., 2016)	
Software and algorithms			
GraphPad Prism	GraphPad Software		
	Inc.		
ImageJ	NIH		
CellProfiler	Broad Institut	CellProfiler	
Other			
Leica DM 4000 B equipped with a CoolSnap FX monochrome camera	Leica		

Supplementary References

Donnio, L.-M., Lagarou, A., Sueur, G., Mari, P.-O., Giglia-Mari, G., 2019. CSB-Dependent Cyclin-Dependent Kinase 9 Degradation and RNA Polymerase II Phosphorylation during Transcription-Coupled Repair. Mol Cell Biol 39. https://doi.org/10.1128/MCB.00225-18
Feuerhahn, S., Giraudon, C., Martinez-Diez, M., Bueren-Calabuig, J.A., Galmarini, C.M., Gago, F., Egly, J.M., 2011. XPF-dependent DNA breaks and RNA polymerase II arrest induced by antitumor DNA interstrand crosslinking-mimetic alkaloids. Chem Biol 18, 988–99. https://doi.org/S1074-5521(11)00227-4 [pii] 10.1016/j.chembiol.2011.06.007

- Kristensen, U., Epanchintsev, A., Rauschendorf, M.A., Laugel, V., Stevnsner, T., Bohr, V.A., Coin, F., Egly, J.M., 2013. Regulatory interplay of Cockayne syndrome B ATPase and stressresponse gene ATF3 following genotoxic stress. Proceedings of the National Academy of Sciences of the United States of America 110, E2261-70. https://doi.org/10.1073/pnas.1220071110
- Le May, N., Mota-Fernandes, D., Velez-Cruz, R., Iltis, I., Biard, D., Egly, J.M., 2010. NER factors are recruited to active promoters and facilitate chromatin modification for transcription in the absence of exogenous genotoxic attack. Mol Cell 38, 54–66. https://doi.org/S1097-2765(10)00211-X [pii] 10.1016/j.molcel.2010.03.004
- Nagy, Z., Kalousi, A., Furst, A., Koch, M., Fischer, B., Soutoglou, E., 2016. Tankyrases Promote Homologous Recombination and Check Point Activation in Response to DSBs. PLoS Genet 12, e1005791. https://doi.org/10.1371/journal.pgen.1005791
- Nieminuszczy, J., Broderick, R., Bellani, M.A., Smethurst, E., Schwab, R.A., Cherdyntseva, V., Evmorfopoulou, T., Lin, Y.-L., Minczuk, M., Pasero, P., Gagos, S., Seidman, M.M., Niedzwiedz, W., 2019. EXD2 Protects Stressed Replication Forks and Is Required for Cell Viability in the Absence of BRCA1/2. Molecular Cell 75, 605-619.e6. https://doi.org/10.1016/j.molcel.2019.05.026
- Shanbhag, N.M., Rafalska-Metcalf, I.U., Balane-Bolivar, C., Janicki, S.M., Greenberg, R.A., 2010. ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 141, 970–81. https://doi.org/10.1016/j.cell.2010.04.038