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SUMMARY
In direct lineage conversion, transcription factor (TF) overexpression reconfigures gene regulatory networks (GRNs) to reprogram cell

identity. We previously developed CellOracle, a computational method to infer GRNs from single-cell transcriptome and epigenome

data. Using inferred GRNs, CellOracle simulates gene expression changes in response to TF perturbation, enabling in silico interrogation

of network reconfiguration. Here, we combineCellOracle analysis with lineage tracing of fibroblast to induced endodermprogenitor (iEP)

conversion, a prototypical direct reprogramming paradigm. By linking early network state to reprogramming outcome, we reveal distinct

network configurations underlying successful and failed fate conversion. Via in silico simulation of TF perturbation, we identify new fac-

tors to coax cells into successfully converting their identity, uncovering a central role for the AP-1 subunit Fos with the Hippo signaling

effector, Yap1. Together, these results demonstrate the efficacy of CellOracle to infer and interpret cell-type-specific GRN configurations,

providing new mechanistic insights into lineage reprogramming.
INTRODUCTION

Direct lineage reprogramming aims to transform cell iden-

tity between fully differentiated somatic states via the

forced expression of select transcription factors (TFs). Using

this approach, fibroblasts have been directly converted into

many clinically valuable cell types (Cohen and Melton,

2011). These protocols are currently limited, though,

because only a fraction of cells convert to the target cell

type and remain developmentally immature or incom-

pletely specified (Morris and Daley, 2013). Therefore, the

resulting cells are generally unsuitable for therapeutic

application and have limited utility for disease modeling

and drug screening in vitro.

A comprehensive characterization of cell identity is crucial

to improve reprogramming methods. Gene regulatory net-

works (GRNs) represent the complex, dynamicmolecular in-

teractions that act as critical determinants of cell identity.

These networks describe the intricate interplay between

transcriptional regulators and multiple cis-regulatory DNA

sequences, resulting in theprecise spatial and temporal regu-

lation of gene expression (Davidson and Erwin, 2006). Sys-

tematically delineating GRN structures enables a logic map

of regulatory factor cause-effect relationships to be mapped.

In turn, this knowledge supports a better understanding of

how cell identity is determined and maintained, informing

new strategies for cellular reprogramming.

We previously described CellOracle, a computational

pipeline for GRN inference via integrating different
Stem Cell
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single-cell data modalities (Kamimoto et al., 2020).

CellOracle overcomes current challenges in GRN inference

by using single-cell transcriptomic and chromatin accessi-

bility profiles, integrating prior biological knowledge via

regulatory sequence analysis to infer TF-target gene interac-

tions. We designed CellOracle to apply inferred GRNs to

simulate gene expression changes in response to TF pertur-

bation. This unique feature enables inferred GRN configu-

rations to be interrogated in silico, facilitating their inter-

pretation. We have benchmarked CellOracle against

ground-truth TF-gene interactions, demonstrating its effi-

cacy to recapitulate known regulatory changes across he-

matopoiesis (Kamimoto et al., 2020). Further, we have

applied CellOracle to predict TFs regulating medium spiny

neuron maturation in human fetal striatum development

(Bocchi et al., 2021). Other groups have successfully used

the method to investigate mouse and human T cell differ-

entiation (Chopp et al., 2020; Nie et al., 2022), T cell

dysfunction in glioblastoma (Ravi et al., 2022), and

pharyngeal organ development (Magaletta et al., 2022).

Here, we apply CellOracle to interrogate GRN reconfigura-

tion during direct lineage reprogramming of fibroblasts to

induced endoderm progenitors (iEPs), a prototypical TF-

mediated fate conversion. Via single-cell lineage tracing,

we previously demonstrated that this protocol comprises

two distinct trajectories leading to reprogrammed and

dead-end fates (Biddy et al., 2018). We expand on this line-

age tracing strategy to experimentally define state-fate rela-

tionships, supporting the inference of early network states
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associated with defined reprogramming outcomes. These

analyses reveal the early GRN configurations associated

with the successful conversion of cell identity. Using princi-

ples of graph theory to identify critical regulatory nodes in

conjunction with in silico simulation predicts several novel

regulators of reprogramming,whichwe experimentally vali-

date. We also demonstrate that one of these TFs, Fos, plays

roles in both iEP reprogramming and maintenance, where

interrogation of inferred Fos targets reveals a role for AP1-

Yap1. We validate these findings to demonstrate that Fos

and Yap1 overexpression significantly enhances reprogram-

ming efficiency. Together, these results demonstrate the effi-

cacy of CellOracle to infer and interpret cell-type-specific

GRN configurations at high resolution, enabling new

mechanistic insights into reprogramming. CellOracle code

and documentation are available at https://github.com/

morris-lab/CellOracle.
RESULTS

CellOracle GRN inference applied to direct lineage

reprogramming

CellOracle is designed to infer GRN configurations,

revealing how networks are rewired during the establish-

ment of defined cellular identities and states, highlighting

known and putative regulatory factors of fate commitment

(Kamimoto et al., 2020). In the first step of the CellOracle

pipeline, single-cell assay for transposase-accessible chro-

matin using sequencing (scATAC-seq) is used to assemble a

‘‘base’’ GRN structure, representing a list of all potential reg-

ulatory genes associated with each defined DNA sequence

(Figures 1A and 1B). The second step in the CellOracle pipe-

line uses single-cell RNA sequencing (scRNA-seq) data to

convert the base GRN into context-dependent GRN config-

urations for each defined cell cluster. Removal of inactive

connections refines the base GRN structure, selecting the

active edges that represent regulatory connections associ-

ated with a specific cell type or state (Figures 1C, 1D, and
Figure 1. Application of CellOracle to assess reprogramming GRN
(A and B) Overview of CellOracle. (A) First, CellOracle uses scATAC-seq
for TF binding motifs, generating a Base GRN—a list of potential reg
(C) Using single-cell expression data, active connections are identifi
(D) Cell type- and state-specific GRN configurations are constructed b
(E) Hnf4a and Foxa1-mediated fibroblast to iEP reprogramming.
(F) (Left) Force-directed graph: 15 clusters of cells are grouped into
(Tran), dead-end, and reprogrammed iEPs (iEP). (Right) Projection o
(G) CellOracle analysis. Heatmap (left) and boxplot (right) of network ed
(H) Degree and eigenvector centrality scores for Hnf4a-Foxa1.
(I) Hnf4a-Foxa1 network cartography terms for each cluster.
(J and K) Scatterplots of degree centrality scores between specific cl
(J) Degree centrality score comparison between Fib_1 cluster GRN an
(K) Degree centrality score comparison between iEP_1 and Dead-end
S1A). Here, we apply CellOracle to infer GRN reconfigura-

tion during TF-mediated direct lineage reprogramming.

The generation of induced endoderm progenitors (iEPs)

frommouse embryonic fibroblasts (MEFs) represents a pro-

totypical lineage reprogramming protocol, which, like

most conversion strategies, is inefficient and lacks fidelity.

Initially reported as hepatocyte-like cells that functionally

engraft the liver (Sekiya and Suzuki, 2011), we demon-

strated that these cells also harbor intestinal identity and

can functionally engraft the colon, prompting their re-

designation as iEPs (Guo et al., 2019; Morris et al., 2014).

More recently, we have shown that iEPs transcriptionally

resemble injured biliary epithelial cells (BECs) and exhibit

BEC-like behavior in 3D-culture models (Kong et al.,

2022). Building on these findings, our single-cell lineage

tracing revealed two distinct trajectories: one to a success-

fully reprogrammed iEP state, and one to a dead-end,

mesenchymal-like state (Figure 1E; Biddy et al., 2018).

Our previously published MEF to iEP reprogramming

scRNA-seq dataset consists of eight time points collected

over 28 days (n = 27,663 cells) (Biddy et al., 2018). We re-

processed this dataset using partition-based graph abstrac-

tion (PAGA; Wolf et al., 2019), manually annotating 15

clusters based on marker gene expression, identifying the

expected trajectories (Figures 1F and S1B–S1D). Relative

to reprogrammed cells, dead-end cells only weakly express

iEP markers, Cdh1 and Apoa1, accompanied by higher

expression levels of fibroblast markers, such as Col1a2

(Figures 1F, S1B, and S1C). Using CellOracle with a base

GRN generated using a mouse scATAC-seq atlas (Cusano-

vich et al., 2018), we inferred GRN configurations for

each cluster, calculating network connectivity scores to

analyze GRN dynamics during reprogramming.
Analysis of network reconfiguration during

reprogramming

We initially assess the network configuration associated

with the exogenous reprogramming TFs, Hnf4a and Foxa1,
dynamics
data to identify accessible regulatory elements, which are scanned
ulatory connections between a TF and its target genes (B).
ed from all potential connections in the base GRN.
y pruning insignificant or weak connections.

five cell types; fibroblasts (Fib), early transition (Early), transition
f Apoa1 (iEP marker) and Col1a2 (fibroblast marker) expression.
ge strength between Hnf4a-Foxa1 and its target genes. ***p < 0.001.

usters.
d other early and transition reprogramming cluster GRNs.
_0 cluster GRNs.
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focusing on the strength of their connections to target

genes. Hnf4a and Foxa1 receive a combined score in these

analyses since they are expressed as a single transcript that

produces two independent factors via 2A-peptide-mediated

cleavage. Network strength scores show significantly stron-

ger connectivity of Hnf4a-Foxa1 to its inferred target genes

in early reprogramming, followed by decreasing connection

strength (Early_2 versus iEP_2: p < 0.001,Wilcoxon test; Fig-

ure 1G). We next evaluated the inferred GRN structures us-

ing traditional graph theory methods. We examined (1) de-

gree centrality of each gene, a straightforward measure

reporting how many edges are directly connected to a

node; and (2) eigenvector centrality, a measure of influence

via connectivity to other well-connected genes (Klein et al.,

2012). Hnf4a-Foxa1 receives high degree and eigenvector

centrality scores in the early conversion stages, gradually

decreasing as reprogramming progress (Figure 1H). In agree-

ment with a central role for the transgenes early in reprog-

ramming, network cartography analysis (Guimerà andAma-

ral, 2005) classified Hnf4a-Foxa1 as a prominent "connector

hub" in the early_2 cluster network configuration (Figures 1I

and S1E). Together, these analyses show that Hnf4a-Foxa1

network configuration connectivity and strength peak in

early reprogramming phases.

Next, we analyzed the Hnf4a-Foxa1 network configura-

tion in later conversion, following bifurcation into reprog-

rammed and dead-end trajectories (Figures 1F and S1B–

S1D). The reprogrammed clusters (iEP_0, iEP_1, iEP_2)

exhibit stronger network connectivity scores relative to

the dead-end clusters 1 and 2 (Figure 1G; iEP versus dead-

end; p < 0.001, Wilcoxon test). We also identify a smaller

dead-end cluster (Dead-end_0); cells within this cluster

only weakly initiate reprogramming, retaining robust

fibroblast gene expression signatures and expressing signif-

icantly lower levels of reprogramming initiation markers

such as Apoa1 (Figure S1C; p < 0.001, permutation test).

This cluster also exhibits significantly lower Hnf4a-Foxa1

connectivity scores relative to Dead-end_1 and 2 (Fig-

ure 1G; p < 0.001, Wilcoxon test), accompanied by lower

degree centrality and eigenvector centrality scores (Fig-

ure 1H). However, CellTag lineage data reveal that most

cells (93% of tracked cells) on this unique path derive

from a single clone, representing a rare reprogramming

event captured due to clonal expansion (Figure S1F).

Wenext turned to global GRN reconfiguration to identify

candidate TFs initiating reprogramming. Comparing de-

gree centrality scores between fibroblast and early reprog-

ramming clusters reveals differential connectivity of a

handful of key TFs. For example, Hes1, Eno1, Fos, Foxq1,

and Zfp57 receive relatively high degree centrality scores

in the early reprogramming clusters, whereas Klf2 and

Egr1 degree centrality increases in later transition stages

(Figure 1J). These factors remain highly connected on the
100 Stem Cell Reports j Vol. 18 j 97–112 j January 10, 2023
reprogramming trajectory relative to the dead-end (Fig-

ure 1K), suggesting that the GRN configurations control-

ling reprogramming outcome are remodeled at the initia-

tion of fate conversion.

Altogether, reprogramming network analysis suggests

that Hnf4a-Foxa1 function peaks at conversion initiation.

These early, critical changes in GRN configuration deter-

mine reprogramming outcome, with dysregulation or loss

of this program leading to dead-ends, where cells either

do not successfully initiate or complete reprogramming.

This hypothesis is consistent with our previous CellTag

lineage tracing, showing the establishment of reprogram-

ming outcomes from early stages of the conversion process

(Biddy et al., 2018). We next performed new experimental

lineage tracing targeting cells at reprogramming initiation

to further investigate how early GRN configuration relates

to the successful generation of iEPs.

Clonal tracing links early network state to

reprogramming fate

Barcoding and tracking cells via scRNA-seq represents a

powerful method to investigate how the early molecular

state of a cell relates to its eventual fate (Biddy et al.,

2018; Jindal et al., 2022; Weinreb et al., 2020). Cells are

labeled with combinations of heritable random barcodes,

CellTags, delivered using lentivirus, enabling cells to be

uniquely labeled and tracked over time; cells sharing iden-

tical barcodes are identified as clonal relatives; thus, early

cell state can be directly linked to reprogramming outcome

(Biddy et al., 2018; Kong et al., 2020; Figure 2A). However,

our previous lineage tracing study was not designed to

maximize the capture of clones early in reprogramming;

thus, we did not meet the minimum cell number required

for accurate GRN inference (50 cells; Kamimoto et al.,

2020). Here, we performed new lineage tracing experi-

ments to associate early-stage cells with reprogramming

outcome.

Cells were reprogrammed with Hnf4a-Foxa1, as above,

and CellTagged at the end of the reprogramming TF trans-

duction period. After 4 days of expansion (reprogramming

day 4), we collected 25% of the cell population for scRNA-

seq, reseeding the remaining cells. A total of 24,799 cells

were sequenced: 8,440 on day 4, 4,836 on day 10, and

11,523 on day 28 (Figures 2B and 2C). Using our previous

method to score cell identity alongwith establishedmarker

gene expression (Biddy et al., 2018), we identify reprog-

rammed and dead-end fates (reprogrammed n = 1,895;

dead-end n = 6,324; Figures 2D, S2A, and S2B). Next, using

clonal information, we identify the day 4 clones whose day

10 and day 28 descendants are significantly enriched

or depleted of successfully reprogrammed cells. From

CellTag processing (supplemental experimental proced-

ures), we recovered 1,158 clones, containing a total of
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10,927 cells across all time points. Using randomized

testing, we identified two groups of day 4 cells: iEP-en-

riched (55 cells in nine clones) and iEP-depleted (50 cells

in 43 clones), from which reprogramming and dead-end

trajectories stem (Figures 2F and 2G), reproducing our

earlier observations (Biddy et al., 2018).

Pooling the day 4 clones by outcome, we meet the mini-

mum number of cells required for GRN inference (Fig-

ure S2C). We first compared the global GRN configurations

for each of these states relative to MEFs to assess early

GRN reconfiguration on each trajectory. For example,

comparing degree centrality between day 4 cells destined

to reprogram and native fibroblasts agrees with our above

analysis comparing early transition to fibroblast states (Fig-

ure 1J), showing high connectivity of similar factors, such

as Klf9, and Mef2a, in fibroblasts and Fos and Foxq1 in day

4 reprogrammed-destined clones (Figure 2H, left). Addi-

tional highly connected TFs also emerge in this reprogram-

ming group, including the known induced pluripotency fac-

tor, Klf4 (Takahashi and Yamanaka, 2006), and Klf5, Mybl2,

and Foxk2. The appearance of several additional factors

here is likely due to assessing the early cells with known re-

programming descendants rather than the early reprogram-

ming cluster as a whole, in which many cells will not suc-

cessfully reprogram, highlighting how these state-fate

experiments can further dissect population heterogeneity.

Indeed, the state-fate experimental design allows us to

compare those early cells destined to reprogram versus

early cells that fail to reprogram, for which clonal informa-

tion is essential. A comparison of these two groups reveals

subtle differences in GRN configuration, with Klf6, Tbx5,

Tfapb2, and Foxs1 demonstrating higher connectivity in

cells failing to reprogram, in contrast to Fos, Klf5, and

Junb in cells destined to attain full iEP identity (Figure 2H,

right). Differential expression analysis between day 4 re-

programming and dead-end groups did not identify these

TFs (Table S3). CoSpar, a computational tool designed to
Figure 2. Lineage tracing links early network state to reprogramm
(A) Overview of CellTag-based clonal tracking. Cells are transduced w
three to four CellTags, resulting in a unique, heritable barcode signatur
enabling clonally related cells to be tracked throughout an experime
(B) Experimental strategy to capture state-fate relationships. MEFs
CellTags. The end of this period is considered reprogramming day 0. Ce
is termed the state population. The remaining cells are reseeded and
(C) Captured state-fate cells. Time point information projected on
embedding. A total of 24,799 cells were sequenced: 8,440 on day 4,
(D) Projection of fibroblast, iEP, and dead-end identity scores and (E
(F) A randomized test identified day 4 state clones whose day 10 and 28
estimation of iEP-enriched day 4 state clones and their day 10 and 2
(Bottom) iEP-depleted state-fate cells outlining the dead-end traject
(G) Projection of iEP-enriched and iEP-depleted clones onto the UMA
(H) Comparison of degree centrality scores between native fibrobla
programmed- and dead-end-destined cells (right).
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identify lineage-specific gene markers based on single-cell

lineage tracing data (Wang et al., 2022b), identified only

Foxs1 and Junb. Overall, this new experimental state-fate

analysis reveals the highly connected fibroblast TFs de-

coupled upon reprogramming initiation, representing po-

tential targets to extinguish fibroblast identity. Further,

we identify many TFs that are highly connected early on

the successful reprogramming trajectory, representing po-

tential candidates to improve iEP yield. We next use

CellOracle’s in silico perturbation function to identify puta-

tive regulators of reprogramming in a systematic, unbiased

manner.

Systematic in silico simulation of TF knockout to

identify novel regulators of iEP reprogramming

While network structure can point to how gene regulation

changes during reprogramming, it offers a static picture

that does not necessarily provide functional insight.

CellOracle bridges this gap by using its unique GRN infer-

ence model to interrogate networks to gain mechanistic

insight into how specific TFs regulate cell identity

(Kamimoto et al., 2020). CellOracle simulates the transi-

tion of cell identity following candidate TF perturbation

(knockout [KO] or overexpression), using cluster-specific

GRNs to model subsequent expression changes in regu-

lated genes. The simulated values are then converted into

a transition vector map and visualized in the dimensional

reduction space, enabling an intuitive interpretation of

how a candidate TF regulates cell identity (Kamimoto

et al., 2020); Figures 3A–3C and S3A–S3C; supplemental

experimental procedures).

In silico TF perturbation comprises four steps: (1) GRN

configurations are constructed (as in Figure 1A). (2) Using

these GRN models, shifts in target gene expression in

response to TF perturbation are calculated. This step applies

the GRNmodel as a function to propagate the shift in gene

expression rather than the absolute gene expression value,
ing outcome
ith the random CellTag lentiviral library so that each cell expresses
e. CellTags are transcribed and captured during single-cell profiling,
nt.
are transduced with Hnf4a-Foxa1 for 48 h, then transduced with
lls are expanded, and 25% of the population is profiled at day 4; this
profiled again on days 10 and 28 to capture reprogramming fate.
to the Uniform Manifold Approximation and Projection (UMAP)
4,836 on day 10, and 11,523 on day 28.
) fate annotations onto the UMAP embedding.
fate sisters were iEP-enriched or iEP-depleted. (Top) Kernel density
8 fates, outlining the reprogramming trajectory (n = 1,347 cells).
ory (n = 4,802 cells).
P embedding.
sts and day 4 reprogrammed-destined cells (left) and day 4 re-
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representing TF-to-target gene signal flow. This signal is

propagated iteratively to calculate the broad, downstream

effects of TF perturbation, allowing the global transcrip-

tional shift to be estimated (Figures S3A and S3B). (3) The

probability of a cell identity transition is estimated by

comparing this gene expression shift with the gene expres-

sion of local neighbors (Figure S3C). (4) The transition

probability is converted into a weighted local average vec-

tor to represent the simulated directionality of cell state

transition for each cell upon candidate TF perturbation.

This final step converts the simulation results into a 2D vec-

tor map, enabling robust predictions by mitigating the ef-

fect of errors or noise derived from scRNA-seq data and

the preceding simulation (Figures 3B middle; S3C). The re-

sulting small-length vectors allow the directionality of cell

identity transitions to be feasibly predicted rather than in-

terpreting long-ranging terminal effects from initial states.

To enable the simulation results to be assessed systemat-

ically and unbiasedly, we consider the changes in cell iden-

tity induced by reprogramming, together with the pre-

dicted effects from the perturbation. Taking the relatively

densely sampled time course from Biddy et al. (2018), we

use semi-supervised Monocle analysis (Trapnell et al.,

2014) to order cells in pseudotime based on the expression

of the fibroblast marker Col1a2 and the iEP marker Apoa1,

capturing the distinctive reprogramming and dead-end tra-

jectories as distinguished by their respective lineage-

restricted clones (n = 48,515 cells, two independent

biological replicates; Figures 3A and S3D). We use the pseu-

dotime information to calculate a vector gradient, repre-

senting the direction of reprogramming as a vector field

(Figures 3B, left; S3E; supplemental experimental proced-

ures). We then quantify the similarity between the reprog-

ramming and perturbation simulation vector fields by

calculating their inner-product value, which we term

perturbation score (Figure 3B). A negative perturbation

score implies that the TF perturbation blocks reprogram-

ming (Figure 3C, magenta). Conversely, a positive pertur-
Figure 3. Systematic in silico simulation of TF KO to identify nov
(A) Monocle-based pseudotemporal ordering of 48,515 cells from Bid
(B) Schematic for perturbation score calculations. CellOracle calculate
cell state transition with the direction of cell differentiation. First, the
2D gradient vector field. The results of the perturbation simulation are
of these vectors is calculated to produce a perturbation score.
(C) A positive perturbation score (green) suggests that the perturbatio
perturbation score (magenta) represents impaired reprogramming.
(D) Ranked list of TFs based on the sum of the negative perturbation
(E) Representative examples of TF KO simulation (top row). Expressio
(F) Experimental validation of candidate TFs: colony-formation assay
(G) Colony quantification. n = 5 independent biological replicates for n
biological replicates for Eno1, Klf4; n = 3 independent biological rep
*p < 0.05, **p < 0.01.
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bation score indicates that reprogramming is promoted

following TF perturbation (Figure 3C, green). By calcu-

lating the sum of the negative perturbation scores, we

rank TFs by their potential to regulate the reprogramming

process, where a greater negative score indicates that re-

programming is impaired upon KO of the candidate TF. Us-

ing these metrics, we can interpret perturbation effects on

cell fate quantitatively and objectively.

We used this approach to perform a systematic in silico

simulation of TF KOs during iEP generation to identify

novel reprogramming regulators (Figure S3F). Following

GRN inference for each of the seven Monocle states identi-

fied (Figure S3D), we performed KO simulations for all TFs

with inferred connections to at least one other gene

(‘‘active’’ TFs, n = 180), calculating the sum of the negative

perturbation scores to rank TFs by the predicted inhibition

of reprogramming following their KO. This in silico screen

prioritizes factors for experimental validation. In the top-

ranked TFs, many factors are shared between independent

biological replicates ((Figure 3D; Pearson’s, r = 0.72). The

Hnf4a-Foxa1 transgene is ranked top, as expected since

these factors are driving the reprogramming process.

Only half of the remaining top-ranked factors are differen-

tially expressed in reprogrammed cells (Table S1). Further,

only three of these prioritized TFs (Jun, Junb, Hes1) were

identified by orthogonal analysis using CoSpar (Wang

et al., 2022b) (Table S3), highlighting the utility of

CellOracle to recover novel candidate regulators.

For experimental validation, we further prioritized candi-

date genes based on GRN degree centrality, enrichment of

gene expression along the entire reprogramming trajec-

tory, and ranking agreement across biological replicates,

yielding eight candidates: Eno1, Fos, Fosb, Foxd2, Id1, Klf2,

Klf4, and Klf15 (Figure 3E). For all TFs, CellOracle predicts

impaired reprogramming following their KO. We per-

formed an initial screen for all eight TFs, using a short

hairpin RNA (shRNA)-based strategy to knock down

each TF during reprogramming (confirmed by qRT-PCR;
el regulators of iEP reprogramming
dy et al. (2018), two independent biological replicates.
s a perturbation score by comparing the direction of the simulated
pseudotime data is summarized by grid points and converted into a
converted into the same vector field format, and the inner product

n is predicted to promote reprogramming. In contrast, the negative

score.
n of respective genes (bottom row).
.
on-targeting scramble shRNA control, Fosb, Id1; n = 4 independent
licates for Fos; unpaired t test with Welch’s correction, two-tailed;
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Figure S3G), followed by colony-formation assay to

quantify clusters of successfully reprogrammed cells based

on E-cadherin expression. From this initial screen, reprog-

ramming was impaired following the knockdown of six

of the eight TFs (Eno1, Fos, Fosb, Id1, Klf4, and Klf15),

with 20%–50% fewer colonies formed (Figures S3H and

S3I).We selected Eno1, Fos, Fosb, Id1, andKlf4 for additional

colony-formation assays, confirming that their knock-

down significantly reduces reprogramming efficiency (n =

5 independent biological replicates for non-targeting

scramble shRNA control, Fosb, Id1; n = 4 for Eno1, Klf4;

n = 3 for Fos; unpaired t test with Welch’s correction,

two-tailed; *p < 0.05, **p < 0.01; Figures 3F and 3G).

Overall, our systematic perturbation simulation and

experimental validation revealed several novel regulators

of MEF to iEP reprogramming. Of these TFs, we identified

Fos as a positive regulator of reprogramming. Further, our

above state-fate analysis identified Fos as a highly connected

factor in day 4 reprogrammed-destined clones, suggesting a

role for this TF from the early stages of cell fate conversion.

Indeed, we noted an enrichment of genes associated with

the activator protein-1 TF (AP-1), a dimeric complex primar-

ily containing members of the FOS and JUN factor families

(Eferl and Wagner, 2003). AP-1 establishes cell-type-specific

enhancers and gene expression programs (Vierbuchen

et al., 2017) and reconfigures enhancers during reprogram-

ming to pluripotency (Knaupp et al., 2017). As part of the

AP-1 complex, Fos plays broad roles in proliferation, differ-

entiation, and apoptosis, both in development and tumori-

genesis (Eferl and Wagner, 2003; Jochum et al., 2001). We

next focused on further in silico simulation and experi-

mental validation of Fos, a core component of AP-1.

The AP-1 TF subunit Fos is central to reprogramming

initiation and maintenance of iEP identity

Comparing degree centrality scores between fibroblast and

early reprogramming clusters, Fos receives relatively high
Figure 4. CellOracle analysis and experimental validation of Fos
(A) Degree centrality, betweenness centrality, and eigenvector centr
(B) Network cartography terms of Fos for each cluster.
(C) Fos expression projected onto the force-directed graph.
(D) Violin plot of Fos expression across reprogramming stages. ***p
(E and F) (E) Fos gene overexpression simulation with reprogramming G
onto the force-directed graph. The Sankey diagram summarizes the sim
simulation, Fos expressionwas set to 1.476, representing itsmaximumva
(G) Colony-formation assay with addition of Fos to Hnf4a-Foxa1. (L
numbers (n = 6 technical replicates, two independent biological repl
(H) qPCR for Fos and iEP marker expression (Apoa1 and Chd1) follow
replicates; ***p < 0.001, **p < 0.01, t test, one sided).
(I) Fos gene KO simulation in expanded, long-term cultured iEPs.
(J) CRISPR-Cas9 Fos KO in expanded iEP cells. (Left) Kernel density
neighbor embedding) to compare cell density between control guide RN
in cell ratio following Fos KO.
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degree and eigenvector centrality scores, along with

connector hub classification (Figures 1J, 4A, 4B, and S4A).

Clonal analysis of early ancestors destined to reprogram

successfully agrees with a central role for Fos (Figure 2H).

Indeed, perturbation simulation and reduced reprogram-

ming efficiency following experimental knockdown (Fig-

ures 3 and S3) led us to select Fos for deeper mechanistic

investigation as a candidate gene playing a critical role in

initiating iEP conversion.

During MEF to iEP reprogramming, Fos is gradually and

significantly upregulated (Figures 4C and 4D; p < 0.001,

permutation test, one sided). Several Jun AP-1 subunits

are also expressed in iEPs, classifying as connectors and

connector hubs across various reprogramming stages

(Figures S4C–S4E). Fos and Jun are among a battery of genes

reported to be upregulated in a cell-subpopulation-specific

manner in response to cell dissociation-induced stress,

potentially leading to experimental artifacts (van den Brink

et al., 2017). Considering this report, we performed qRT-

PCR for Fos on dissociated and undissociated cells. This

orthogonal validation confirms an 8-fold upregulation

(p < 0.01, t test, one sided) of Fos in iEPs, relative to MEFs,

revealing no significant changes in gene expression in cells

that are dissociated and lysed versus cells lysed directly on

the plate (Figure S4F). Further, analysis of unspliced and

spliced FosmRNA levels reveals an accumulation of spliced

Fos transcripts in reprogrammed cells (la Manno et al.,

2018). This observation suggests that these transcripts

accumulated over time rather than by rapid induction of

expression by cell dissociation (Figure S4G).

To further investigate the role of Fos, we simulated its

overexpression. In these analyses, to assess the in silico

perturbation of a specific candidate, we use aMarkov simu-

lation to predict how cell identity shifts within the overall

cell population, visualizing the results as a Sankey diagram.

Overexpression simulation for Fos predicts a major cell

state shift from the early transition to transition clusters,
in establishing and maintaining iEP identity
ality of Fos for each cluster.

< 0.001.
RN configurations. (Left) The projection of simulated cell transitions
ulation of cell transitions between cell clusters. For overexpression
lue in the imputed gene expressionmatrix (F) Fos geneKO simulation.
eft) E-cadherin immunohistochemistry. (Right) Boxplot of colony
icates; ***p < 0.001, t test, one sided).
ing addition of Fos to Hnf4a-Foxa1 (n = 3 independent biological

estimation was applied with the t-SNE (t-distributed stochastic
As and guide RNAs targeting Fos. (Right) Quantification of changes
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in addition to predicting shifts in identity fromdead-end to

reprogrammed clusters (Figure 4E). In contrast, the simula-

tion of Fos KO produces the opposite results. (Figure 4F).

We experimentally validated this simulation by adding

Fos to the iEP reprogramming cocktail. As expected, we

see a significant increase in the number of iEP colonies

formed (n = 10, p < 0.001, t test, one sided; Figure 4G),

increasing reprogramming efficiency more than 2-fold,

accompanied by significant increases in iEP marker expres-

sion as measured by qRT-PCR (n = 3, p < 0.001, t test, one

sided; Figure 4H).

Turning our attention to the later stages of reprogram-

ming, Fos continues to receive relatively high network

scores in the iEP GRN configurations (Figure 4A). Fos also

classifies as a connector hub (Figure 4B) in iEPs, suggesting

a role for Fos in the stabilization and maintenance of

the reprogrammed fate. To test this hypothesis, we use

CellOracle to perform KO simulation, followed by experi-

mental KO validation in an established iEP cell line. Here,

we leverage the ability to culture iEPs, long term, where

they retain a range of phenotypes (from fibroblast-like to

iEP states; Figure S4H) and functional engraftment poten-

tial (Guo et al., 2019; Morris et al., 2014). Simulation of

Fos KO using these long-term cultured iEP GRN configura-

tions predicts the loss of iEP identity upon Fos KO (Fig-

ure 4I). To test this prediction, we used CRISPR-Cas9 to

knock out Fos in established iEPs. Quantitative comparison

of the cell proportions between control andKOgroups con-

firms that fully reprogrammed iEPs regress toward an inter-

mediate state upon Fos KO, confirming a role for this factor

in maintaining iEP identity (Figure 4J), in addition to the

establishment of iEPs, as we demonstrate in our systematic

simulation and experimental validation in Figure 3.

Fos target inference uncovers a role for the Hippo

signaling effector Yap1 in reprogramming

To gain further insight into Fos regulation of reprogram-

ming, we interrogated a list of the top 50 inferred Fos tar-

gets (Figure 5A; Table S2). We also assembled a list of genes

predicted to be downregulated following Fos KO simula-
Figure 5. Inferred Fos targets reveal a role for the Hippo signalin
(A) Heatmap of expression of the top 50 inferred Fos targets across r
(B) Colony-formation assay with the addition of Yap1 and Fos to Hnf4
of colony numbers (n = 6 independent biological replicates; ***p < 0
(C) Brightfield and epifluorescence images of cells reprogrammed wit
(D) scRNA-seq of cells reprogrammed with Hnf4a-Foxa1 (n = 7,414 cell
cells), and Hnf4a-Foxa1-Fos-Yap1 (n = 10,507 cells), profiled at day
embedding.
(E) Kernel density estimation of cell density for each reprogramming
(F) Violin plot of iEP identity scores for each reprogramming cocktail
(G) Unsupervised cell type classification for each reprogramming cockt
epithelial cells. *p < 0.0001, randomized test.
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tion (Figure S5A). From this analysis, we noted the presence

of direct targets of YAP1, a central downstream transducer

of the Hippo signaling pathway (Ramos and Camargo,

2012). These targets include Cyr61, Amotl2, Gadd45g, and

Ctgf. Previous associations between Yap1 and Fos support

these observations; YAP1 is recruited to the same genomic

regions as FOS via complex formation with AP-1 (Zanco-

nato et al., 2015).Moreover, AP-1 is required for YAP1-regu-

lated gene expression and liver overgrowth caused by Yap

overexpression, where FOS induction contributes to the

expression of YAP/TAZ downstream target genes (Koo

et al., 2020).

Together, this evidence suggests that Fos may play a role

in reprogramming via an AP-1-Yap1-mediatedmechanism.

Since Yap1 does not directly bind to DNA, we cannot

deploy CellOracle to perform perturbation simulations,

highlighting a limitation of our approach. However, in

lieu of this analysis, we again turn to our previous reprog-

ramming data (Biddy et al., 2018). Using an established

active signature of Yap1 (Dong et al., 2007), we find signif-

icant enrichment of this signature as reprogramming pro-

gresses (Figures S5B and S5C; p < 0.001, permutation test,

one-sided). Together, these results suggest a role for the

Hippo signaling component Yap1 in reprogramming,

potentially affected via its interactions with Fos/AP-1.

Indeed, the Hippo signaling axis plays a role in liver regen-

eration (Pepe-Mooney et al., 2019) and regeneration of the

colonic epithelium (Yui et al., 2018), in line with the

known potential of iEPs to functionally engraft the liver

and intestine (Guo et al., 2019; Morris et al., 2014; Sekiya

and Suzuki, 2011). Further, we have recently demonstrated

that iEPs transcriptionally resemble injured BECs (Kong

et al., 2022), the target of YAP signaling in the context of

liver regeneration (Pepe-Mooney et al., 2019).

To test the role of Yap1 in iEP reprogramming, we first

performed colony-formation assays. We find that the addi-

tion of Yap1 to the Hnf4a-Foxa1 cocktail significantly en-

hances reprogramming efficiency, where the addition of

Fos and Yap1 together increase colony formation almost

3-fold, accompanied by significant increases in iEP marker
g effector, Yap1, in reprogramming
eprogramming. Established YAP1 targets are highlighted in red.
a-Foxa1. (Left) E-cadherin immunohistochemistry. (Right) Boxplot
.001, t-test, one sided).
h Hnf4a-Foxa1 or Hnf4a-Foxa1-Fos-Yap1. Scale bar, 500 mm.
s), Hnf4a-Foxa1-Fos (n = 8,771 cells), Hnf4a-Foxa1-Yap1 (n = 8,549
20. Projection of fibroblast and iEP identity scores onto the UMAP

cocktail from (D).
. ****p < 0.0001, Wilcoxon test.
ail, using normal and injured mouse liver as a reference. BEC, biliary



expression (Figures 5B, S5D, and S5E, p < 0.001, t test,

one sided). Further, we note the formation of extremely

dense colonies (Figure 5C). To further characterize this

distinctive phenotype, we performed scRNA-seq on cells

reprogrammed with Hnf4a-Foxa1 (n = 7,414 cells),

Hnf4a-Foxa1-Yap1 (n = 8,549 cells), Hnf4a-Foxa1-Fos (n =

8,771 cells), and Hnf4a-Foxa1-Yap1-Fos (n = 10,507 cells),

profiled at day 20 (Figure S5F).

We scored cells using established markers of MEFs and

iEPs (Biddy et al., 2018), revealing a significant increase

in reprogramming efficiency, particularly following the

addition of Yap1 (p < 0.0001, Wilcoxon test; Figures 5F

and S5F), which is also accompanied by a reduction in

fibroblast marker expression (Figure S5G). We further clas-

sify cell identity using our unsupervised method for

cell-type classification, Capybara (Kong et al., 2022). In

agreement with our previous reports, using a healthy

and regenerating liver atlas, iEPs generated with

Hnf4a-Foxa1 alone classify mainly as stromal cells (Fig-

ure 5G). However, following the addition of Fos and

Yap1, a significant population (p < 0.0001, randomized

test) of injured BECs emerges, in similar proportions to

those observed in long-term cultured iEPs (Kong et al.,

2022). We also observe a significant expansion of a normal

BEC population, from �4% to �12%–35%, upon the addi-

tion of Yap1 to the reprogramming cocktail (p < 0.0001,

randomized test), where endogenous Fos expression is

also upregulated (Figure S5G).We observed a similar expan-

sion of the normal BEC population when long-term iEPs

were cultured in a 3D Matrigel sandwich culture (Kong

et al., 2022). Here, our results are consistent with these pre-

vious observations and point to the molecular regulation

driving changes in cell identity. In summary, CellOracle

analysis and in silico prediction, combined with experi-

mental validation, have revealed several new factors and

putative regulatory mechanisms to enhance the efficiency

and fidelity of reprogramming.
DISCUSSION

Our application of CellOracle to iEP reprogramming has re-

vealed new insight into this lineage conversion paradigm.

Using CellTag-based lineage tracing, we had previously

demonstrated the existence of distinct conversion trajec-

tories: one path leading to successfully reprogrammed cells

and a route to a dead-end state, accompanied by fibroblast

gene re-expression (Biddy et al., 2018). From lineage anal-

ysis, we found that sister cells follow the same reprogram-

ming trajectories, suggesting that conversion outcome is

established shortly after overexpression of the reprogram-

ming TFs. The network analysis we present in this study,

powered by CellOracle, supports these earlier observations,
revealing GRN reconfiguration within the first few days of

reprogramming.

From our analysis of early GRN rewiring, we find that

Mef2a and Klf6 are highly connected in fibroblasts and

that these connections are largely decommissioned in suc-

cessfully converting cells. Although better known as a car-

diac factor (Filomena and Bang, 2018),Mef2a expression is

enriched in the dead-end population, whereas Klf6 is en-

riched in early transition states, followed by its downregu-

lation as reprogramming progresses. In this study, we have

mainly focused on the TFs associated with installing new

cell identities. Fromour clonal analysis of GRN reconfigura-

tion in reprogrammed-destined cells, we find many previ-

ously unreported regulators of iEP reprogramming, such

as Klf5, Mybl2, Foxq1, Fos, and Junb. The recovery of these

factors is likely due to the clonal analysis, which further

breaks down population heterogeneity to target those

rare cells that successfully reprogram.

To explore the role of these factors in reprogramming, we

leverage the unique feature of CellOracle: simulation of cell

identity transition following candidate TF perturbation

(KO or overexpression). From systematic in silico KO simu-

lation and experimental validation, we identified five new

regulators of iEP reprogramming: Id1, Fosb, Fos, Eno1, and

Klf4. Klf4 is one of the previously described core pluripo-

tency reprogramming factors (Takahashi and Yamanaka,

2006). The reduction of iEP reprogramming efficiency

following its knockdown also suggests that Klf4 plays a

role in this direct lineage conversion paradigm. Similarly,

Id1 has also been shown to play a positive role in reprog-

ramming to pluripotency (Hayashi et al., 2016), suggesting

parallels with direct lineage conversion. We also noted the

involvement of several AP-1 factors, both fromour network

analyses and in silico simulations, including Fos, Fosb, Fosl2,

and Junb. The FOS-JUN-AP1 complex has been reported to

regulate reprogramming to pluripotency (Xing et al., 2020)

and direct reprogramming to cardiomyocytes (Wang et al.,

2022a); thus, we selected Fos for further investigation.

The CellOracle analyses presented here provide new

mechanistic insight into the reprogramming process,

revealing a role for the Fos-Yap1 axis, which we experi-

mentally validated. In a parallel study, we found that

iEPs resemble post-injury BECs (Kong et al., 2022).

Considering that Yap1 plays a central role in liver regen-

eration (Pepe-Mooney et al., 2019), these results raise the

possibility that iEPs represent a regenerative cell type, ex-

plaining their Yap1 activity, self-renewal in vitro, and ca-

pacity to functionally engraft the liver (Sekiya and Su-

zuki, 2011) and intestine (Guo et al., 2019; Morris

et al., 2014). Indeed, our unsupervised cell type classifica-

tion of iEPs reprogrammed with the addition of Fos and

Yap to the Hnf4a-Foxa1 reprogramming cocktail suggests

that these factors can directly expand the injured and
Stem Cell Reports j Vol. 18 j 97–112 j January 10, 2023 109



normal BEC populations, supporting the notion that

iEPs may resemble a regenerative population. Altogether,

these new mechanistic insights have been enabled by

CellOracle analysis, placing it as a powerful tool for the

dissection of cell identity, aiding improvements in re-

programming efficiency and fidelity.
EXPERIMENTAL PROCEDURES

Detailed experimental procedures can be found in the supple-

mental information.
Resource availability

Corresponding author

Samantha A. Morris, s.morris@wustl.edu.

Materials availability

Pooled CellTag libraries have been deposited at Addgene: https://

www.addgene.org/pooled-library/morris-lab-celltag/

Data and code availability

All source data, including sequencing reads and single-cell expres-

sion matrices, are available from the Gene Expression Omnibus

(GEO) under accession codes GSE99915 (Biddy et al., 2018) and

GSE217675 for the new scRNA-seq data presented in this manu-

script. CellOracle code, documentation, and tutorials are available

on GitHub: (https://github.com/morris-lab/CellOracle).
Computational methods
CellOracle code is open source and available on GitHub: (https://

github.com/morris-lab/CellOracle). For alignment, digital gene

expression matrix generation, the Cell Ranger v6.0.1 pipeline

(https://support.10xgenomics.com/single-cell-gene-expression/

software/downloads/latest) was used to process data generated

using the 10x Chromium platform. For clone calling, we used

our CellTag analysis pipeline: https://github.com/morris-lab/

newCloneCalling. Cell type classification was performed using

Capybara: https://github.com/morris-lab/Capybara.
Experimental methods
MEFs were derived from E13.5 C57BL/6J embryos (the Jackson lab-

oratory: 000664). Retroviral particles were produced by transfect-

ing 293T-17 cells (ATCC: CRL-11268) with the pGCDN-Sam

construct containing Hnf4a-t2a-Foxa1/Fos/Yap1, along with pack-

aging construct pCL-Eco (Imgenex). Lentiviral particles were pro-

duced with the envelope construct pCMV-VSV-G (Addgene

plasmid 8454), the packaging construct pCMV-dR8.2 dvpr (Addg-

ene plasmid 8455), and the shRNA expression vector for the

respective candidate TF to be knocked down. For generation of

the complex CellTag library, lentiviral particles were produced by

transfecting 293T-17 cells (ATCC: CRL-11268) with the pSMAL-

CellTag construct, along with packaging constructs pCMV-dR8.2

dvpr (Addgene plasmid 8455) and pCMV-VSVG (Addgene plasmid

8454). For iEP reprogramming, MEFs (< passage 6) were converted

to iEPs as in Biddy et al. (2018), modified from (Sekiya and Suzuki,

2011). Colony-formation assays were performed as in Biddy et al.

(2018). Perturb-seq was performed as previously described (Adam-
110 Stem Cell Reports j Vol. 18 j 97–112 j January 10, 2023
son et al., 2016). Single-cell libraries were prepared using the 10x

Genomics Chromium platform.
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Supplemental Figures and Methods 
Supplemental Figure 1 (Related to Figure 1). GRN analysis of fibroblast to iEP 
reprogramming. (A) After base GRN construction (left), single-cell expression data is used to 

identify active TF-target gene connections for defined cell identities and states. To achieve this, 

we build a machine learning (ML) model that predicts the relationship between the TF and the 

target gene. ML model fitting results present the certainty of connection as a distribution, enabling 

the identification of GRN configurations by removing inactive connections from the base GRN 

structure. (B) Force-directed graph of iEP reprogramming scRNA-seq data (n = 27,663 cells). 

Reprogramming time point information is projected onto the force-directed graph. There are eight 

time points; day 0, 3, 6, 9, 12, 15, 21, and 28. Hnf4a-t2a-Foxa1 (Hnf4a-Foxa1) transgene 

expression levels, and marker gene expression for key iEP states are projected onto the graph. 

Reprogrammed iEP marker genes: Cdh1, Apoa1, and Kng1. Fibroblast marker gene: Col1a2. 

Transition marker gene: Mettl7a1. Dead-end marker genes: Peg3, Igf2, and Fzd1. (C) Violin plots 

of marker gene expression in each cluster. (D) PAGA connectivity analysis across the 

reprogramming time course. (E) Illustration of the cartography analysis method. The cartography 

method classifies genes into seven groups according to two network scores: within-module 

degree and participation coefficient (Guimerà and Amaral, 2005). In complex networks, high-

degree nodes (hubs) play the most significant roles in maintaining network structure. (F) Pie 

charts depicting the clonal composition of Dead-end cluster 0 and Dead-end cluster 1. Clone and 

trajectory information is derived from our previous CellTagging study (Biddy et al., 2018). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 2 



 3 

Supplemental Figure 2 (Related to Figure 2). CellOracle network analysis of cells destined 
to reprogrammed or dead-end fates. (A) Projection of Leiden cluster and gene expression 

information onto the state-fate UMAP embedding (from Figure 2C-F) to identify reprogrammed 

and dead-end fates. (B) Violin plots of reprogrammed (Apoa1, Cdh1), fibroblast (Col1a1, Col1a2), 

and dead-end (Peg3) marker expression along the iEP-enriched and iEP-depleted trajectories. 
(C) To assess the quality of the inferred networks, we calculate the degree distribution for each 

GRN configuration after pruning weak network edges based on the p-value and strength. We 

count the network degree (k), representing the number of network edges for each gene. P(k) is 

the frequency of network degree k, visualized in scatter plots. We also visualize the relationship 

between k and P(k) after log transformation, showing that these are scale-free networks, 

demonstrating successful network inference from these relatively small cell populations. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 4 

 
 
 
 
 



 5 

Supplemental Figure 3 (Related to Figure 3). Systematic in silico simulation of TF 
knockout. (A) Overview of signal propagation simulation. CellOracle leverages an inferred GRN 

model to simulate how target gene expression changes in response to the changes in regulatory 

gene (TF) expression. The input TF perturbation (yellow) is propagated side-by-side within the 

network model. (B) Leveraging the linear predictive ML algorithm features, CellOracle uses the 

GRN model as a function to perform the signal propagation calculation. Iterative matrix 

multiplication steps enable the estimation of indirect and global downstream effects resulting from 

the perturbation of a single TF. (C) After signal propagation, the simulated gene expression shift 

vector is converted into a 2D vector and projected onto the dimensional reduction space. (D) Left: 
Monocle states identified and used for GRN inference. Right: Calculated pseudotime projected 

on the Monocle embedding and converted to a 2D gradient vector field. (E) Schematic of the 

method to convert pseudotime to a 2D gradient vector field: First, the pseudotime data is 

summarized by grid points, then CellOracle calculates a 2D gradient vector of the pseudotime 

data that represents the directionality of reprogramming pseudotime. (F) Outline of 

reprogramming and dead-end trajectories projected onto the Monocle embedding. The sum of 

the negative perturbation score was calculated only for reprogramming trajectory clusters in this 

study. (G) Quantitative RT-PCR (qRT-PCR) to validate knockdown efficiency for each shRNA. * 

= p<0.05, ** = p<0.01, *** = p<0.001, **** = p<0.0001; unpaired t-test with Welch’s correction, 

two-tailed. (H) Colony formation assay (E-cadherin immunohistochemistry) to test iEP 

reprogramming efficiency following the knockdown of each candidate factor. (I) Quantification of 

colonies formed in the initial screen. Factors marked red and * were selected for further 

experimental validation. 
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Supplemental Figure 4 (Related to Figure 4). CellOracle analysis of the role of Fos in 
fibroblast to iEP reprogramming. (A) Comparison of eigenvector centrality scores between the 

Fib_1 cluster GRN configuration and the GRN configurations of other clusters in relatively early 

stages of reprogramming. (B) Comparison of eigenvector centrality scores between iEP_1 and 

Dead-end_0 cluster GRN configurations. (C-E) Expression and network cartography of Jun family 

members, Jun, Junb, and Jund. (F) qRT-PCR of Fos expression in fibroblasts and iEPs, with and 

without cell dissociation prior to the assay, ** = P < 0.01, t-test, one-sided. (G) Analysis of Fos 

mRNA splicing state in the scRNA-seq data of iEP reprogramming to investigate the Fos mRNA 

maturation state: Violin plot for spliced Fos mRNA counts. (H) t-SNE plots of 9,914 expanded 

iEPs, cultured long-term, revealing fibroblast-like, intermediate, and three iEP subpopulations. 

Expression levels of Apoa1 (marking typical iEPs), Col4a1 (fibroblast-like cells), Cdh1, Serpina1b 

(hepatic-like iEPs), and Areg (intestine-like iEPs) projected onto the t-SNE plot.  
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Supplemental Figure 5 (Related to Figure 5). The role of Fos and Yap1 in fibroblast to iEP 
reprogramming. (A) Top 50 decreased genes in Fos knockout simulation in the early 

reprogramming transition (left) and GO analysis based on these genes (right). (B) Violin plot of 

YAP1 target gene scores across reprogramming, which are significantly enriched as 

reprogramming progresses (*** = P < 0.001, permutation test, one-sided). (C) Projection of YAP1 

target gene scores onto the force-directed graph of reprogramming. (D) qRT-PCR assay for Yap1 

expression following addition of Yap1 and Fos to the Hnf4a-Foxa1 reprogramming cocktail (n = 

4 independent biological replicates; *** = P < 0.001, ** = P < 0.01, t-test, one-sided), confirming 

Yap1 overexpression. (E) qRT-PCR assay for iEP marker expression (Apoa1 and Cdh1) following 

addition of Yap1 and Fos to the Hnf4a-Foxa1 reprogramming cocktail (n = 4 independent 

biological replicates; *** = P < 0.001, ** = P < 0.01, t-test, one-sided). (F) Projection of Leiden 

cluster, dead-end identity scores, and gene expression information onto the state-fate UMAP 

embedding (from Figure 5D, E). (G) Expression of key marker genes for each reprogramming 

cocktail. 
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Supplemental Table 1. Differentially expressed iEP markers from (Biddy et al., 2018). Top-

ranked genes from CellOracle in silico perturbation are marked in red. 

 

Supplemental Table 2. Top 50 CellOracle-inferred Fos targets across all reprogramming 

clusters. Confirmed YAP1 targets are highlighted in red. 

 

Supplemental Table 3. Differential expression analysis of day 4 reprogrammed and dead-end 

destined clones. Genes in bold are also identified by CoSpar analysis. The right column shows 

TFs prioritized by CellOracle analysis. Genes in bold are also identified by CoSpar analysis. 
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Supplemental Methods 

CellOracle. CellOracle is an integrative tool for GRN inference and network analysis. It consists 

of several steps: (1) base GRN construction using scATAC-seq data, (2) context-dependent GRN 

inference using scRNA-seq data, (3) network analysis, and (4) simulation of cell identity after 

perturbation. We created the algorithm in Python and designed it for use in the Jupyter notebook 

environment. CellOracle code is open source and available on GitHub  

(https://github.com/morris-lab/CellOracle), along with detailed function descriptions and tutorials. 

Further details can be found in the original preprint (Kamimoto et al., 2020). 

  
Alignment and digital gene expression matrix generation. The Cell Ranger v6.0.1 pipeline 

(https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest) was 

used to process data generated using the 10x Chromium platform. Cell Ranger processes, filters, 

and aligns reads generated with the Chromium single-cell RNA sequencing platform. This pipeline 

was used with a custom reference genome, created by concatenating the sequences 

corresponding to the Hnf4a-t2a-Foxa1 transgene as a new chromosome to the mm10 genome. 

The unique UTRs in the Hnf4a-t2a-Foxa1 transgene construct allowed us to monitor transgene 

expression. To create Cell Ranger compatible reference genomes, the references were rebuilt 

according to instructions from 10x  

(https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/advanced/references). To achieve this, we first created a 

custom gene transfer format (GTF) file, containing our transgenes, followed by indexing of the 

FASTA and GTF files, using Cell Ranger ‘mkgtf’ and ‘mkref’ functions. Following this step, the 

default Cell Ranger pipeline was implemented, then the filtered output data was used for 

downstream analyses. 

 

CellTag clone calling 
Reads containing the CellTag sequence were extracted from the processed and filtered BAM files 

produced by the 10x Genomics pipeline using our CellTagR pipeline:  

https://github.com/morris-lab/CellTagR. The resulting filtered CellTag UMI count matrix was then 

used for all downstream clonal and lineage analyses. The CellTag matrix was initially filtered by 

removing CellTags that do not appear on the allowlist generated for each CellTag plasmid library. 

Cells expressing more than 20 CellTags (likely corresponding to cell multiplets) and less than 2 

CellTags per cell were filtered out. To identify clonally related cells, Jaccard analysis using the R 

package Proxy was used to calculate the similarity of CellTag signatures between cells. Clones 



 13 

were defined as groups of 2 or more related cells. Clones were called on cells pre-filtered for 

numbers of genes, UMIs, and mitochondrial RNA content. 

 

Cell type classification with Capybara 
Cells reprogrammed with Hnf4a-Foxa1, Hnf4a-Foxa1-Fos, Hnf4a-Foxa1-Yap1, and Hnf4a-

Foxa1-Fos-Yap1 were classified using Capybara (Kong et al., 2022). Briefly, the single-cell 

datasets were processed, filtered, and clustered using Seurat, resulting in 35,241 cells (7,414 HF, 

8,771 HF-Fos, 8,549 HF-Yap, 10,507 HF-Fos-Yap1). To construct a reference for cell-type 

classification, we obtained scRNA-seq data of biliary epithelial cells (BECs) and hepatocytes, 

before and after injury, from GSE125688 (Pepe-Mooney et al., 2019). We built a custom high-

resolution reference by incorporating additional tissues from the MCA: fetal liver, MEFs, and 

embryonic mesenchyme. Following the construction of a high-resolution reference, we performed 

preprocessing on the reference and the samples, on which we then applied quadratic 

programming to generate the identity score matrices. Further, we categorized cells into discrete, 

hybrid, and unknown, calculated the empirical p-value matrices and performed binarization and 

classification. We calculated the percent composition of each cell type. Cells with hybrid identities 

were filtered and refined based on their identity scores and representation by more than 0.5% 

cells of the population. Code and documentation are available at:  

https://github.com/morris-lab/Capybara. 

 
Differential Gene Expression analysis. Genes differentially expressed between Day 4 

reprogramming and dead-end destined cells were identified using Seurat FindMarkers command 

and subsetted to retain hits with an adjusted p-value of less than 0.05 (Bonferroni Correction). 

 

Experimental Methods 
Mice and derivation of mouse embryonic fibroblasts. Mouse Embryonic Fibroblasts were 

derived from E13.5 C57BL/6J embryos. (The Jackson laboratory: 000664). Heads and visceral 

organs were removed from E13.5 embryos. The remaining tissue was minced with a razor blade 

and then dissociated in a mixture of 0.05% Trypsin and 0.25% Collagenase IV (Life Technologies) 

at 37°C for 15 minutes. After passing the cell slurry through a 70µM filter to remove debris, cells 

were washed and then plated on 0.1% gelatin-coated plates in DMEM supplemented with 10% 

FBS (Sigma-Aldrich), 2mM L-glutamine and 50mM b-mercaptoethanol (Life Technologies). All 

animal procedures were based on animal care guidelines approved by the Institutional Animal 

Care and Use Committee. 
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Retrovirus Production. Retroviral particles were produced by transfecting 293T-17 cells (ATCC: 

CRL-11268) with the pGCDN-Sam construct containing Hnf4a-t2a-Foxa1/Fos/Yap1, along with 

packaging construct pCL-Eco (Imgenex). Virus was harvested 48hr and 72hr after transfection 

and applied to cells immediately following filtering through a low-protein binding 0.45µM filter. 
 

Lentiviral constructs and lentivirus production. Lentiviral particles were produced by 

transfecting 293T-17 cells (ATCC: CRL-11268) with the envelope construct pCMV-VSV-G 

(Addgene plasmid 8454), the packaging construct pCMV-dR8.2 dvpr (Addgene plasmid 8455), 

and the shRNA expression vector for the respective candidate TF to be knocked down. The 

shRNA expression vectors (with the TRC2 pLKO.5 backbone) were obtained directly from 

Millipore-Sigma or cloned into the empty backbone using oligonucleotides (Integrated DNA 

Technologies). The sequences of shRNA used are SHC202 (non-target shRNA control) 

CAACAAGATGAAGAGCACCAA; Eno1 GGCACAGAGAATAAATCTAAA; Fos 

ATCCGAAGGGAACGGAATAAG; FosB ATGACGGAAGGACCTCCTTTG; Foxd2 

AGATCATGTCCTCCGAGAGCT Id1 GAGCTGAACTCGGAGTCTGAA; Klf2 

GACCGATTGTATTTCTATAAG Klf4 CATGTTCTAACAGCCTAAATG; Klf15 

CTACCCTGGAGGAGATTGAAG. Virus was harvested 48hr and 72hr after transfection and 

applied to cells following filtering through a low-protein binding 0.45µm filter. For the generation 

of the complex CellTag library, lentiviral particles were produced by transfecting 293T-17 cells 

(ATCC: CRL-11268) with the pSMAL-CellTag construct, along with packaging constructs pCMV-

dR8.2 dvpr (Addgene plasmid 8455), and pCMV-VSVG (Addgene plasmid 8454), as in (Biddy et 

al., 2018; Guo et al., 2019; Jindal et al., 2022). 

 

Generation and collection of iEPs. Mouse embryonic fibroblasts (< passage 6) were converted 

to iEPs as in (Biddy et al., 2018), modified from (Sekiya and Suzuki, 2011). Briefly, we transduced 

cells every 12hr for two days, with fresh Hnf4a-t2a-Foxa1 retrovirus, in the presence of 4mg/ml 

Protamine Sulfate (Sigma-Aldrich), followed by culture on 0.1% gelatin-treated plates for one 

week in hepato-medium (DMEM: F-12, supplemented with 10% FBS, 1 mg/ml insulin (Sigma-

Aldrich), dexamethasone (Sigma-Aldrich), 10mM nicotinamide (Sigma-Aldrich), 2mM L-

glutamine, 50mM b-mercaptoethanol (Life Technologies), and penicillin/streptomycin, containing 

20 ng/ml epidermal growth factor (Sigma-Aldrich). After seven days of culture, the cells were 

transferred onto plates coated with 5µg/cm2 Type I rat collagen (Gibco, A1048301). For single-

cell processing, 30,000 reprogrammed, expanded iEPs were collected and fixed in methanol, as 

previously described in (Alles et al., 2017). Briefly, cells were collected and washed in Phosphate 
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Buffered Saline (PBS), followed by resuspension in ice-cold 80% Methanol in PBS, with gentle 

vortexing. These cells were stored at -80°C for up to three months and processed on the 10x 

platform (below). For the state-fate experiments, we followed the above protocol with some slight 

modifications. We transduced cells every 12hr for two days, with fresh Hnf4a-t2a-Foxa1 retrovirus 

and added CellTagging lentivirus on the final round of transduction. After 12hr, cells were washed 

and expanded in hepato-medium for four days, at which point the cells were dissociated and 25% 

of the population profiled by scRNA-seq. The remaining population was replated, and additional 

samples were profiled on days 10 and 28. 

 
Colony formation assays. Mouse Fos and Yap1 were cloned from iEPs into the retroviral vector, 

pGCDNSam (Sekiya and Suzuki, 2011), and retrovirus produced as above. For comparative 

reprogramming experiments, mouse embryonic fibroblasts (2x105/well of a 6-well plate) were 

serially transduced over 72hr (as above). In control experiments, virus produced from an empty 

vector control expressing only GFP was added to the Hnf4a-Foxa1 reprogramming cocktail. Virus 

produced from the Fos and Yap1 IRES-GFP constructs was added to the standard Hnf4a and 

Foxa1 cocktail. Cells underwent reprogramming for two weeks and were processed for colony 

formation assays: cells were fixed on the plate with 4% PFA, permeabilized in 0.1% Triton-X100 

then blocked with the Mouse on Mouse Elite Peroxidase Kit (Vector PK-2200). Primary antibody, 

mouse anti-E-Cadherin (1:100, BD Biosciences), was applied for 30 min before washing and 

processing with the VECTOR VIP Peroxidase Substrate Kit (Vector SK-4600). Colonies were 

visualized on a flatbed scanner, adding heavy cream to each well to increase image contrast. 

Colonies were counted using our automated colony counting tool: 

https://github.com/morris-lab/Colony-counter. Fos and Yap1 overexpression was confirmed by 

harvesting RNA from Hnf4a-Foxa1 and Hnf4a-Foxa1-Fos/Yap1-transduced cells (RNeasy kit, 

Qiagen). Following cDNA synthesis (Maxima cDNA synthesis kit, Life Tech), qRT-PCR was 

performed to quantify Fos/Yap1 overexpression (TaqMan Probes: Gapdh Mm99999915_g1; 

Cdh1 Mm01247357_m1; Apoa1 Mm00437569_m1; Fos Mm00487425_m1; Yap1 

Mm01143263_m1; TaqMan qPCR Mastermix, Applied Biosystems).  

 

Colony formation assays for TF knockdowns were conducted similarly, with the following 

modifications. To initiate reprogramming, mouse embryonic fibroblasts (75x103/well of a 6-well 

plate) were serially transduced over 72hr (as above). Lentivirus produced from the non-target 

shRNA control and the respective TF knockdown shRNA constructs was then added at 84hr and 

96hr (only added at 96hr for the initial screen). At 120hr, cells were seeded for colony formation 
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assays (40x103cells/well of a 6-well plate), which were then processed for colony formation on 

day 14 as above. The remaining cells from each sample were seeded for harvesting RNA for 

qPCR on day 14, as above. In the initial screen, cells from each sample were split equally and 

seeded in 6 well plates for colony formation and RNA extraction at 15 days following 

reprogramming initiation.  For Fos and Fosb knockdowns, mouse embryonic fibroblasts (120x103 

in a 6-cm dish) were transduced with the respective shRNA lentivirus at 24hr and 36hr post-

seeding. qPCR confirmation was performed at 72hr post-seeding. TaqMan Probes used: Actb 

Mm02619580_g1; Eno1 Mm01619597_g1; Fos Mm00487425_m1; Fosb Mm00500401_m1; 

Foxd2 Mm00500529_s1; Id1 Mm00775963_g1; Klf2 Mm00500486_g1; Klf4 Mm00516104_m1; 

Klf15 Mm00517792_m1. 

 

CRISPR/Cas9 Fos Knockout 
The Fos knockouts were performed as part of a larger screen, using Perturb-seq as previously 

described (Dixit et al., 2016). The protocol was modified, as outlined below, to apply the strategy 

to our experimental system: 
 

(1) Vector backbone and gene barcode pool construction: For Perturb-seq experiments, we used 

a lentivirus vector to express guide RNAs and gene barcodes (GBC). The lentivirus vector 

backbone contains an antiparallel cassette containing a guide RNA and GBC. In the original 

perturb-seq paper, the authors used pPS and pBA439 to construct the guide RNA-GBC vector 

pool. Here, we modified pPS and pBA439 to generate the pPS2 vector, in which the Blasticidin-

t2a-BFP gene replaced the Puromycin-t2a-BFP gene. We constructed the guide RNA-GBC vector 

using a multi-step cloning strategy: First, we synthesized dsDNA, via PCR, for a random GBC 

pool. We purified the PCR product with AMPure XP SPRI beads. We inserted the purified GBC 

pool into the pPS2 vector at the EcoRI site in the 3’ UTR of the Blasticidin-t2a-BFP gene. We 

used the product of Gibson assembly for transformation into DH5a competent cells (NEB: 

C2987H). Transformed cells were cultured directly in LB. We extracted plasmid DNA to yield the 

pPS2-GBC pool. 

 

(2) Guide RNA cloning. We designed guide RNAs using https://zlab.bio/guide-design-resources. 

We synthesized oligo DNA for each guide RNA. Oligo DNA pairs were annealed and inserted into 

the pPS2-GBC vector following BsmB1 digestion. After isolation and growth of single colonies, 

plasmid DNA was extracted and sanger DNA sequenced; sequences of the guide RNA inserted 

site and GBC site were used to construct a gRNA/GBC reference table: 



 17 

 

Fos_sg0 CAGCCGACTGAACGCGTTATTC 

Fos_sg1 CATATATCAAAGATGAACATTG 

Fos_sg2 TCAAGGCTGTAATTTCTTGGGC 

empty0 TTGATGAACTGCGCTAGCGAGG 

empty1 AAGAGCGGCTCGCAAGGGAAAA 

empty2 AGTAGGATACGTGGAGTTAATA 

 

(3) Lentivirus guide RNA pool generation. An equal amount of DNA for each pPS2-guide RNA 

vector was mixed to generate the plasmid pool. Three control vectors were also mixed with this 

plasmid vector pool; the weight ratio of each pPS2-guide vector to each control vector was 1:4. 

We used this mixed DNA pool for lentivirus production. Lentiviral particles were produced by 

transfecting 293T-17 cells (ATT: CRL-11268) with the pPS-guide RNA-GBC constructs, along 

with the packaging plasmid, psPAX2 (https://www.addgene.org/12260/), and pMD2.G 

(https://www.addgene.org/12259/). 

 

(4) Cell culture for Perturb-seq. We transduced reprogrammed iEP cells with retrovirus carrying 

Cas9 (MSCV-Cas9-Puro). The cells were treated with Puromycin (4 µg/ml) for four days to 

eliminate non-transduced cells. iEP-Cas9 cells were transduced with the lentivirus guide RNA 

pool for 24 hours. The concentration of lentivirus was pre-determined to target 10~20% 

transduction efficiency. After four days of cell culture, we flow sorted BFP-positive cells to purify 

transduced cells. Cells were cultured for a further 72 hours and fixed with methanol, as previously 

described (Alles et al., 2017). 

 

(5) GBC amplification and sequencing. Following library preparation on the 10x Chromium 

platform (below), we PCR amplified the GBC. The amplification was performed according to the 

original perturb-seq paper (Dixit et al., 2016), but we modified the PCR primer sequence for the 

Chromium single-cell library v2 kit: 

 

P7_ind_R2_BFP_primer: 

CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTGACTGGAGTTCAGACGTGTGCTCTTC

CGATCTTAGCAAACTGGGGCACAAGC 

P5_partial_primer: AATGATACGGCGACCACCGA 

GBG_Amp_F: GCTGATCAGCGGGTTTAAACGGGCCCTCTAGG 
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GBG_Amp_R: CGCGTCGTGACTGGGAAAACCCTGGCGAATTG 

GBC_Oligo: 

TTAAACGGGCCCTCTAGGNNNNNNNNNNNNNNNNNNNNNNCAATTCGCCAGGGTTTTCCC 

 Following amplification, we purified the PCR product with AMPure XP SPRI beads. The 

purified sample was sequenced on the Illumina Mi-seq platform. 

 

(6) Alignment of cell barcode/GBC. For preprocessing of Perturb-seq metadata, we used 

MIMOSCA, a computational pipeline to analyze perturb-seq data 

(https://github.com/asncd/MIMOSCA). First, the reference table for the cell barcode/GBC pair was 

generated from Fastq files. The data table was converted into the guide RNA/cell barcode table 

using the guide RNA-GBC reference table. This metadata was integrated into the scRNA-seq 

data. The guide metadata was processed with an EM-like algorithm in MIMOSCA to filter out 

unperturbed cells computationally, as previously described (Dixit et al., 2016). 

  

10x procedure. For single-cell library preparation on the 10x Genomics platform, we used: the 

Chromium Single Cell 3′ Library & Gel Bead Kit v2 (PN-120237), Chromium Single Cell 3′ Chip 

kit v2 (PN-120236), and Chromium i7 Multiplex Kit (PN-120262), according to the manufacturer’s 

instructions in the Chromium Single Cell 3′ Reagents Kits V2 User Guide. Prior to cell capture, 

methanol-fixed cells were placed on ice, then spun at 3000rpm for 5 minutes at 4°C, followed by 

resuspension and rehydration in PBS, according to (Alles et al., 2017). 17,000 cells were loaded 

per lane of the chip, aiming to capture 10,000 single-cell transcriptomes. The resulting cDNA 

libraries were quantified on an Agilent Tapestation and sequenced on an Illumina HiSeq 2500. 
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