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SUMMARY
Characterizing cell identity in complex tissues such as the human retina is essential for studying its development and disease. While

retinal organoids derived from pluripotent stem cells have been widely used to model development and disease of the human retina,

there is a lack of studies that have systematically evaluated the molecular and cellular fidelity of the organoids derived from various cul-

ture protocols in recapitulating their in vivo counterpart. To this end, we performed an extensive meta-atlas characterization of cellular

identities of the human eye, covering a wide range of developmental stages. The resulting map uncovered previously unknown bio-

markers of major retinal cell types and those associated with cell-type-specific maturation. Using our retinal-cell-identity map from

the fetal and adult tissues, we systematically assessed the fidelity of the retinal organoids in mimicking the human eye, enabling us to

comprehensively benchmark the current protocols for retinal organoid generation.
INTRODUCTION

The human retina is a complex tissue and comprises

various cell types that function together to convert light

into biological signals. To understand the development

and diseases of the human eye requires the characteriza-

tion of molecular and cellular programs that define the

identity of cells in the human retina. While access to

the human retinal tissues is limited, human retinal orga-

noids derived from pluripotent stem cells (PSCs) offer un-

precedented opportunities to investigate early retinal

development and therapeutic applications such as cell

transplantation (Chahine Karam et al., 2022; Ribeiro

et al., 2021; West et al., 2022). Early studies have used hu-

man embryonic stem cell (hESC)-derived embryoid bodies

followed by two-dimensional (2D) culturing to generate

retinal precursors, which were then isolated for directed

and undirected differentiation into ganglion and ama-

crine cells and, to a lesser extent, photoreceptor precursor

cells (Lamba et al., 2006). While the efficient production

of the retinal progenitors under 2D conditions enabled

useful initial applications in cell therapy studies (Lamba

et al., 2006, 2010; Meyer et al., 2009; Osakada et al.,

2008), these systems lack the capacity to recapitulate the

three-dimensional (3D) features of the native retinal cells

in vivo. This has led the field to develop advanced 3D

in vitro structures that can recapitulate the physiological,

morphological, and spatiotemporal patterns of the devel-
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oping retina (Eiraku et al., 2011; Meyer et al., 2011; Na-

kano et al., 2012; Zhong et al., 2014).

The advances in the retinal organoid field have led to the

development of state-of-the-art protocols that allow effi-

cient and rapid formation of retinal organoids comprising

all the retinal cell types: ganglion, amacrine, bipolar, hori-

zontal, Müller glial, and photoreceptor (Afanasyeva et al.,

2021). These organoids have been shown to generate

mature features such as ribbon synapses (Artero Castro

et al., 2019) and outer segments with physiological

response to light stimuli (Wahlin et al., 2017; Zhong

et al., 2014), showing remarkable functional similarity to

the eye (Gonzalez-Cordero et al., 2017). A mixture of 2D

and 3D protocols that do not require the addition of small

molecules allows the generation of mature and light-sensi-

tive photoreceptors with rudimentary outer segments

(Zhong et al., 2014). Other protocols that involve a step-

wise 2D-to-3D culture enable the formation of the

embryoid body to be bypassed (Reichman et al., 2014).

Other protocols have incorporated differentiation factors

such as serum, retinoic acid (RA), taurine, and supplements

N2 and B27 (Gonzalez-Cordero et al., 2017) and antioxi-

dants and lipids (West et al., 2022) that have significantly

improved the generation of photoreceptor outer segments.

Most of these protocols share common medium compo-

nents, such as BMP4 and IGF-1, but differ in their timing

in the switch from 2D to 3D culture and/or the addition

of certain molecules.
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An increasing number of studies have begun profiling

the human organoids derived from these protocols at sin-

gle-cell resolution to investigate retinal development and

disease (O’Hara-Wright and Gonzalez-Cordero, 2020).

These studies have provided an unprecedented opportu-

nity to investigate the heterogeneity of the retinal cell

types and uncovered several new insights into retinal

development, such as the discovery of a potentially novel

regulator of cone fate (Kallman et al., 2020), a population

of post-mitotic transitional cells (Sridhar et al., 2020), and

the convergence of retinal organoid transcriptomes toward

peripheral retinal cell types (Cowan et al., 2020). While

these advancements have enhanced our understanding of

retinal biology, in particular our understanding of the dif-

ferences between retinal cell types between subdomains

of human tissue (Voigt et al., 2021; Yan et al., 2020), the

growing single-cell resource of the human retina and

retinal organoids has yet been probed to systematically

evaluate the state-of-the-art protocols for their capacity to

produce organoids faithful to their in vivo counterpart.

Here, we performed an extensive curation of single-cell

RNA-sequencing (scRNA-seq) datasets from human retinal

tissue andorganoids derived froma variety of differentiation

protocols, generated a comprehensivemapof retinal cellular

identities of the mature and fetal eye, and benchmarked the

fidelity of the human retinal organoid models in faithfully

recapitulating the human eye. The extensive meta-atlas

characterization of the retinal cellular identities enabled

the discovery of an array of previously unknown marker

genes of retinal cell types and those associated with cell-

type-specific retinogenesis. Moreover, these cellular identi-

ties resolved by age were used to systematically benchmark

the current protocols for their capacity to generate cell types

that closely emulate their in vivo counterparts in terms of cell

identity, cell-type proportion, and coverage. Finally, we

developed a user-friendly application called Eikon (https://

shiny.maths.usyd.edu.au/Eikon/) that helps users assess

the fidelity of their retinal organoids.
RESULTS

Generating a cell-identity map of the human retina

Single-cell transcriptome profiling was applied to resolve

the cellular identities in the retinal tissue (Figure 1A).

To create a cell-identity map of the human retina, we

beganbycompilinga collectionof scRNA-seqdatasets gener-

ated from the human retinal tissue in ‘‘mature’’ samples,

including those from thepostnatal stage and the adult retina

(Figures 1B and S1A) (Cowan et al., 2020; Lu et al., 2020; Lu-

kowski et al., 2019; Orozco et al., 2020; Yan et al., 2020).

We visualized the integrated datasets by cell type, data-

set, and batch within each dataset using uniformmanifold
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approximation projection (UMAP) (Figure 1C) and

analyzed the number of cells in each cell type and their pro-

portions in each dataset and batch (Figures 1D, S1B, and

S1C). We observed that, while most of the major cell types

are identified in the datasets and the proportions of cell

types are largely consistent across batches within each da-

taset, the proportions of some cell types showed large vari-

ability across datasets (Figure S1C). Evaluating known

retinal cell-type genemarkers showed that their expression

is highly cell-type specific (Figure 1E). To ensure the deriva-

tion of a high-quality reference, we performed re-annota-

tion of all the cells in our retinal tissue meta-atlas using

scReClassify, which is a semi-supervised learning method

for assessing cell-type annotation accuracy in the original

classification and for deriving classification accuracy prob-

abilities (Kim et al., 2019). Keeping only the cells that had

been correctly assigned their original annotations, we

found that most cells in the reference were annotated

with very high confidence (Figure S1D). To generate the

gold standard reference for use in our downstream ana-

lyses, we included only the cells annotated with ‘‘very

high’’ confidence (probabilities greater than 0.9, where 1

denotes the highest level of confidence). We show that,

in most datasets (except Lukowski et al., 2019), greater

than 90%of cells were assignedwith high to very high con-

fidence, enabling us to retain the majority of the cells for

downstream analyses. Together, this large resource of

scRNA-seq datasets profiling the human eye forms the basis

for the characterization of the human retina cell types and

for assessing the retinal cell identity and the fidelity of hu-

man retinal organoids in mimicking the in vivo identities.

Deriving robust cell-identity scores of genes for retina

cell types

To resolve genes that underlie retinal cellular identity,

we computed a cell-type-specific cell-identity score for

each gene by dataset and batch using Cepo, a computa-

tional method for detecting cell-identity genes (Kim

et al., 2021). The clustering of samples from across datasets

and batches using Pearson’s correlation of Cepo-derived

gene statistics shows strong grouping by cell type irrespec-

tive of the origin of dataset and batch (Figure 2A).

To systematically quantify the influence of the total

number of batches and the batch source on Cepo-derived

cell-identity gene statistics, we conducted three assess-

ments. First, we evaluated the stability of the Cepo statistics

by randomly subsampling from 50% to 90% of all data

batches for inclusion in the generation of the averaged

Cepo scores. We then calculated Pearson’s correlation be-

tween these scores against those generated from the entire

batches. Our findings show that even with subsampling of

up to 50% of the batches, the Cepo statistics remain highly

reproducible and stable, showing only 0.01 loss in
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Figure 1. Curation of scRNA-seq datasets generated from the mature retinal tissue
(A) Schematic of single-cell transcriptomic profiling by scRNA-seq and the major cell types of the human retina.
(B) Summary of scRNA-seq datasets collected from the mature retinal tissues.
(C) UMAP representation of the transcriptomes of single cells. Cells are colored by their type (left), dataset of origin (middle), and batch in
each dataset (right). Abbreviations: MG, Muller glial; RGC, retinal ganglion cell; RPE, retinal pigment epithelium.
(D) Proportions of cell types (color coded) and total number of cells in each batch and dataset.
(E) Expression patterns of known retinal cell-type marker genes across datasets and batches. As in (C), the color annotation denotes
dataset and batch information.
correlation across the cell types (Figure S2A). Next, we

applied different clustering methods on the samples and

compared their concordance with respect to three sources

of variation: cell type, dataset, or batch (see supplemental

information).We found that the Cepo-derived cell-identity

gene statistics enabled accurate clustering of samples by

their cell type label, whereas both dataset and batch source

had minimal influence on the clustering (Figure S2B).

These findings were consistent across a varying number

of genes (Figure S2B) and demonstrate the high reproduc-

ibility of the cell-type identity statistics calculated using

Cepo for genes across our retinal resource.
Finally, we performed principal variance component anal-

ysis (Li et al., 2009) on all pairs of batches across datasets to

quantify the degree of variance contributed by batch source

(Figure 2B). Computing the degree of batch effect present in

all pairs of batches generates a set of batchpairs ranging from

those that exhibit low batch effect to those that exhibit high

batch effect. As expected, batch pairs with both originating

from the same dataset demonstrate lower batch effect, while

thoseoriginating fromdifferentdatasets demonstratehigher

batch effect. We then computed the concordance of Cepo-

derived gene statistics between the dataset pairs for each of

the cell types and then evaluated these statistics against the
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Figure 2. Comparative analysis of cell-type-specific gene statistics across datasets and batches
(A) Correlation heatmap of cell-identity gene statistics generated from Cepo (Kim et al., 2021) for each cell type across datasets and
batches. The heatmap is hierarchically clustered by the similarity of correlation profiles.
(B) Pairwise assessment of batch effect using principal variance component analysis (PVCA). The proportion of variance contributed by
batch in each pair of datasets is visualized. A darker color denotes stronger batch effect.
(C) Boxplots of mean correlation of gene statistics from all retinal cell types for each pair of datasets illustrated in (B) using Cepo, Limma,
Voom, and EdgeR statistics.
degree of batch effect present in the data (Figures 2C and

S2C). We found that the concordance in Cepo-derived

gene statistics between the same cell types was largely re-

tained across increasing batch effects (Figure S2C, first col-

umn). When comparing the robustness of other measures

of cell-type-specific gene statistics (Limma, Voom, and

EdgeR) against batch effect, we found that there was a

gradual loss in concordance with increasing presence of

batch effect across most cell types in these methods, with

the most pronounced decrease in the statistics for the ama-

crine andbipolar cells (Figures 2 andS2C).Collectively, these
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results strongly support thehigh reproducibilityof theCepo-

derived cell-identity gene statistics across the retina scRNA-

seq datasets, highlighting their robustness against batch

effect.

The retinal-cell-identity map uncovers novel cell-

identity genes

To uncover potential new markers of cell types, we per-

formed a systematic query search on PubMed on the genes

highly ranked byCepo (see supplemental information).We

considered a gene as ‘‘known’’ if its query returned any
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publication or as ‘‘novel’’ if its query returned no searches

(Figure 3A). Genes found to be neither a known nor a novel

gene were defined as ‘‘others.’’ We found that, while many

cell-identity genes uncovered by Cepo are known gene

markers for their respective cell type, many genes that

were not previously associated with the retinal cell types

were ranked highly by their Cepo statistics (Figure 3B).

Indeed, both known and new cell-type markers uncovered

by Cepo showed expression specific to that cell type,

whereas the randomly selected stable genes showed non-

specific expression across all cell types, as demonstrated

by the exclusive expression patterns of the known and

new markers in Figures 3C and S3A. In agreement, known

andnewgenemarkers, but not the randomly selected stable

genes, showed utility in classifying their respective cell

types as indicated by their feature importance score

computed from the random forest algorithm (Yang et al.,

2021) (Figures 3A and S3B).

To further evaluate the utility of known and novel cell-

identity genes in delineating the retinal cell types, we per-

formed cell-type classification by training a k-nearest

neighbor (kNN) classifier on different numbers of top genes

ranked by Cepo and classifying an independent retina

scRNA-seq dataset (Menon et al., 2019) (Figures 3D and

S3B).We also assessed the classification accuracy using high-

ly variable and randomly selected genes. We found that the

known andnewmarker genes led to similar classification ac-

curacy of cell typeswith an average >0.8. As expected, highly

variable genes showed better than random classification ac-

curacybutweremuch lower thanCepo-selected cell-identity

genes. Last, the combination of known and new marker

genes resulted in the best classification in most cases across

all three batches of the data (Figure S3B). Taken together,

these analyses support the discovery of new gene markers

for each of themajor retinal cell types (Table S1) anddemon-

strate their efficacy in delineating their respective cell types

in the retina.

Identifying genes associated with human retina

maturation

Several recent studies have profiled the developing human

eye using scRNA-seq (Cao et al., 2020; Lu et al., 2020). To
Figure 3. Identification and validation of novel cell-type-specific
(A) Scatter violin plots of log of query count of the top 50, 100, 150, a
visualizes the PubMed queries for the results from all cell types and t
(B) Scatter violin plots of the same query results as in (A) but of the
(C) Cell-type-specific gene markers identified by Cepo. Proportion of c
gradient color and the proportion of datasets having each marker expre
gene markers are derived from random forest classification of cells usin
markers are in gray. Randomly selected genes (in black) are included
(D) Classification accuracy of independent test data (Menon et al., 201
known or new gene markers or their combination, highly variable gen
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characterize these fetal samples and identify genes that

are associated with maturation of each retina cell type (Fig-

ure 4A), we curated these datasets, each profiling a wide

range of developmental stages (Figure S4A), and combined

this resource with the mature retinal atlas. The UMAP re-

vealed that the major cell types of the retina clustered

together (Figures 4B and S4B). In line with the develop-

mental birth order of retinal neurons and the Müller glial,

we observed that fetal samples from up to approximately

100 days post-conception contained high proportions of

retinal ganglion cells, horizontal cells, and cones (in rela-

tion to rod cells) (Figure S4C) (Shiau et al., 2021). Rods,

amacrine, bipolar, andMüller cells demonstrated increased

proportions after the 100-day time point, in agreement

with the knowledge that these cell types are late-born cells.

The final proportions of the fetal and mature cells in the

combined retinal atlas demonstrate the inclusion of both

age groups in all the cell types (Figure S4D).

To discover genes associated with human retinal matura-

tion, we investigated the correlation of cell-type-specific

Cepogene statistics and the developmental age of the retinal

samples. This analysis therefore enabled the generation of

cell-type-specific scores that denote whether a gene exhibits

a gain or a loss in cell-type-specific expression over time and

the discovery of genes associated with maturation (Fig-

ure 4C), many of which have been established in the litera-

ture as associated with retinal development and disease

(Azadi et al., 2010; Sapkota et al., 2014; Sinha et al., 2016;

Zhu et al., 2002). Cepo statistics were computed as previ-

ously described for each cell type and batch, and the clus-

tering results from their pairwise correlation relationships

were visualized as a heatmap (Figure S4E). We found that

the cell typeswere associatedwithvaryingnumbers andpro-

portions of maturation-related genes (Figures 4D and S4F)

and that these maturation profiles are highly cell-type spe-

cific. These findings not only demonstrate the presence of

cell-type-specific maturation programs but also highlight

the capacity of our Cepo statistics to identify highly cell-

type-specific genes (Figures 4E and 4F). Collectively, these

findings reveal that substantive re-wiring occurs during

development, whereby the re-wiring leads to distinct gene

expression patterns between cell types.
gene markers of the retina
nd 200 genes categorized into known or new genes. The scatterplot
hose from non-marker genes for comparison.
respective Cepo statistics.
ells expressing each marker in each cell type is represented by the
ssed is represented by the size of the balloons. Importance scores of
g these markers. Novel markers are highlighted in orange and known
as controls.
9) from kNN classifiers trained on each of the Cowan datasets using
es (HVG), and randomly selected genes.
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Next, we asked whether the genes associated with matu-

ration of themajor cell types of the retina represented those

relevant to their respective cell types. To test this, we per-

formed overrepresentation analyses using the gene sets

shown in Figure S4F. Consistent with the neuronal identity

of many of the retinal cell types, we observed that the most

enriched pathways among the gene sets positively associ-

ated with retinal maturation were related to the formation

and regulation of the synapses (Figure 4G). For example,

consistent with the fact that amacrine cells are the dopami-

nergic neurons of the eye, a positive amacrine maturation

profile was strongly enriched for the ‘‘regulation of synap-

tic transmission dopaminergic’’ pathway (Dacey, 1990).

Benchmarking framework to evaluate diverse retinal

organoid differentiation protocols

Recent advances have led to the development of several

state-of-the-art protocols for generating human retinal or-

ganoids that largely resembles the endogenous retina (Fig-

ure 5) (Afanasyeva et al., 2021; Berber et al., 2021; Llonch

et al., 2018; Mellough et al., 2019; Völkner et al., 2016;

Zhang et al., 2021). We curated public single-cell transcrip-

tomics datasets obtained from these protocols (Cowan

et al., 2020; Kallman et al., 2020; Lu et al., 2020; Sridhar

et al., 2020), as well as generating our in-house data (Gon-

zalez-Cordero et al., 2017;West et al., 2022) (Figures 6A and

S5A–S5D). While functional and molecular studies have

evaluated the efficacy of these organoid protocols for

efficient and robust generation of retinal cell types, no

studies have systematically evaluated these protocols by

comparing their global cellular and molecular profiles

with human retinal tissue.

To address this gap, we devised a framework to systemat-

ically assess these retinal organoid protocols. In brief,

leveraging themature and fetal retinal atlas, we derived ref-

erences denoting the cell-identity scores, maturation, the

cell-type proportions, and the cell-type coverage aspired

for the organoids. Importantly, we implemented six met-

rics based on the retinal atlas that measure the capacity of

the protocols (1) to mimic the cellular identities of the
Figure 4. The retinal cell-identity scores uncover genes associate
(A) Schematic workflow to derive cell-type-specific maturation-assoc
(B) UMAP of cell transcriptome profiles combining both adult and feta
sample type (right).
(C) Scatterplots of developmental age (x axis) and Cepo statistics (y ax
developmental time point. The top and bottom show genes that are
(D) Proportions of highly significant, significant, and insignificant m
false discovery rate [FDR]-adjusted p <0.01; significant, FDR-adjusted
(E) Similarity in maturation association profiles between the cell typ
(F) Overlap among the positively (left) and negatively (right) significa
highlighted for intersections greater than 2% of overlaps. The color s
(G) Enrichment of gene sets positively and negatively correlated with
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mature and (2) the fetal retinal tissue; (3) to recapitulate

the developmental stage; (4) to generate the cell-type pro-

portions found in the tissue; (5) to generate all the major

cell types in the retina; and finally (6) to generate the

smallest amount of off-target cells (Figure 6B). The full

description of how the references were generated and the

metrics were computed can be found in the supplemental

information.

Benchmarking the fidelity of human retinal organoids

to the human tissue

Using this benchmarking framework, we evaluated the ca-

pacity of each protocol to generate cell types that closely

mimic the human eye. We first evaluated the similarity be-

tween the protocols by comparing the cell-type identity

scores generated for each dataset and batch. We found

that our in-house-generated retinal organoids (Gonzalez-

Cordero et al., 2017; West et al., 2022) and those of Cowan

et al. (2020) demonstrated the highest degree of similarity

and also the highest level of consistency between batches

(Figure 6C). Next, for each of the datasets we computed

the cell-identity metric to assess the fidelity of each cell

type of the organoids against the mature and fetal refer-

ences. Ordering the samples by their similarity to the refer-

ence revealed that the organoids derived from our in-house

protocol closely followed by the Cowan protocol, consis-

tently outperforming those at similar ages derived from

other protocols in terms of achieving a high fidelity in

cellular identity against both references (Figure 6D). Immu-

nohistochemistry analysis indeed confirmed the presence

of all the major retinal cell types in day 210 human retinal

organoids (Figure 6E, n = 15 organoids; N = 3 differentia-

tion batches; generated using West et al., 2022).

To perform a cross-laboratory and cross-protocol bench-

marking of the human retinal organoids, we applied the

six fidelity metrics to the organoid datasets. The cell-iden-

tity metric was computed as the average of the cell-type-

specific scores described in Figure 6D. Among organoids

grown for 100 days or more, the overall score showed

that our protocols (Gonzalez-Cordero et al., 2017; West
d with retinal maturation
iated genes. Scaling by day post-conception (dpc).
l tissues. Cells are colored by their type (left), dataset (middle), and

is). Points denote individual samples and are colored by their ranked
positively and negatively associated with age, respectively.
aturation-associated genes for each cell type. Highly significant,
p between 0.01 and 0.05; and insignificant, FDR-adjusted p >0.05.
es in terms of Pearson’s correlation coefficient.
nt genes (FDR-adjusted p <0.05). The total percentage of overlap is
cale denotes the absolute number of genes in each gene set.
age.



Figure 5. Protocols of human retinal organoids
Overview of the culture systems for generating human retinal organoids. The schematic illustrates the timeline of retinal induction,
differentiation, and maturation steps, outlining 2D and 3D stages, key supplements, and factors added to culture conditions across the
published protocols. Abbreviations: hPSCs, human pluripotent stem cells; E8, Essential 8; E6, Essential 6; RA, retinoic acid; H, hour; DAPT,
N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenyl glycine t-butyl ester) g-secretase inhibitor; ✄, dissection/dislodgment.
et al., 2022) generated retinal cell types most faithful to

both mature and fetal tissue, closely followed by those

from the Cowan protocol. The organoids from the Kallman

and Sridhar protocols at similar culture periods (grown un-

til 170 and 205 days, respectively) performed less in terms

of the cell-identity metrics. While it is not appropriate to

directly compare the organoids from the early and late cul-

ture stages, it is worth noting that these organoids show

minimal resemblance to the fetal reference, suggesting

either that progenitor cells present at these early time

points of organoid are not captured in our fetal reference

due to difference in age or that these organoids do not

robustly recapitulate the fetal retinal cell types.

Next, the coverage metric was computed as the propor-

tion of the major cell types of the retina present in the or-

ganoid data. We observed that our protocols achieved the

highest coverage of themajor cell types of the retina consis-

tently across five batches that differed in organoid cell

line, organoid batch, and in-house protocols (West et al.,

2022; Gonzalez-Cordero et al., 2017, ±FBS) (Figure 6F).

This includes retinal ganglion cells (RGCs), which are

known to decrease in numbers with extended organoid

culturing.We observed RGCs in our cultures, albeit in small

numbers, making a small proportion of the total cells (Fig-

ure S5B). This was confirmed by the presence of THY1

(CD90)- and NeuN-positive cells in the 210-day-old orga-

noids (Figures 6E and S6E). Furthermore, gene expression

of THY1 confirmed the specificity of this marker to RGCs

(Figure S6F).

To investigate the developmental relevancy of the orga-

noids, the maturation metric computed from all the indi-

vidual cell-identity scores from the mature and fetal data
was used. Briefly, we assessed the capacity of the organoids

to either positively (more adult-like) or negatively (more

fetal-like) correlate with the time-resolved cell-identity

profiles as a proxy for their developmental relevancy

(Figure S6A). Our findings show that young organoids (%

60 days) demonstrate a strong negative correlation against

the age-ranked references, whereas organoids older than

170 days showed a strong correlation against the age-

ranked references. Thus, the overall scores, which have

been averaged for each cell type, show either a strong adult-

or a strong fetal-like profile of organoids at the bookends of

the protocols (Figure 6F).

Themetric—the proportion of cell types—was computed

from the mature and fetal reference, the latter of which is

also subdivided into two references denoting early and

late fetal maturation. We found that, again, our protocols

excelled among the protocols in generating cell-type pro-

portions that represent those found in the mature human

eye and not the fetal eye (Figure 6F). Intriguingly, even

though the early-stage organoids poorly recapitulated the

cellular identities of the fetal tissue, we found that their

cell-type proportions better reflected those of the fetal eye

(Figure 6F).

The final metric, the proportion of off-targets, was

computed for all the samples using scClassify, a multi-

scale classification algorithm that identifies intermediate

and unassigned cells (Lin et al., 2020). The average pro-

portion of cells classified into either of these categories

was used as the proxy for the generation of off-target cells,

which is important to minimize when generating cells for

transplantation. We show that, as expected, the mature

organoids generated fewer off-target cells (<10%) than
Stem Cell Reports j Vol. 18 j 175–189 j January 10, 2023 183
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younger organoids, which may consist of cells undergoing

development (Figure S6B), and that most protocols

demonstrated a high capacity to generate on-target cells

(Figure 6F).

Overall, our benchmarking study revealed that our in-

house protocols (Gonzalez-Cordero et al., 2017; West

et al., 2022) generate cell types of the retina with the high-

est fidelity to the human adult retina in terms of their

cellular identity, cell-type proportion, and coverage

(Figures 6F and S6C). To facilitate future benchmarking of

PSC-derived human retinal organoids generated from

various differentiation protocols, we have implemented

our retinal cell-type identity map and the benchmarking

framework as an online resource (https://shiny.maths.

usyd.edu.au/Eikon/) where the fidelity and quality of orga-

noids can be explored, assessed, and scored.
DISCUSSION

A key contribution of this study is the discovery of poten-

tial novel markers of the major retinal cell types and of ret-

inogenesis. To elucidate this array of cell-type-specific

markers, we integratively analyzed the scRNA-seq datasets

of the fetal and the mature retina. This is now possible

with the advent of single-cell technologies, which has

enabled the extensive exploration of retinogenesis at a sin-

gle-cell resolution. For example, recent studies have begun

elucidating the trajectories of retinal-derived photore-

ceptor differentiation, highlighting markers that distin-

guish rod versus cone specification during development

(Kallman et al., 2020). Our study takes advantage of the

rich resource of scRNA-seq datasets of the developing and

mature retina to interrogate genes that are associated

with retinogenesis. We uncovered intrinsic differences in

the maturation profile between all the major cell types of

the retina and showed that these specification profiles

were largely cell-type specific. While we anticipate that
Figure 6. Benchmarking the human retinal organoid protocols in
(A) UMAP of cell transcriptome profiles from human retinal organoid
(B) Schematic of the benchmarking procedure and evaluation metric
(C) Similarity in cell-identity profiles between the scRNA-seq datasets
terms of Pearson’s correlation coefficient.
(D) Benchmarking results of the fidelity of the individual cell types t
gives a scaled score between 0 and 1, where 1 denotes a high capacity
that closely match their tissue counterparts.
(E) Representative images of retinal cell types in human retinal organo
inner nuclear layer; OS, outer segments. Scale bars: 20 mm.
(F) Final benchmarking results of the human retinal organoid protoc
identity (mature), cell identity (fetal), maturation, coverage, cell-typ
The scores, except the maturation and proportion off-targets, have bee
1 denotes a high capacity of the protocol to mimic the reference and
these genes can be used as a resource for further studies

to investigate retinogenesis in development and disease,

we note that future studies are required to validate these

findings in in vivo and in vitro systems.

Another contribution is our effort to benchmark hu-

man retinal organoids generated by diverse differentia-

tion protocols against the in vivo human retina. This

has revealed that unguided human retinal organoids

generated using our in-house differentiation protocol

and that of Cowan et al. were top performers (Cowan

et al., 2020; Gonzalez-Cordero et al., 2017; West et al.,

2022). Notably, these two protocols have similar time

courses of RA addition and supplementation. All differ-

entiation protocols showed efficient generation of orga-

noids; however, our 2D-3D is able to generate organoids

from PSC confluence in a simpler workflow (Figure 5)

(Gonzalez-Cordero et al., 2017; Reichman et al., 2014;

West et al., 2022). Furthermore, we have recently shown

that optimization of late-stage culture conditions with

lipid supplementation enhances maturation of photore-

ceptor cells (West et al., 2022). Among the benchmarked

protocols, our protocol generates cell types of the retina

with the highest fidelity to the human retinal tissue

across various evaluation metrics (Figures 6D–6F). These

culture improvements possibly explain the presence of

a small number of RGCs in the mature in-house organo-

ids only.

While our benchmarking study highlighted that some of

the protocols can successfully develop retinal organoids

closely resembling many aspects of the human retina, it

also highlighted remaining challenges. We observe that the

organoids, in particular those collected at earlier maturation

stages (50–170 days), do not fully recapitulate the develop-

mental stages of the human retina (Figures 6D and 6F): a

feature to be taken into consideration when investigating

human eye development and retinogenesis using human

retinal organoids. Furthermore, none of the protocols can

currently generate retinal pigment epithelium (RPEs), which
terms of their fidelity to the retinal tissue
s.
s.
generated from various organoid protocols. Similarity is measured in

o either the mature or the fetal reference. The cell-identity metric
and 1 denotes a low capacity of the protocol to generate cell types

ids at 210 days of age. Abbreviations: ONL, outer nuclear layer; INL,

ols ranked by the combined score from six evaluation metrics: cell
e proportion (mature), and proportion of potential off-target cells.
n scaled from 0 to 1 within each evaluation metric, where a value of
0 denotes low capacity.

Stem Cell Reports j Vol. 18 j 175–189 j January 10, 2023 185

https://shiny.maths.usyd.edu.au/Eikon/
https://shiny.maths.usyd.edu.au/Eikon/


is a clear shortcomingof theprotocols. Futurebenchmarking

efforts will require the incorporation of studies that generate

single-cell transcriptomic profiles of RPEs across develop-

ment (Hu et al., 2019; Petrus-Reurer et al., 2022).

One of the key limitations of the study is that the fidelity

metrics do not address important features of the retina,

such as the profiles of the other omics layers, spatial

patterning, retinal organoid functionality, and domain-

specific characteristics. Recently, a few studies have begun

profiling the retinal organoid using multi-modal single-

cell technologies (Thomas et al., 2022; Wahle et al.,

2022). The study by Thomas et al. mapped the cis-regulato-

ry elements of the developing and mature human retina

and showed that human retinal organoids are capable of

emulating the DNA accessibility of the human retina

(Thomas et al., 2022). The spatial organization of the retina

is an important component to evaluate for tissues, like the

retina, that have highly complex, ordered, and specialized

structures. Toward this end, spatial transcriptomics that

can profile the transcriptomes while retaining the spatial

coordinates of the single cells would enable us to assess

the capacity of protocols to generate organoids that are

spatially organized to closely emulate that of in vivo tissue

(Rao et al., 2021). Therefore, future studies will be required

to develop computational methods that can quantify the

reference spatial organization for each cell type of the

retina and measure the fidelity of organoids to conform

to the reference.
EXPERIMENTAL PROCEDURES

Resource availability

Corresponding author

Further information and requests for recourses and reagents

should be directed to and will be fulfilled by the corresponding au-

thors, Anai Gonzalez-Cordero (agonzalez-cordero@cmri.org.au)

and Pengyi Yang (pengyi.yang@sydney.edu.au).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The sequencing data generated in this study have been deposited in

the Gene Expression Omnibus (GEO) under accession no.

GSE201356. The code generated during this study is available

upon reasonable request to one of the corresponding authors. Eikon

(https://shiny.maths.usyd.edu.au/Eikon/) is available as an interac-

tive web application to explore the fidelity of retinal organoids.
Cell culture and retinal organoid generation

Human induced pluripotent stem cells

HPSI0314i-hoik_1 (RRID:CVCL_AE82) was obtained from ECCAC.

UCLOOi017-A-1 was derived from healthy donor peripheral blood

mononuclear cells (PBMCs) as described previously (Fernando

et al., 2022). PBMCswere isolated using density gradient centrifuga-
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tion. Briefly, 25mL of whole blood diluted 1:1 with PBS was layered

on topof 15mLof Ficoll-Paque Premiumand centrifugedwith brake

and accelerator off at 500g for 30 min, and the cloudy interphase

containing PBMCs was collected. Two million cells were cultured

for 6 days in hematopoietic expansion medium StemSpan H3000,

with the addition of EPO, IL-3, dexamethasone, ascorbic acid, SCF,

and IGF-1. Following expansion, 200,000 cellswere nucleofected us-

ing an Amaxa 4D nucleofector with Addgene plasmids. The nucleo-

fected cells were plated in a well of a six-well plate coated with Gel-

trex matrix and transitioned to Essential 8 medium.

Human induced pluripotent stem cell maintenance and

differentiation
Cells were incubated at 37�C in 5% CO2. Human induced PSCs

(hiPSCs) were grown and expanded under feeder-free conditions

using Essential 8medium (E8; Life Technologies) on six-well plates

coated with Geltrex (Invitrogen) at a concentration of 1:100. The

mediumwas replaced daily and cells were passaged at 70% conflu-

ency via 5–10 min of 37�C incubation with Versene solution

(0.48 mM) (Life Technologies) to detach clumps of cells. Cell

clumps were resuspended at a ratio of 1:6–1:12 in E8 with 10 mM

ROCK inhibitor (Y-27632 dihydrochloride; Tocris) and seeded in

fresh Geltrex-coated six-well plates. For differentiation, hiPSCs

were grown to 90%–100% confluency.

Generation of retinal organoids from hiPSCs

Retinal organoids were differentiated as previously described (Gon-

zalez-Cordero et al., 2017; West et al., 2022) with some modifica-

tions. Briefly, at 90%–100%confluency (denotatedday1),hiPSCme-

diumwas replacedwith Essential 6 (E6; Life Technologies) daily for 2

consecutivedays.Onday3,E6mediumwas replacedwithpro-neural

inductionmedium(PIM;AdvancedDMEM/F12,13N2supplement,

1.9 mM L-glutamine, 13 MEM-NEAA, 10% antibiotic-antimycotic

[all Life Technologies]). Optic vesicles displaying neuroretinal

epithelium were manually isolated using a needle under an EVOS

XL microscope (Invitrogen) between days 25 and 35 and transi-

tioned to 3D suspension culture in low-binding 96-well U-shaped

plates and retinal differentiation medium (RDM; DMEM high

glucose 68% v/v, Ham’s F-12 nutrient mix with GlutaMAX supple-

ment 29% v/v, 13 B-27 supplement minus vitamin A, 10% anti-

biotic-antimycotic [All Life Technologies]). At day 42, RDM was re-

placed with RDM + factors (RDMF; DMEM high glucose 60% v/v,

Ham’s F-12 nutrient mix with GlutaMAX supplement 26% v/v, 23

GlutaMAX supplement, 13 B-27 supplement minus vitamin A,

10% antibiotic-antimycotic) [all Life Technologies], FBS 10% v/v

[Bovogen]). At day 70, retinal organoids were transferred into low-

binding 24-well plates and the medium was replaced with ALT70

(Advanced DMEM/F-12 85% v/v, 10% FBS, 23 GlutaMAX supple-

ment, 13 B-27 supplement minus vitamin A, 10% antibiotic-anti-

mycotic [all Life Technologies], 100 mM taurine [Sigma Aldrich])

and supplementedwith 1 mMall-trans-RA to enhance photoreceptor

development. At day 90 and until the experimental endpoint,

the medium was replaced with ALT90 (Advanced DMEM/F-12,

23 GlutaMAX supplement, 13 B-27 supplement minus vitamin A,

13 N2 supplement, 7 mM glucose, 10% antibiotic-antimycotic, 13

lipid mixture [all Life Technologies], 100 mM taurine [Sigma

Aldrich], ±10% FBS [Bovogen]) and supplemented with 0.5 mM RA.

The medium was replaced Monday, Wednesday, and Friday and

the were cells maintained at 37�C in 5%CO2.

mailto:agonzalez-cordero@cmri.org.au
mailto:pengyi.yang@sydney.edu.au
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Immunohistochemistry
Retinal organoids were washed with PBS, fixed for 40–60 min in

4% paraformaldehyde prior to incubation in 20% sucrose. After

210 days in culture, organoids were embedded in OCT, frozen in

liquid nitrogen, and then cryosectioned at 14 mm thickness. Cryo-

sections were blocked in 5% serum in blocking solution (1%

bovine serum albumin in PBS with 0.1% Triton X) for 2 h. Primary

antibody (Table S2) diluted in the blocking solution was incubated

overnight at 4�C. Sections were washed with PBS and incubated

with secondary antibody (Alexa Fluor 488, 546 secondary anti-

bodies) at room temperature for 2 h. Sections were counterstained

with DAPI.
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Supplemental information can be found online at https://doi.org/
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Supplemental figures and legends 

Figure S1. Quality control of retinal mature tissue scRNA-seq datasets. (A) Number of reads 

assigned, genes quantified, and proportion of zeros in each cell for each human retina dataset. (B) 
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Number of cells identified for each cell type in each dataset and batch. (C) Proportion of cell types 

(color coded) in each batch and dataset. Of note, samples from Yan et al. harvested from the 

periphery of the retina have been either depleted of rods (CD37dp) or depleted of rods and enriched 

for retinal ganglion cells (CD90).  (D) Proportion of cells assigned with very high (>0.9), high (=< 0.9 
and > 0.75), intermediate (<=0.75 and >0.5), or low (<= 0.5) probabilities according to scReClassify. 

scReClassify probabilities denote the confidence in cell type annotation where a higher probability 

denotes higher confidence. (E) Top ranked cell identity genes selected for each cell type by Cepo. 

Genes are ordered in the same order as the rows in the heatmap of Figure1E. 

 

 

 

 

 

 

 

 



 
 
Figure S2. Assessment of batch effect on deriving cell-type-specific gene statistics. (A) 
Assessment of the stability of the gold standard Cepo statistics (i.e., the retinal cell identity map) with 

subsampling of the data at increasing rates (from 90 to 50% of the total number of batches). The 

Pearson’s correlation coefficient of the correlation across overlapping genes (~15,000 genes) 

between the Cepo statistics from the full data and those derived from the subsampled data is plotted 

on the y-axis. For each subsampling study, the analyses were repeated 50 times using different 

seeds. (B) Clustering concordance quantified by adjusted rand index (ARI), Fowlkes Mallows index 

(FM), normalized mutual information (NMF), and normalized mutual information (NMI) with respect to 
cell type, dataset, and batch using hierarchical, Louvain, and k-means clustering algorithms. Number 

of genes used in clustering ranges from top 10 to 100 per cell type ranked by their Cepo statistics. (C) 
For each cell type, correlation of gene statistics calculated from Cepo, Limma, Voom, and EdgeR for 

each pair of datasets arranged by increasing batch effect as quantified by PVCA. 
 



 

Figure S3. Cepo identification of cell-type-specific gene markers and their validation on 
external data. (A) Cell-type-specific gene markers identified by Cepo for Amacrine, Rods, Cone, and 
Bipolar cells. Proportion of cells expressing each marker in each cell type is represented by the 

gradient color and the proportion of datasets having each marker expressed is represented by the 

size of the balloons. Importance scores of gene markers are derived from random forest classification 

of cells using these markers. Novel markers are highlighted in orange and known markers are in gray. 
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Randomly selected genes (in black) are included as control. (B) Classification accuracy of each of the 

three batches of an independent test data (Menon et al.) from kNN classifiers trained on each of the 

five human retinal datasets and batches using various sets of gene markers (known, new, mixed, 

highly variable, and random). 
 

 

 

 

 

 



 

Figure S4. (A) Summary of scRNA-seq datasets collected from the retinal tissue. (B) UMAP 

representation of the transcriptomes of single cells from the mature and fetal atlas. Cells are coloured 
by their batch of origin. (C) Proportion of cell types (color coded) in each batch and dataset. (D) 
Proportion of mature and fetal cells (color coded) and their total number of cells in each cell type. (E) 
Correlation heatmap of cell-type-specific gene statistics generated from Cepo (Kim et al., 2021) for 

each cell type across datasets and batches. The heatmap is hierarchically clustered by the similarity 

of correlation profiles. (F) Proportional plot illustrating the direction of association among the 

significant genes (FDR-adjusted p-value < 0.05). The total number of genes in each set is noted in the 

plot.  
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Figure S5. (A) Summary of scRNA-seq datasets collected from the retinal organoid studies. (B) 
Proportion of cell types (color-coded) and total number of cells in each batch and dataset. (C) UMAP 

representation of the transcriptomes of single cells from the organoid atlas. Cells are coloured by the 

dataset (left), the age until which the organoid was cultured (middle), and their origin of batch (right). 

(D) Legend showing the color annotations and dataset IDs of organoid scRNA-seq samples used in 

this study and their corresponding protocols. (E) Immunohistochemistry staining of Thy1, a marker of 

retinal ganglion cells, in a 210-day old organoid cultured using the West et al. 2022 protocol. (F) 
Boxplot showing the proportion of cells expressing Thy1 in each cell type (x-axis) and batch 

(individual data points) in the retina tissue samples (left panel) and organoids (right panel).  



 

Figure S6. (A) Scatter plot of the correlation score of the cell identity scores of the organoid against 

each of the original reference scores from the tissue data. The y-axis denotes the Spearman 
correlation coefficient and the x-axis denotes the ranked developmental age of the original reference. 

The results from each organoid sample have been plotted separately. The scatter plot has been 

ordered from the youngest to the oldest organoid. (B) Boxplot showing the proportion of cells that 

were unassigned or showed hybrid cell-type annotations, indicative of off-target cells, in each 

organoid sample. Each datapoint denotes the replicates (n = 11) for each of the training data used in 

the scClassify framework. (C) Radar chart showing the order of ranks of organoids of each metric. (D) 

Barplot showing the correlation between the identities of the organoids (x-axis) and the domain-

specific reference (Periphery or Fovea/Central/Macula). The average Spearman’s correlation 
coefficient across the cell types is plotted on the y-axis. The barplots have been ordered by the 

highest to lowest correlation against the reference (from left to right).  
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Supplemental experimental procedures 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Public single-cell RNA-seq datasets 

Data collection 

The raw gene-cell count matrices of scRNA-seq datasets were retrieved from the NCBI Gene 

Expression Omnibus (GEO) unless otherwise stated. The datasets are all related to the human retina, 

originating either from tissue or organoid and from mature or immature cells. Of note, we included 

only the datasets containing at least 10,000 cells to ensure enough cells in each batch and sample for 

the cell identity analysis. 

 

Processing of scRNA-seq and filtering of cell types and suboptimal samples 

All scRNA-seq libraries from human retinal tissue and organoids were integrated by Seurat (v4.0) 

(Hao et al., 2021) under the R (v4.1.1) environment. For each of the published datasets, the cell type 

labels from the original study were used.  For datasets with unresolved cell type labels, such as 

“photoreceptors” and “AC/HC”, we performed re-annotation of these subset of cells using scClassify 

(Lin et al., 2020) trained on the respective sample type (tissue or organoid) from the Lu et al. dataset 

(Lu et al., 2020), resolving them into either the Rods or Cones and Amacrine or Horizontal cells. 

 

To establish a high-quality cell identity reference, we devised a framework to filter for suboptimal cells. 

Specifically, we performed a uniform cell type re-annotation procedure across all the tissue data using 

scReClassify (Kim et al., 2019), which is a semi-supervised learning method for assessing cell type 

annotation quality in the original classification from the scRNA-seq datasets. Only cells that received 

probabilities of correct assignment of greater than 0.9 were included in the study. Any datasets that 

resulted in greater than 50% of cells being mis-labeled were not included in the generation of the 

reference atlas.  

 

Derivation of cell identity gene statistics and assessment of their concordance across batch 

Computation of cell identity gene statistics  



To derive the cell identity gene statistics for the human retina atlas, the count matrix of cell-gene 

variables were first log-transformed and normalized using the logNormCounts function from the scater 

package (McCarthy et al., 2017). The transformed and normalized data from each batch were 

subsequently analyzed using the Cepo package (Kim et al., 2021) for quantifying cell identity gene 

statistics for each major cell type based on the differential stability metric. For comparison, alternative 

methods (e.g., limma (Ritchie et al., 2015), voom (Law et al., 2014), edgeR (Robinson et al., 2010)) 

based on differential expression analysis were also used for calculating cell-type-specific gene 

statistics. 

 

Evaluation of concordance of cell identity gene statistics after subsampling of the data 

To evaluate the robustness of the cell identity statistics against subsampling of the data, we assessed 

the loss in Pearson’s correlation between the cell identity statistics derived from the subsampled and 

those derived from the full data. The data was downsampled by randomly selecting 90% to 50% of 

the total number of batches. The analysis was repeated 50 times each with a different seed for each 

cell type. 

 

Evaluation of concordance of cell identity gene statistics between batches 

The evaluation of scRNA-seq datasets from multiple sources oftentimes requires technical noise to be 

removed. This so-called “batch effect” has been widely addressed through the development of several 

algorithms (Tran et al., 2020). However, the danger of overcorrection and restriction to a subset of 

features during the correction has hampered the widespread use of batch correction methods for 

downstream analysis. Therefore, an approach that bypasses the need to remove batch effects, does 

not compromise the biological signal, and retains many of the features is ideal to enable a 

comprehensive comparison between multiple atlases, often with a high degree of sparsity.  

 

To this end, we assessed the fidelity of cell identity gene statistics between varying degrees of batch 

effect to determine the comparability of Cepo statistics across independent batches. A combinatorial 

assessment of cellular identity gene statistics concordance was performed between pairs of datasets. 

For all combinations of samples in the adult retinal tissue atlas, the extent of variance in principal 

component space contributed by batch and was quantified using the pvca package in R (Bushel, 



2021). Briefly, principal variance component analysis fits a mixed linear model using the factor of 

interest, batch source, as an independent random effect to the selected principal components. Using 

the eigenvalues as weights, the associated variations of factors are standardized and the magnitude 

of the source of variability is presented as a proportion of the total variance. Therefore, a greater 

proportion of total variance denotes the presence of greater batch effect between the dataset pair. 

 

To evaluate the concordance in cell identity gene statistics between the batches, the Cepo statistics 

were computed for each gene and for each cell type independently within each batch. Then for each 

batch pair, the concordance of cell identity was measured as the Pearson’s coefficient of the 

correlation between the Cepo statistics. Finally, the relationship between the concordance and the 

degree of batch effect was examined. For comparison, cell-type-specific gene statistics from Limma, 

Voom, and edgeR were also analyzed using the same procedure. 

 

Clustering of cell identity gene statistics and evaluation of batch mixing  

To evaluate the consistency of the cell identity gene statistics derived for each cell type, clustering 

was performed on these statistics derived from different batches and datasets and then the degree of 

batch mixing was determined for three sources of variation: cell type, dataset source, and batch 

source. Ideally, cell identity gene statistics should reflect the biological identity of the cells and 

therefore the source of variation should solely arise from cell type identity and not from batch or 

dataset source. 

 

To generate the cluster, three clustering algorithms (hierarchical clustering, 𝑘-means clustering, and 

Louvain clustering were performed. For each of the sources of variation, the resolution of the 

hierarchical and 𝑘-means clustering was set by controlling the parameter, number of trees or 𝑐𝑒𝑛𝑡𝑒𝑟𝑠, 

respectively, to equal the number of cell types (7), the number of datasets (3), or the number of 

batches (14) present in the comparison. For the Louvain clustering wherein setting the exact cluster 

number is infeasible, the resolution was controlled by setting differing values of 𝑘 when building the 

shared nearest neighbor graph (cell type, 𝑘 = 5; dataset, 𝑘 = 8; and batch, 𝑘 = 2). 

 



To assess the clustering performance of Cepo-derived cell identity gene statistics, we used the 

adjusted rand index (ARI) or the normalized mutual information (NMI) to evaluate the concordance of 

clustering results with respect to the cell type labels, batch, and dataset source, denoted respectively 

as either 𝐴𝑅𝐼!"##	%&'"(, 𝐴𝑅𝐼)*+*("+, and 𝐴𝑅𝐼,*+!- or 𝑁𝑀𝐼!"##	%&'"(, 𝑁𝑀𝐼)*+*("+, and 𝑁𝑀𝐼,*+!-. Considering 

that the Cepo-derived gene statistics are partitioned into different classes with respect to cell type 

labels, batch, or dataset source, let 𝑎 be the number of pairs of samples partitioned into the same 

class by a clustering method, 𝑏 be the number of pairs of samples partitioned into the same cluster 

but in fact belong to different classes, 𝑐 be the number of pairs of samples partitioned into different 

clusters but belong to the same class, and 𝑑 be the number of pairs of samples from different classes 

partitioned into different clusters. Then the ARI is calculated as follows:  

 

𝐴𝑅𝐼	 = 	2(𝑎𝑑	 − 	𝑏𝑐)/(𝑎 + 𝑏)(𝑏 + 𝑑)	+	(𝑎 + 𝑐)(𝑐 + 𝑑) 

 

Considering that the Cepo statistics are partitioned into different classes with respect to cell type 

labels, batch, or dataset source, let 𝑌 be the clustering outcome by a clustering method and 𝐶 be the 

original labels of the different classes. Given that 𝑌 and 𝐶 are the partitions of the same data, the 

overlaps between the two random variables can be counted and represented as a contingency table. 

Using information theory to measure agreement between the partitions and maximum likelihood 

estimation, the empirical joint distributions of clusterings 𝑌 and 𝐶 are measured. Therefore, using the 

probabilities that an element falls into a given cluster, the entropy for clusterings 𝑌 and 𝐶, 𝐻(𝑌) and 

𝐻(𝐶), respectively, and the mutual information 𝐼(𝑌; 𝐶) can be calculated. Then the NMI is calculated 

as follows:  

𝑁𝑀𝐼(𝑌, 𝐶) 	= 	2 ∗ 𝐼(𝑌; 𝐶)/𝐻(𝑌) 	+ 	𝐻(𝐶) 

 

Identification of novel markers of cell type 

Categorization of known and unknown cell-type markers 

To systematically categorize a predicted marker gene as either already described in the literature or a 

new cell-type marker, an advanced PubMed query was performed using the R package easyPudMed 

(Fantini, 2019) for each of the top 500 marker genes. For each cell type, the advanced query 

consisted of three search terms: 1) the name of the candidate gene of interest; 2) the cell type of 



interest; 3) and the term “RETINA”, all combined with the operator “AND”. The search terms covered 

“All Fields” of the possible search items. Any genes for which the PubMed search did not return a 

publication were categorized as a novel marker gene for the cell type of interest. In contrast, any 

genes for which the PubMed search did return at least one publication were considered known 

marker genes for the cell type of interest. One of the limitations of the PubMed query is that the 

individual publications returned as associated with a gene and cell type combination were not 

individually assessed for false positive result. Nevertheless, this approach provides a systematic and 

fast means to screen for novel markers, overcoming the need to manually survey the literature for all 

combinations of genes and cell types. 

 

Quantification of feature importance 

To demonstrate the importance of the potential marker genes, we performed feature selection 

analysis based on the random forest classifier (Breiman, 2001). The Gini index, which measures how 

important a selected feature is when training the random forest classifier, was used as a proxy for 

feature importance. To build the random forest classifier, the single-cell transcriptomes were 

subjected to random stratified sampling to 30% of its original size, and then pseudo-bulk 

transcriptomes for each cell type were generated by taking the mean expression of the genes. 

Approximately 350 pseudo-bulk transcriptomes were generated by repeating the sampling procedure 

50 times. The random forest classifier was trained using these transcriptomes. As control, 10 cell-type 

invariant genes, as determined by their Cepo statistics, were included. A separate random forest 

classifier was built for each batch. Finally, the values for the mean decrease in Gini were extracted 

from the classifiers and visualized as a boxplot. 

 

Classification of test data using known and novel gene markers 

To further support the utility of the identified genes as novel markers of their respective cell types, we 

performed classification of single-cell transcriptomes of the human retina from an independent study 

(Menon et al., 2019), which was not included in the datasets used to derive the cell identity gene 

statistics. The k-nearest neighbor (kNN) classifiers were trained by varying the following four 

conditions: 

 



Training data. Single-cell transcriptomes from six batches of data from the Cowan et al. (2021) 

study were used. The three batches of single-cell transcriptomes were each derived from either 

the periphery or the fovea. 

Testing data. Single-cell transcriptomes from three batches of data from the Menon et al. (2019) 

study were used. The scRNA-seq data were derived from human retina tissue from either the 

macula in the central retina or a region of the mid-peripheral retina. Of note, the retina was 

mechanically separated from the retinal pigment epithelium-choroid. 

Number of gene markers. The number of gene markers included in the training. 

Category of gene markers. The top gene markers were derived from five categories: (1) gene 

markers categorized as known; (2) gene markers categorized as novel; (3) a gene set with both 

known and new markers; (4) highly variable genes; and (5) randomly selected genes. For gene 

sets 1-3, the top genes were ordered by Cepo statistics. For gene set 4, the top genes were 

ordered by the FDR-adjusted p-values computed from fitting a trend on the variance and mean of 

the log gene expression values. 

 

Finally, the number of neighbors was set to k = 3 for all the kNN classifiers, and the final classification 

accuracy calculated for each cell type as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦!"##+&'" 	= 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛!"##+&'"		/	𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠!"##+&'"	 

 

Identification of maturation-associated genes in retinal development 

Determination of genes associated with maturation 

To determine the genes associated with maturation, the cell-type-specific Cepo statistics derived for 

all the batches originating from the fetal and mature retinal atlas were used. Specifically, for each 

gene and each cell type, we computed the Spearman correlation coefficient as a function of the 

change in its Cepo statistics in that cell type over developmental age. 

 

Measurement of similarity of maturation-association profiles between cell types 

To investigate the similarity in the profile of maturation between cell types, we performed hierarchical 

clustering on the pairwise correlation matrix of the Spearman coefficient statistics on all the genes 



found to be significantly associated with maturation (FDR-adjusted p-value < 0.05) in at least one cell 

type. The similarity is visualized as a clustered heatmap where 1 denotes complete positive 

correlation and -1 denotes complete negative correlation. 

 

Gene set over-representation analysis of maturation-associated genes 

Gene set over-representation analysis was performed on the genes significantly associated with 

maturation. Significance in association was determined as the FDR-adjusted p-value lower than 0.05. 

The gene set enrichment analysis was performed for each cell type and on either the gene sets 

positively or negatively associated with maturation. Using the GO terms related to biological 

processes from the C5 ontology gene set from the MSigDB collection (Liberzon et al., 2011), we 

assessed the over-representation of these gene sets among the maturation-associated genes using 

the fgsea R package (Korotkevich et al., 2022).  

 

Analysis and benchmarking of retinal organoid protocols 

Similarity of organoid protocols to one another 

To evaluate the closeness of the organoid protocols to one another, we first performed Cepo analysis 

on the individual batches of the organoid datasets as in subsection “Computation of cell identity gene 

statistics” to derive cell identity gene statistics for each of the major cell types in each batch. Then, 

intersecting on the genes that are commonly found in all 19 batches, we aggregated the Cepo-derived 

gene statistics into a single vector. The similarity of cell identity profiles between the batches was 

evaluated in terms of the Pearson’s correlation coefficient between the aggregated statistics. 

 

Evaluation of the fidelity of organoids to the human tissue 

To evaluate the fidelity of organoids to the human tissue, we generated the following six evaluation 

metrics: 

 

(1) The cell-type-specific similarity against the cell identity retina reference 

The cell-type-specific similarity of the query organoid against the cell identity retina reference 

resolved by mature and developmental cells were computed. The average Cepo statistics 

from the mature and the developmental cell types were taken as the reference. Then, to 



compute the cell-type-specific similarity of the query data, we calculated the Pearson’s 

correlation coefficient between the Cepo statistics derived for the query data and each of the 

references for each cell type. 

(2) The overall similarity against the cell identity retina reference 

The averaged score of the cell-type-specific similarities from (1) were computed for each 

protocol across cell types to generate the overall cell identity score. As in (1), a higher score 

denotes stronger fidelity to the retinal reference and a lower score denotes weaker fidelity. 

(3) The coverage of cell types 

The coverage of cell types generated from the organoid protocol was calculated. The 

expected retinal cell types are cones, rods, Müller glial, ganglion, bipolar, horizontal, and 

amacrine cells. Protocols with the capacity to generate all cell types were assigned a score of 

1, whereas those with nil capacity to generate the expected cell types were assigned a score 

of 0. 

(4) Maturation profile 

The developmental phase relevancy of the organoid was calculated by measuring the 

capacity of organoids to recapitulate the developmental change across time. Specifically, by 

computing the Spearman’s correlation between the concordance between the cell identity 

scores of the organoid protocols and all the individual cell identity scores from the tissue adult 

and fetal data ordered by time, the final score reflects whether the organoids are more adult-

like or fetal-like. This was performed for each cell type and final score was generated by 

averaging the results. A protocol with a high positive score denotes a more adult-like profile, 

whereas those with a high negative score denotes a more fetal-like profile.  

(5) The concordance in cell-type proportion with the retina reference 

The concordance against the proportion of cell types expected in the retina was measured 

using the averaged proportion profiles of the mature and fetal retina tissue datasets. To 

account for the differences in cell-type proportions that result from early and late-born cell 

types in early and late retinogenesis, the fetal proportional reference was sub-categorized into 

two time points (early [<97 days] and late [>97 days]). The intraclass correlation coefficient 

(ICC) for oneway models was used to compute an index of consistency of the proportions 

(Gamer et al.). A protocol with a high ICC reflects a high capacity to reciprocate the 



proportions found in the real tissue, whereas those with a low ICC reflect those with a low 

capacity. 

(6) Proportion of off-target cells 

The proportion of potential off-target cells in the data was measured using scClassify (Lin et 

al., 2020). We first constructed a cell type hierarchical tree using HOPACH using the Orozco 

et al. samples as our reference dataset and used the weighted KNN classifier to assign each 

cell to a cell type. This procedure is repeated for the 11 individual batches in the reference 

data. The Limma package was used to select the top 50 features. A key feature of scClassify 

is that 1) it does not force a cell to be assigned to a cell type and 2) it allows cells to be 

annotated as an intermediate cell type (i.e., labelled as a hybrid cell from the non-terminal 

node of the hierarchy). Thus, any cells assigned by scClassify as an “unassigned” or 

“intermediate” cell type were considered potential off-target cells. A protocol with a low 

proportion of off-target cells reflects a high capacity to generate on-target cells, whereas 

those with a high proportion of off-target cells reflect low capacity to generate the in vivo cell 

types of the retina.  

 

For each metric, except the proportion of off-targets, we then aggregated the results for all the 

benchmarked protocols and rescaled the score to a range of [0, 1]. Finally, equally weighting these 

metrics, the average of the overall cell identity (mature and fetal), the coverage, the cell-type 

proportion (mature), maturation, 1 minus proportion of off-targets, and 1 minus the cell-type proportion 

(fetal, early) was taken to generate a final score. This score was used to benchmark the retinal 

organoid protocols in terms of their fidelity to the human retinal tissue. Finally, whilst not included in 

the final metric, we generated the cell identity reference for each cell type for the central (including the 

fovea and macula) and periphery adult retina generated from the Cowan et al. and Yan et al. 

samples.   

 

Single-cell RNA sequencing of retinal organoids and human retina 

Dissociation of organoids into single cells 

Five independent organoid batches were derived for both HPSI0314i-hoik_1 and UCLOOi017-A-1 

hiPSC lines. One organoid was dissociated per sample. Retinal organoids were dissociated into 



single cell suspension using the Neurosphere Dissociation Kit (P) (Miltenyi Biotec). Enzymatic 

digestion was performed as per manufacturer protocol for 10 minutes at 37oC with intermittent 

agitation, followed by gentle mechanical dissociation with a p1000 pipette, and a further 5 minute 

37oC incubation. The cell suspension was passed through a p200 to ensure single cell dissociation 

before the enzymatic reaction was stopped by washing with HBSS. The cell suspension was filtered 

through MACS SmartStrainer 30µm (Miltenyi Biotec) before being pelleted by centrifugation at 400g 

for 10 minutes at room temperature. The cell pellet was resuspended in ALT90 and maintained on 

ice. 

 

Single cell RNA-sequencing 

Each single cell suspension of dissociated retinal organoid was assessed for viability using 0.4% 

Trypan Blue staining on a Countess II Automated Cell Counter (Invitrogen) and concentration was 

adjusted to 1000 cells/µl. Cell suspension was loaded on a single-cell-B Chip (10X Genomics) for a 

target output of 10,000 cells per sample. Single-cell droplet capture was performed on the Chromium 

Controller (10X Genomics). cDNA library preparation was performed in accordance with the Single-

Cell 3’ v3 protocol. Libraries were evaluated for fragment size and concentration using Agilent 

HSD5000 ScreenTape System. Samples were sequenced on an Illumina NovaSeq6000 instrument 

according to manufacturer’s instructions (Illumina). Sequencing was carried out using 2×150 paired-

end (PE) configuration with a sequencing depth of 40,000 reads per cell. The sequences were 

processed by GENEWIZ, China. 

 

Analysis of in-house single-cell RNA sequencing data generated from retinal organoids 

Read alignment and expression count table generation 

From the sequencing results of the 10x Chromium experiments, the unique molecular identifiers, cell 

barcodes, and the genomic reads were extracted using Cell Ranger with default parameters (v3.1, 

10x Genomics). The extracted reads were aligned against the annotated human genome, including 

the protein and non-coding transcripts (GRCh38, GENCODE v27). The reads with the same cell 

barcode and unique molecular identifier were collapsed to a unique transcript, generating the count 

matrix where columns correspond to single cells and rows correspond to transcripts. To remove 

potentially empty droplets with ambient RNA, the emptyDrops function from the DropletUtils package 



was used. Droplets with significantly non-ambient profiles were called at a false discovery rate of 1%, 

applying the Benjamini-Hochberg correction to the Monte Carlo p-values to correct for multiple testing. 

Next, to remove potentially unhealthy or suboptimal cells, cell filtering was performed using the 

number of reads, the proportion of genes expressed, and the fraction of mitochondrial reads as 

criteria. Specifically, as cells with greater than 10,000 reads, 99% of genes not expressed, and 25% 

of mitochondrial gene expression were removed. Transcripts from mitochondrial- and ribosomal- 

protein coding genes were discarded for downstream analyses such as embedding and clustering, 

because they are typically known to be highly expressed irrespective of biological identity.  

 

Doublet detection and filtering 

The presence of multiplets in single-cell data can arise from incomplete dissociation of single cells 

meaning that more than one cell can be encapsulated in GEMs. DoubletFinder, an algorithm to detect 

multiplets in single-cell data, was used to remove potential doublets or multiplets from each biological 

batch at a threshold of 5.0% (McGinnis et al., 2019).  

 

Integration and clustering 

Embedding transcriptomes into a shared latent space 

To embed the single-cell transcriptomes into a shared latent space, for each batch the count matrix 

was first normalized to the total number of reads and then factored by a 10,000 scaling factor. Then 

the top 2,000 features, among the top 1,000 highly variable features determined through variance 

stabilizing transformation, were prioritized by their variance across all the scRNA-seq batches. Next, 

the cell pairwise anchor correspondences between different single-cell transcriptome batches were 

identified with 30-dimensional spaces from reciprocal principal component analysis (Hao et al., 2021). 

Using these anchors, the scRNA-seq datasets were integrated and transformed into a shared space. 

Gene expression values were scaled for each gene across all integrated cells and used for principal 

component analysis (PCA). For the integration of the organoid datasets, 𝑘. 𝑓𝑖𝑙𝑡𝑒𝑟 and 𝑘.𝑤𝑒𝑖𝑔ℎ𝑡 were 

set to 160 and 90, respectively, to accommodate the integration of datasets with fewer than 200 cells.  

 

To generate the embeddings containing the single-cell transcriptomes derived from the mature tissue, 

the single cells were embedded into two-dimensional UMAP space by using the first 15 principal 



components (PCs). To generate the embeddings containing the single-cell transcriptomes derived 

from the mature and development tissue combined, the single cells were embedded into two-

dimensional UMAP space by using the first 30 principal components (PCs). Finally, to generate the 

embeddings containing the single-cell transcriptomes derived from the retinal organoids, the single 

cells were embedded into two-dimensional UMAP space by using the first 15 principal components 

(PCs).  

 

Clustering and classification of in-house datasets 

To cluster the single cells from the organoid datasets, the shared nearest neighbor graph was 

constructed on the first 30 PCs of the shared embedding using the default arguments of the 

FindNeighbors function in the Seurat package. Then the Louvain clustering algorithm with resolution 

equal to 1.1 was used to cluster the single cells. Classification of the single cells from the in-house 

datasets was performed by assigning them to the cell type that according to the labels of the public 

datasets that most dominate the cluster assigned to the cell of interest.  

 

Development of the Eikon software 

We implemented Eikon, an interactive web tool to facilitate the assessment of the fidelity of retinal 

organoids to the in vivo retinal tissue. Eikon accepts a SingleCellExperiment object (Lun et al., 2022). 

Multiple parameters can be specified in Eikon, including the assay, age of samples, and whether 

normalization is required. Users can customize the visualization plots using the provided options and 

all key visualizations are downloadable. Specifically, Eikon outputs three key visualizations, including 

several correlation heatmaps, reduced dimension plots, and an interactive table of Cepo statistics for 

each retinal cell type contained in the query data. The correlation heatmaps display the correlation cell 

identity scores between the query and reference datasets, allowing users to assess the fidelity of their 

data in a visually intuitive manner. Importantly, the query data can be compared to all or specific 

developmental stages of the reference dataset. PCA, UMAP, and t-SNE plots are also displayed and 

can be coloured by variables contained in the query data such as the proportion of zeroes and UMIs. 

Additionally, plots can be coloured according to the expression levels of a particular gene of interest 

which can be found using an interactive table displaying the Cepo statistics for each gene of each retinal 

cell type in the query data. 
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