Plant Communications, Volume 4

Supplemental information

The PPR protein RARE1-mediated editing of chloroplast *accD* transcripts is required for fatty acid biosynthesis and heat tolerance in

Arabidopsis

Chao Huang, Dan Liu, Zi-Ang Li, David P. Molloy, Zhou-Fei Luo, Yi Su, Hai-Ou Li, Qing Liu, Ruo-Zhong Wang, and Lang-Tao Xiao

1	Supplemental Information		
2			
3			
4	The PPR protein RARE1-mediated editing of chloroplast accD transcripts is		
5	required for fatty acid biosynthesis and heat tolerance in Arabidopsis.		
6			
7	Chao Huang, Dan Liu, Zi-Ang Li, David P. Molloy, Zhou-Fei Luo, Yi Su, Hai-Ou Li,		
8	Qing Liu, Ruo-Zhong Wang, Lang-Tao Xiao		
9			
10			
11			
12			
13			
14			
15			
16			
12			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
32			
33			
34			
35			
36			
37			
38			
39			
40			
41			
42			

43 Supplemental Figures

44

45

- 46 Figure 1. PCR genotyping for analysis of *rare1* mutant plants. LP: Left primer; RP:
- 47 Right primer and LB: the left T-DNA border primer.

49 **Figure 2.** Phenotype analysis of transgenic plants overexpressing unedited *accD* or 50 adited *accD* in *rarel* and WT background under heat stress conditions

- 50 edited *accD* in *rare1* and WT background under heat stress conditions.
- 51

Figure 3. Expression analysis of *accD-His* in C794-edited *accD* OE plants. (A)
Western blot using anti-His antibody confirmed *accD* overexpression in transgenic
plants. Coomassie Brilliant Blue (CBB) staining of the large rubisco subunit (RbcL) is
used as a loading control. (B) RT-PCR analysis of *accD-His* fusion transcripts.

Figure 4. Identification of the *cac3-1* T-DNA insertion mutant. P1 and P2 represent
the detection area designed for qRT-PCR.

Figure 6. Phenotypic observation of WT and the *rare1* mutants grown with C18:1 and
C18:2 supplement at 22 (A) or 28°C (B).

Figure 7. Comparison of seed total FA content (μ g/mg) between WT and the *accD*

- OE plants. Values are means \pm SD (n \geq 3). DW, dry weight. Error bars denote SD.
- 72

74

Figure 8. Comparison of seed total FA content (μ g/mg) between WT and *rare1* mutants. Values are means \pm SD ($n \ge 3$). DW, dry weight. Error bars denote SD.

Figure 9. Staining of total lipid in leaves of 7-day-old WT, *rare1* mutants and
C794-editied *accD* OE plants with Sudan Red under 22 and 28°C.

Gene	Primer name	Sequence (5'-3')
RARE1	T-DNA-P (415940)	ATATTGACCATCATACTCATTGC
	RARE1(415940) RP	AAGAGAAGCACACGCTTTAAGAAC
	RARE1(415940) LP	AACAACGAACCCTAGTAGCC
	RARE1(851454) RP	GGCCTTTCTCCATTCTCAAAG
	RARE1(851454) LP	TAATCTGTACACCTGGGCTGG
	T-DNA-P (851454)	AACGTCCGCAATGTGTTATTAAGTTGTC
accD	C794 RNA editing-F	TAGTGAAAGCGGAAAGATTC
	C794 RNA editing-R	AATACCGTTTAGTTGACCTG
	qPCR-F	TGTGGATTCAATGCGACAAT
	qPCR-R	TTTTGCGCAGAGTCAATACG
	35S-F	CTAGTCTAGAATGGAAAAATCGTGGTTCAAT
	35S-His-R	AAACTGCAGGTGATGGTGGTGATGATGATTT
		GTGTTCAAAGGAAAAAAAGCATGGAGCT
psaB	qPCR-F	GGACCCCACTACTCGTCGTA
	qPCR-R	ATTGCTAATTGCCCGAAATG
psbA	qPCR-F	GAGCAGCAATGAATGCGATA
	qPCR-R	CCTATGGGGTCGCTTCTGTA
psbB	qPCR-F	CGTGCGACTTTGAAATCTGA
	qPCR-R	TAGCACCATGCCAAATGTGT
rbcL	qPCR-F	GTGTTGGGTTCAAAGCTGGT
	qPCR-R	CATCGGTCCACACAGTTGTC
atpB	qPCR-F	GAGCTCGTATGAGAGTTGGT
	qPCR-R	ACCCAATAAGGCGGATACCT
atpE	qPCR-F	TCCACAAGAAGCTCAGCAAA
	qPCR-R	GTGTCCGAGCTCGTCTGAG
rrn16	qPCR-F	CGGTATCTGGGGAATAAGCA
	qPCR-R	GATTTGACGGCGGACTTAAA
rpoA	qPCR-F	CAAGCCGACACAATAGGCAT
	qPCR-R	AGCGCGTTGCGCGTTCCATA
PORA	CTP-F	TACGAGCTCATGGCCCTTCAAGCTGCTTCT
	CTP-R	CTAGTCTAGATCTCAATGAGGAAGAGACAA
		AG

84 Supplemental Table 1. List of primers used in this study

CAC3	cac3 LP	GAGAGAGCAAAGGTCTAAAC
	<i>cac3</i> RP	GCACAACAAACTGTGTATTC
	LBb1.3	ATTTTGCCGATTTCGGAAC
	P1 qPCR-F	CAACAATCTGAGGACGATGTTC
	P1 qPCR-R	TCGAGCATCAGCATTTTATTCG
	P2 qPCR-F	TCTGGATTGGAACAAGCGTT
	P2 qPCR-R	AGGTTTTGACCAGAAGAGGAGT