(JOURNAL OF PUBLIC HEALTH) #### Association of socioeconomic status with cardiovascular disease and cardiovascular risk factors: A systematic review and meta-analysis Tao Wang, Yilin Li, Xiaoqiang Zheng* #### Online Resource 2 Quality assessment of the included studies using the NIH-QAT | No | Title | Author (year) | Item
1 | Item 2 | Item 3 | Item
4 | Item
5 | Item
6 | Item 7 | Item
8 | Item
9 | Item
10 | Item
11 | Item
12 | Item
13 | Item
14 | Overall
Quality | |----|--|---------------------------------|-----------|--------|--------|-----------|-----------|-----------|--------|-----------|-----------|------------|------------|------------|------------|------------|------------------------| | 1 | Low socioeconomic status increases short-term mortality of acute myocardial infarction despite universal health | Wang et al.(2014) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | Y | Y | low
risk of
bias | | 2 | coverage The relation between socioeconomic status and short-term mortality after acute myocardial infarction persists in the elderly: Results from a nationwide study | Van
Oeffelen et
al.(2012) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | Y | Y | low
risk of
bias | ^{*}corresponding author: Xiaoqiang Zheng, School of Economics and Management, Southwest Petroleum University, Chengdu, China; Xiaoqiang_Zheng@163.com | 3 | Neighbourhood socioeconomic inequalities in incidence of acute myocardial infarction: a cohort study quantifying ageand gender-specific differences in relative and | Koopman et al.(2012) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | Y | Y | low
risk of
bias | |---|---|-----------------------|---|---|---|---|---|---|---|---|---|----|---|----|----|---|------------------------| | 4 | absolute terms Social inequalities in mild and severe myocardial infarction: how large is the gap in health expectancies? Health | Tetzlaff et al.(2021) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | NR | Y | low
risk of
bias | | 5 | inequalities in terms of myocardial infarction and all-cause mortality: a study with German claims data covering 2006 to 2015 | Geyer et
al.(2019) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | Y | Y | low
risk of
bias | | 6 | Relationship between the shift of socioeconomic status and cardiovascular mortality Socioeconomic | Sung et al.(2020) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | Y | Y | low
risk of
bias | |---|---|---------------------|---|---|---|---|---|---|---|---|---|----|---|----|---|---|------------------------| | 7 | and behavioral determinants of cardiovascular diseases among older adults in Belgium and France: A longitudinal analysis from the SHARE study | Hassen et al.(2020) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | Y | Y | low
risk of
bias | | 8 | Neighborhood
socioeconomic
context and
long-term
survival after
myocardial
infarction
Socioeconomic | Gerber et al.(2010) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | Y | Y | low
risk of
bias | | 9 | status and depression as combined risk factors for acute myocardial infarction and stroke: A population-based study of 2.7 | Cho et al.(2019) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | Y | Y | low
risk of
bias | ## million Korean adults | 10 | Socioeconomic Status, Functional Recovery, and Long-Term Mortality among Patients Surviving Acute Myocardial Infarction Socioeconomic | Alter et al.(2013) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | Y | Y | low
risk of
bias | |----|--|-----------------------------|---|---|---|---|---|---|---|---|---|----|---|----|---|---|------------------------| | 11 | status and risk of
cardiovascular
disease in 20
low-income,
middle-income,
and high-income
countries: the
Prospective
Urban Rural
Epidemiologic | Rosengren et al.(2019) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | Y | Y | low
risk of
bias | | 12 | (PURE) study Socioeconomic status and incident cardiovascular disease in a developing country: findings from the Isfahan | Masoudkabir
et al.(2012) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | Y | Y | low
risk of
bias | # cohort study (ICS) | 13 | Outcomes among 3.5 million newly diagnosed hypertensive Canadians Recurrent Atherosclerotic | Quan et al.(2013) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | Y | Y | low
risk of
bias | |----|---|----------------------|---|---|---|---|---|---|---|---|---|----|---|----|---|---|------------------------| | 14 | Cardiovascular Event Rates Differ Among Patients Meeting the Very High Risk Definition According to Age, Sex, Race/Ethnicity, and Socioeconomic | An et al.(2020) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | Y | Y | low
risk of
bias | | 15 | Status Midlife wealth mobility and long-term cardiovascular health | Machado et al.(2021) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | Y | Y | low
risk of
bias | | 16 | Socio-economic
status and 1 year
mortality among
patients
hospitalized for | Ge et al.(2022) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | Y | Y | low
risk of
bias | ### heart failure in China | 17 | Socioeconomic
status and
mortality after
acute myocardial
infarction: A
study from Iran
Early-life and | Donyavi et
al.(2011) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | NR | Y | low
risk of
bias | |----|--|---------------------------|---|---|---|---|---|---|---|---|---|----|---|----|----|---|------------------------| | 18 | adult socioeconomic determinants of myocardial infarction incidence and fatality | Kilpi et
al.(2017) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | Y | Y | low
risk of
bias | | 19 | Life course
analysis on
income and
incident AMI: a
Danish
register-based
cohort study | Kriegbaum
et al.(2019) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | Y | Y | low
risk of
bias | | 20 | Disentangling the relative importance of different socioeconomic resources for myocardial infarction incidence and | Kilpi et
al.(2016) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | Y | Y | low
risk of
bias | | survival: a | |--------------------| | longitudinal study | | of over 300,000 | | Finnish adults | | 21 | The role of health-related behavioural factors in accounting for inequalities in coronary heart disease risk by education and area deprivation: prospective study of 1.2 million UK women | Floud et al.(2016) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | Y | Y | low
risk of
bias | |----|---|-------------------------|---|---|---|---|---|---|---|---|---|----|---|----|---|---|------------------------| | 22 | A small-area ecologic study of myocardial infarction, neighborhood deprivation, and sex: A bayesian modeling approach | Deguen et al.(2010) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | Y | Y | low
risk of
bias | | 23 | Performance of
the
Atherosclerotic
Cardiovascular
Disease Pooled
Cohort Risk | Colantonio et al.(2017) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | Y | Y | low
risk of
bias | | 24 | Equations by Social Deprivation Status Impact of area deprivation on the cardiac mortality in the UK between 1991 and 2010: evidence from a population-based longitudinal study The impact of social deprivation | Jin et
al.(2021) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | Y | Y | low
risk of
bias | |----|--|---------------------|---|---|---|---|---|---|---|---|---|----|---|----|---|---|------------------------| | 25 | on mortality following acute myocardial infarction, stroke or subarachnoid haemorrhage: A record linkage study | Thorne et al.(2015) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | Y | Y | low
risk of
bias | | 26 | Individual education, area income, and mortality and recurrence of myocardial infarction in a Medicare cohort: the National Longitudinal Mortality Study | Coady et al.(2014) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | Y | Y | low
risk of
bias | | 27 | Socioeconomic differences in incidence and relative survival after a first acute myocardial infarction in the Basque Country, Spain Impact of | Machón et
al.(2012) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | Y | Y | low
risk of
bias | |----|--|--------------------------|---|---|---|---|---|---|---|---|---|----|---|----|----|---|------------------------| | 28 | Socioeconomic Deprivation and Area of Residence on Access to Coronary Revascularization and Mortality After a First Acute Myocardial Infarction in | Christensen et al.(2011) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | NR | Y | low
risk of
bias | | 29 | Québec Level of education and risk of heart failure: a prospective cohort study with echocardiography evaluation | Blais et
al.(2012) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | NR | Y | low
risk of
bias | | 30 | Acute myocardial infarction: Does survival depend on geographical location and social background? | Kjærulff et
al.(2019) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | NR | Y | low
risk of
bias | |----|---|--------------------------|---|---|---|---|---|---|---|---|---|----|---|----|----|---|------------------------| | 31 | Socio-economic
factors &
longevity in a
cohort of Kerala
State, India | Sauvaget et al.(2011) | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | Y | NA | Y | Y | low
risk of
bias | Abbreviation: Y, yes. N, no. NR, not reported. NA, not applicable. NIH-CAT: National Institutes of Health Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies Item1: Was the research question or objective in this paper clearly stated? Item 2: Was the study population clearly specified and defined? Item 3: Was the participation rate of eligible persons at least 50%? Item 4: Were all the subjects selected or recruited from the same or similar populations (including the same time period)? Were inclusion and exclusion criteria for being in the study prespecified and applied uniformly to all participants? Item 5: Was a sample size justification, power description, or variance and effect estimates provided? Item 6: For the analyses in this paper, were the exposure(s) of interest measured prior to the outcome(s) being measured? Item 7: Was the timeframe sufficient so that one could reasonably expect to see an association between exposure and outcome if it existed? Item 8: For exposures that can vary in amount or level, did the study examine different levels of the exposure as related to the outcome (e.g., categories of exposure, or exposure measured as continuous variable)? Item 9: Were the exposure measures (independent variables) clearly defined, valid, reliable, and implemented consistently across all study participants? Item 10: Was the exposure(s) assessed more than once over time? Item 11: Were the outcome measures (dependent variables) clearly defined, valid, reliable, and implemented consistently across all study participants? Item 12: Were the outcome assessors blinded to the exposure status of participants? Item 13: Was loss to follow-up after baseline 20% or less? Item 14: Were key potential confounding variables measured and adjusted statistically for their impact on the relationship between exposure(s) and outcome(s)?