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In brief
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can distill a massive volume of EHR

variables into a tractable set of composite

indices that quantify the risk of cancer in a

clinically meaningful and human

interpretable form. With the specific aim

of the early detection of pancreatic

cancer, we generated five organ-specific

composite indices out of 206 clinical

time-series variables from EHR, and the

composite index representing liver

functionwas consistently shown to be the

most important predictor.
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THE BIGGER PICTURE The explosive growth in the volume of patient medical records has resulted in an
overload of information for healthcare providers, and there are currently numerous significant challenges
associated with leveraging this information to improve the quality of clinical decision-making. In this
work, we aim to develop new simplified representations of patient states that are both predictive and inter-
pretable to physicians. These patient state representations are aggregated via deep-learning architectures
that leverage domain knowledge to group the large number of clinical variables available per patient into a
simplified set of composite indices while preserving the ability to explain how the model arrived at the final
prediction. We anticipate that our methods for domain-knowledge fusion will provide a basis for producing
new interpretable high-level composite indices that reduce ‘‘black box’’ concerns regarding model validity
and therefore improve clinical adoption into decision-making.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
The high-dimensionality, complexity, and irregularity of electronic health records (EHR) data create significant
challenges for both simplified and comprehensive health assessments, prohibiting an efficient extraction of
actionable insights by clinicians. If we can provide humandecision-makerswith a simplified set of interpretable
composite indices (i.e., combining information about groups of related measures into single representative
values), it will facilitate effective clinical decision-making. In this study, we built a structured deep embedding
model aimed at reducing the dimensionality of the input variables by grouping relatedmeasurements as deter-
mined by domain experts (e.g., clinicians). Our results suggest that composite indices representing liver func-
tionmay consistently be themost important factor in the early detection of pancreatic cancer (PC).Wepropose
our model as a basis for leveraging deep learning toward developing composite indices from EHR for predict-
ing health outcomes, including but not limited to various cancers, with clinically meaningful interpretations.
INTRODUCTION

Electronic health records (EHR) contain real-time, patient-

centered medical records maintained by healthcare providers.
This is an open access article und
EHR data offer a unique opportunity for capturing temporal var-

iations in patients’ health outcomes, which are critical for the

early detection and prevention of a wide variety of health issues.2

However, the complexity and scale of EHR data accumulates
Patterns 4, 100636, January 13, 2023 ª 2022 The Author(s). 1
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rapidly per patient, often containing upwards of thousands of lab

measurements including numerous redundancies that arise from

differences in conventions across institutions, healthcare sys-

tems, and/or periodic updates.3,4 Multiple hospital visits per pa-

tient and variations in clinical examination practices at each visit

additionally contribute to this complexity.3,5 In this situation,

simplified composite indices represented by a set of grouped in-

formation could significantly reduce the volume of data required

to facilitate more informed clinical decision-making.

Standard deep neural network architectures are often formu-

lated as black-box models, as input variables are combined in

an untraceable manner to produce uninterpretable predictions.6

In this study, we designed a structured deep embedding model

that preserves variable relationships by confining the mixing of

variables to respect groupings that were determined by domain

experts (e.g., clinicians). By incorporating this clinician-designed

grouping strategy into the design of the neural network architec-

ture, we increase transparency in the deep-learning process,

thus improving interpretability. The lack of such transparency

has been a major drawback in the field of healthcare, where un-

explainable errors or biases can inform incorrect clinical deci-

sions.7–10 We hypothesized that the incorporation of a domain

knowledge informed grouping strategies for such high-dimen-

sional inputs may constrain deep-learning models from fitting

spurious correlations and result in improved model performance

as well as interpretability of the results. The intermediate model

outputs may also be suggestive of potential variable groupings

that result in composite indices of particular clinical utility.

To investigate our hypothesis, we used longitudinal laboratory

test results in EHR data from the New York-Presbyterian (NYP)

Columbia University Irving Medical Center (CUIMC) data ware-

house. We focused on patients at high risk for pancreatic cancer

(PC), the same cohort used in our previous study.1 Due to the

limited understanding of risk factors associated with the early

presentation of PC, PC is mostly found in late stages with

regional spread (29%) and distant metastasis (52%).11,12

Although there are several known risk factors associated with

PC, such as family history, genetic syndromes, and chronic

diseases,13 currently no clear screening or surveillance guide-

lines exist to identify and screen high-risk populations. The addi-

tion of new pre-screening variables could therefore significantly

improve risk prediction to the point where targeted screening

and surveillance may be effective.

Current efforts in the field of artificial intelligence (AI) related to

PC have primarily focused on imaging data. The use of AI-based

methodology is particularly lacking with respect to clinical data

from the EHR. Risk modeling based on longitudinal data with

cutting-edge AI techniques has been emphasized as one of

the future directions to actively explore that may enhance the

early detection of PC.14 Recently, Placido et al. applied AI to tra-

jectories of International Classification of Diseases (ICD) codes

of 6 million patients, where 24,000 were diagnosed with PC to

predict PC risk. The author tested various models including

multilayer perceptron (MLP), transformers, and gated recurrent

units (GRUs). The best performance model achieved an area un-

der the receiver operating characteristic curve (AUROC) of 0.88

for cancer occurrence within 36 months using transformers. The

AUROC from cross-application of themodel on an external data-

set, however, decreased to 0.78, which addresses the limitation
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of model generalizability, likely due to different coding practices

across different health systems.15 The Med-BERT, a contextual-

ized embedding model pre-trained on a structured EHR dataset

of 28,490,650 patients, has shown some promise for establish-

ing a generalizable AI model for medical/clinical applications.

Med-BERT enables utilization of small local training datasets

for realistic disease prediction tasks.16 Another study presented

by Rasmy et al. evaluated effects of data granularity on predic-

tion performance. For example, the study compared prediction

performance between themodel using the diagnosis information

as originally recorded (i.e., ICD codes) and the grouped informa-

tion such as phenome-wide association studies (PheWASs)

which groups raw ICD codes into 1,820 categories. More specif-

ically, they emphasize that the grouped information resulted in

surprisingly good performance compared with other terminol-

ogies with higher levels of granularity (e.g., Unified Medical Lan-

guage System [UMLS]). They further pointed out that grouping

strategies are practically useful due to the improvements in

human readability that arise from effective reductions in the

dimensionality of data.17

In this study, we developed our model with laboratory mea-

surement data, in contrast to most models based on EHR data

that rely primarily on ICD codes. Although the generalizability

of our results remains unconfirmed due to limitations in our sam-

ple sizes and sources, we have focused on the evaluation of our

conceptual framework of creating composite indices using AI.

To this end, we demonstrate a protocol for incorporating

expert-domain information into deep-learning architectures

with the aim of combining redundant information toward the gen-

eration of composite indices (i.e., combining information on indi-

vidual measures into a single representative value). By exam-

ining different grouping strategies and evaluating their clinical

predictive utility, our approach provides a basis for the use of

deep learning for the development of clinically interpretable

indices that can measure and predict health outcomes.

RESULTS

Wepresent three structured deep embeddingmodels that are or-

deredby the level of hierarchy in the variable groupings according

to a taxonomy developed by domain experts (Figure 1): (1) a base

model composed of 1st hierarchical grouping where time-series

data of each variable (i.e., 206 in total) are individually embedded

into one-dimensional embeddings; (2) a combo model, where a

2nd hierarchical grouping is added to merge redundant variables

into one-dimensional embeddings and create 32 combo embed-

dings; and (3) a composite model, where a 3rd hierarchical

grouping is added in which combo variables are further grouped

according to their relevance (e.g., organ systems) determined by

domain experts into one-dimensional embeddings, which we

named composite indices. For the composite model, we exam-

ined three different ways of defining the relevance among combo

variables (Table 1: grouping strategy 1, grouping strategy 2, and

grouping strategy 3); see experimental procedures for more

details. We then systematically evaluated the grouping effects

on overall prediction performance and examined predictivity of

the resultant composite indices bymeasuring feature importance

and cluster qualities. The detailed pre-processing of the data,

baseline characteristics of the final dataset, and the list of lab



Figure 1. Structured deep embedding models

We designed three different structured deep embedding models with different levels of hierarchy: (1) base model: 1st level hierarchy, (2) combo model: 2nd level

hierarchy, and (3) composite model: 3rd level hierarchy. We set output dimension of neural networks from each embedding layer to be 1. Thus, the number of

embeddings from the final layer of each model are 206, 32, and 5 (in case of grouping strategy 1), respectively. We tested three grouping strategies (Table 1) for

creating composite indices, one based on organ systems guided by clinicians’ input (composite modelg1) and two others (composite modelg2 and composite

modelg3) based on correlation among the resultant 32 combo embeddings (Figure S3) from the combo model.

ll
OPEN ACCESSArticle
variables used in this analysis are shown in the supplemental in-

formation (Figure S1; Tables S1 and S2, respectively).

The structured deep embedding model has no adverse
effects on the model performance
All three types of structured deep embedding model (Figure 1)

presented similar prediction performance (Figure 2A;

Table S3). The prediction performances for early detection

slightly varied depending on the grouping design (Figure 2B)

but were comparable overall. We evaluated clusters created by

the resulting embeddings from each model (i.e., 206 embed-

dings from the base model, 32 embeddings from the combo

model, 5 embeddings from composite modelg1, 3 embeddings

from composite modelg2, and 7 embeddings from composite

modelg3). The total entropy of those clusters from each model

presented negligible differences (Figure 2C). The t-stochastic

neighbor embedding (t-SNE) method was not able to show clear

clusters within any of the embeddings (Figure S2), indicating that

PC and non-PC are not easily separable.

The structured grouping strategy improves model
interpretabilitywhen the grouping patterns are clinically
interpretable by domain experts
We performed feature importance evaluations on composite

indices from composite modelg1, composite modelg2, and com-

posite modelg3, respectively, using importance scores assigned

by logistic regression, decision tree, random forest, and

xgboost. While composite indices from composite modelg1
were represented by particular organ systems determined by

domain experts, those from composite modelg2 and composite

modelg3 were inspired by learned representations from deep-

learning algorithms (i.e., correlations between 32 combo embed-

dings resulted from the combo model; Figure S3). Unlike

grouping strategy 1, which categorizes clinical variables accord-

ing to the organ systems, grouping strategy 2 and grouping strat-

egy 3 resulted in mixtures of those variables with no clinically

discernable patterns (Table 1).

For composite modelg1, the feature importance measures

from decision tree, random forest, and xgboost, which offer

importance scores based on the reduction in the criterion used
to select split points, consistently showed that the liver function

group and the kidney function group have relatively higher

importance associatedwith PCprediction. The importancemea-

sures from logistic regression showed slightly different results

but commonly showed the liver function group to have relatively

high importance. For composite modelg2, all four algorithms indi-

cated that composite indice #1 (comp1) is the most important

composite index, whereas for composite modelg3, the results

suggested that the importance of all seven composite indices

are comparable (Figure 3).

Shapely additive explanation (SHAP) analysis on the
structured deep embedding model reveals interactions
of individual predictors for making a final prediction
To understand interactions among grouping layers in compos-

ite modelg1, we used the SHAP method,18 which measures

contributions of each component (i.e., SHAP interaction values)

to the final prediction (Figure 4) using a game-theoretic

approach. Among the five composite indices (i.e., white blood

cell group, red blood cell group, liver function group, kidney

group, and diabetes group), the kidney group and the liver

function group were inferred to have relatively high importance

for predicting PC, which is consistent with the results from tree-

based algorithms in section (the structured grouping strategy

improves model interpretability when the grouping patterns

are clinically interpretable by domain experts). At the level of

1st hierarchical grouping, alkaline phosphatase was ranked as

the most important variable, though it was not statistically sig-

nificant with respect to the subsequent 14 variables, thus sug-

gesting a comparable contribution from the first 15. We high-

lighted those top 15 individual variables and their affiliated

combo variables, which were also sorted according to their

SHAP values, within the same color to examine the connec-

tions between the 1st hierarchical grouping layer and the 2nd hi-

erarchical grouping layer. From this, we observe that the top 15

variables were mostly associated with the combo variables that

were also placed at the top. In connection with the 3rd hierar-

chical grouping layer, 10 out of those 15 variables were associ-

ated with either the kidney group or the liver function group.

The box frame of combo variable names has been colored
Patterns 4, 100636, January 13, 2023 3



Table 1. Three grouping strategies tested with composite model

Grouping strategy 1 Grouping strategy 2 Grouping strategy 3

Composite indices Combo variables Composite indices Combo variables Composite indices Combo variables

White blood cell group 1 PCT neutrophils comp1 1 PCT neutrophils comp1 1 PCT neutrophils

5 PCT basophils 2 ALT 21 creatinine

19 WBC 4 AST comp2 2 ALT COMBO

22 PCT eosinophils 6 bilirubin direct 22 PCT eosinophils

25 PCT monocytes 7 bilirubin direct 17 phosphorus

29 PCT lymphocytes 8 ALK PHOS 8 ALK PHOS

31 ABS neutrophils 9 calciu comp3 4 AST

32 ABS basophils 10 PT 6 bilirubin direct

Red blood cell group 11 RBC 18 platelets comp4 10 PT

12 RDW 17 phosphorus 23 glucose

18 platelets 19 WBC comp5 13 sodium

26 hemoglobulin 21 creatinine 20 chloride

27 MCH 22 PCT eosinophils 15 potassium

28 hematocrit 23 glucose comp6 24 MCV

24 MCV 24 MCV 27 MCH

Liver function group 2 ALT 25 PCT monocytes comp7 3 serum albumin

3 serum albumin 27 MCH 5 PCT basophils

4 AST 28 hematocrit 7 bilirubin indirect

6 bilirubin direct 29 PCT lymphocytes 9 calcium

7 bilirubin indirect 31 ABS neutrophils 11 RBC

8 ALK PHOS comp2 13 sodium 12 RDW

10 PT 20 chloride 16 total protein

16 total protein 15 potassium 14 HBA1C

Kidney group 9 calcium 16 total protein 18 platelets

13 sodium comp3 3 serum albumin 19 WBC

15 potassium 5 PCT basophils

17 phosphorus 11 RBC

20 chloride 12 RDW

30 magnesium 14 HBA1C

21 creatinine 26 hemoglobin

Diabetes group 14 HBA1C 30 magnesium

23 glucose 32 ABS basophils

The 32 combo embeddings from combo model were grouped according to their organ system (grouping strategy 1) and their correlation matrix

(grouping strategy 2 and grouping strategy 3). Please see Table S2 for the individual variables that comprise each combo variable. The numbers in

front of each combo variable from 1 to 32 correspond to the numbers shown in Table S2. PCT, percent [%]; PT, prothrombin time; ALK, alkaline;

PHOS, phosphorus; ABS, absolute; RBC, red blood cell; RDW, red cell diameter width; WBC, white blood cell; MCV, mean cell volume; MCH,

mean cell hemoglobin.
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according to the color frame of composite indices to observe

interactions between the 2nd and the 3rd hierarchical grouping

layers. This visualization shows that the top 50% combo vari-

ables were mostly associated with the kidney group (yellow)

and the liver function group (green), while the bottom 50%

were mostly with the red blood cell group (blue) and the white

blood cell group (red).

In addition to the above analysis incorporating all pre-diag-

nosis data, we conducted the same analysis with the dataset

composed of measurements obtained at least 12 months prior

to diagnosis. In this case, the diabetes group presented the

highest SHAP value followed by the kidney group and the liver

function group. Consistently, the glucose combo variable was
4 Patterns 4, 100636, January 13, 2023
shown as the top contributor. Compared with the analysis

incorporating all pre-diagnosis data, the SHAP analysis at

12 months prior to diagnosis resulted in reduced SHAP values

overall (Figure 4).

We also evaluated the accumulated SHAP values of 5 com-

posite variables from the base model and the composite model

by grouping the SHAP values of 206 individual variables

into 5 composite indices. These results were different from

theSHAP values of 5 composite indices resulted from the com-

posite model (Figure S4), which demonstrates that the com-

posite model is not a redundant model with the base model

and that the SHAP values are dependent on the model

architecture.



Figure 2. The structured deep embedding model has no adverse effects on the model performance

(A) The prediction performance scores for all five models were similar although slightly improved with the structured deep embedding model that has more

hierarchical groupings (e.g., base model versus composite modelg1). The boxplots show the ‘‘minimum,’’ 1st quartile (Q1, 25th percentile), median (Q2,

50th percentile), and 3rd quartile (Q3, 75th percentile), and the ‘‘maximum,’’ where the minimum and maximum values are defined as Q1 – 1.5 * interquartile range

(IQR) and Q3 + 1.5 * IQR, respectively.

(B) Early detection performance by measuring predictivity with the limited dataset available at the months prior to diagnosis. The error bars indicate 95%

confidence intervals.

(C) We measured total entropy of clusters (i.e., purity of the clusters classified into PC and non-PC) resulted from each model. The error bars indicate 95%

confidence intervals.
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DISCUSSION

A large and increasing volume of clinical information poses sig-

nificant challenges for effective clinical decision-making. Moti-

vated by the success of deep-learning applications for informa-

tion distillation such as text summarization, we built a structured

deep embedding model that leverages domain-specific taxon-

omies to generate a simplified set of composite indices contain-

ing the most relevant predictive information from a massive

collection of input variables.

The impact of our structured deep-learning architecture on

model performance and interpretability is influenced by several

considerations. On one hand, the grouping strategy leverages

domain knowledge from human experts to constrain the training

process of the neural network, thereby eliminating potentially

spurious correlations that can result in overfitting. Additionally,

the flow of information through the network is forced to follow

explainable pathways, thus enabling a clear visualization of

how the model arrives at the final prediction (Figure 4).

Conversely, these restrictions could also prevent the network

from exploring all possible pathways, particularly those that

may be unintuitive to clinicians, which could negatively impact

performance. However, our study results indicate that the use
of structured grouping patterns that are clinically interpretable

by domain experts results in improvements in model interpret-

ability without any adverse impact on model predictions

(Figure 2). For example, in this study, we systematically evalu-

ated various levels of hierarchical groupings, a base model

with the 1st level groupings, a combo model with the 2nd level

groupings, and a composite model with the 3rd level groupings.

All three types of structured deep embedding models (Figure 1)

presented similar prediction performance. (Figure 2A; Table S3).

Furthermore, we tested three distinct grouping strategies

(Table 1) within the composite model framework: the first one

designed based on clinical domain knowledge of organ system

classifications (i.e., grouping strategy 1), and two others based

on correlation matrices of 32 combo embeddings that result

from the combo model (i.e., grouping strategies 2 and 3; Fig-

ure S3). While grouping strategy 1 represents ‘‘expert curation,’’

grouping strategies 2 and 3 represent random groupings based

on ‘‘deep-learning curation.’’ All three grouping strategies

showed negligible differences in prediction performance be-

tween each other as well as compared with the base model

and the combo model, which demonstrates that the grouping

strategy does not negatively impact model performance. On

the other hand, the grouping strategy was found to significantly
Patterns 4, 100636, January 13, 2023 5



Figure 3. The structured grouping strategy improvesmodel interpretability when the grouping patterns are clinically interpretable by domain

experts

(A–C) We used four algorithms to measure feature importance of composite indices: logistic regression, decision tree, random forest, and xgboost. The feature

importance was evaluated on five composite embeddings from (A) the composite modelg1, where the importance measures from logistic regression showed

slightly different results but commonly showed that the liver function group is relatively more important, (B) the composite modelg2, where all four algorithms

indicated that comp1 is relatively more important than others, and (C) the composite modelg3, where importance of all seven composite indices is comparable.

The error bars indicate standard deviations.
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improve model interpretability when implemented with human-

interpretable structures as in grouping strategy 1. Strategies

based on statistical similarity metrics such as grouping strategy

2 and grouping strategy 3 resulted in more obscure patterns that

were difficult to deconstruct from a clinical perspective (Table 1),

thus limiting their explainability. For example, comp1 from

grouping strategy 2, which generated a composite index with

the greatest contribution to the final prediction (Figure 3), was

not found to provide clinically meaningful insights.

To further demonstrate interpretability of the structured deep

embedding model, we applied a SHAP analysis to composite

modelg1 and evaluated the interactions between the grouped

layers by measuring the SHAP values of each component. To

investigate correlations specific to early warning signs of PC, we

also conducted the SHAP analysis on a dataset containing only

measurements that were obtained at least 12 months prior to

PC diagnosis. The analysis using all pre-diagnosis data showed

that the kidney function group and the liver function group were

consistently the most important predictors for the early detection

ofPC,whichprovides intriguingsupport for agrowingbodyof clin-

ical evidence supporting this observation. For example, both

chronic and acute kidney failure are known as potential complica-

tions of acute pancreatitis,19–21 where recent studies have re-

vealed that acute pancreatitis may be an early symptom of
6 Patterns 4, 100636, January 13, 2023
PC.22–24 Liver function tests are also a common consideration

whendiagnosingPC.For example, bilirubinmeasurements,which

are indicators of liver function, are expected to be elevated in pa-

tients with PC, either because the tumor blocks the bile ducts,

leading to a buildup of bilirubin in the blood stream, or because

the PC has metastasized to the liver.25 Thus, we may observe a

bilirubin increase in the time leading up to the diagnosis. However,

at 12 months prior to diagnosis, we observed increased impor-

tance of the diabetes group as an early predictor, although it

was not significant compared with either the composite indices

of the kidney group or the liver function group.

Limitations of our study include a lack of conclusive evaluation

of its generalizability, which may be affected by the selection of

the non-PC control group from subpopulations associated with

significant pre-existingmedical comorbidities relative to the gen-

eral population (Figure S1). For example, one of themost distinc-

tive differences observed between the PC and non-PC groups at

12 months prior to diagnosis was their serum glucose levels.

However, the PheWAS results showed that type 2 diabetes

had the greatest negative log odds ratio (LOR = �4.91, Fig-

ure S5A), thus suggesting that the relatively high serum glucose

levels observed in the non-PC group would more likely be ex-

plained by a difference in the progression of diabetes in this pop-

ulation. Using ICD codes and their given dates, we confirmed



Figure 4. Shapely additive explanation (SHAP) analysis on the structured deep embeddingmodel reveals interactions of individual predictors

for making a final prediction

We measured SHAP values to understand interactions among grouping layers in composite modelg1. We highlighted the top 15 individual variables from the 1st

hierarchical grouping layer and their affiliated combo variables in the 2nd hierarchical grouping layer within the same color. We then color framed the combo

variable names according to the color frame of composite indices in the 3rd hierarchical grouping layer to examine connections between layers. The error bars

indicate standard deviations.
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that many patients with PC received diabetes diagnoses after

they were diagnosed with PC, while many non-PC patients

were consistently diagnosed with diabetes in earlier months.

Despite this, it is notable that the glucose levels in the PC group

gradually increased as serial measurements approached the

date of PC diagnosis (Figure S5B), which is consistent with ob-

servations of clinical phenomena in the literature, suggesting

that new-onset diabetes could be a potential early indicator of

PC.26 Considering the importance of temporal variations in

health outcomes for understanding disease occurrence, the

incorporation of sequence-based neural networks such as

recurrent neural network (RNN) and autoregressive trans-

formers27 may provide more insightful results.

Our goal is to establish a detailed pattern of trends in lab mea-

surements that could alert clinicians to give extra attention to

affected patients with respect to PC risk, though a lack of

generalizability limits the application our results in practice.

Building upon our demonstration of composite indices as new

risk factors and their risk scores (SHAP values) for PC, future

work could focus on applying the attention mechanism28 in

the model to produce risk scores of composite indices for indi-

vidual patients. A byproduct of its achievement would be the

generation of representative composite indices analogous to

body mass index (BMI; a composite index of height and weight),
which currently has high clinical utility in the diagnosis and risk

assessment of numerous adverse health conditions.29 Unsuper-

vised machine-learning frameworks such as autoencoding29 ar-

chitectures, which are trained to efficiently compress and

reconstruct the input data, would likely improve generalizability,

particularly when dealing with big data composed of massive

patient records spanning multiple sources. For example, Le at

al. theoretically and empirically demonstrated that a neural

network that jointly predicts targets and inputs (reconstruction)

improves generalization compared with the standard neural

network.30 Another future direction would be an expansion to

additional EHR modalities. For example, the groupings based

on patients’ hospital visits (i.e., 1st visit, 2nd visit, etc.) could

be used to further improve prediction accuracy, as has been

demonstrated in previous studies.31 In addition, different ge-

netic alterations may be associated with different risk factors,

and incorporating these well-motivated data sources into the

design of embedding structure may further refine our assess-

ment of risk factors.32

To implement our proposed concept of using composite

indices in a real clinical setting, we will expand cohorts used to

training the model to any patients with gastrointestinal (GI) ap-

pointments and demonstrate clinical utility of the composite

indices by running subcohorts with different endpoints related
Patterns 4, 100636, January 13, 2023 7
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to GI diseases including stenosis, hemorrhoids, colon cancer,

liver cancer, and stomach cancer. Upon successfully establish-

ing the model architecture generating validated composite

indices, we will be able to develop a user interface (UI) displaying

a few numbers of composite indices instead of thousands of raw

EHR data. This UI system will allow clinicians to obtain overall in-

sights of individual patients on his/her health conditions and to

access more detailed information by clicking composite indices

of interest, which will lead to displaying the higher level of vari-

ables consisting of those composite indices and their individual

contributions to risk prediction.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to the lead

contact, Jiheum Park (jp4147@cumc.columbia.edu).

Materials availability

This study did not generate any new unique materials.

Data and code availability

The raw EHR data reported in this study cannot be deposited in a public repos-

itory due to Health Information Portability and Accountability Act (HIPPA) reg-

ulations. Details on the raw EHR data pre-processing are provided in the sup-

plemental information as well as our previous work.1 The code used in the

development of the structured deep embedding models and the analysis

has been deposited at Zenodo under https://doi.org/10.5281/zenodo.

7232859 and is publicly available as of the date of publication.

Data collection and preparation

We used the NYP/CUIMC EHR dataset from a previous publication that was

curated for conducting early detection of PC.1 The detailed flow chart depict-

ing the data processing pathway is shown in Figure S1.

For lab variables, we eliminated ones containing missing values for more

than 99% of patients, resulting in 6,392 unique variables, from which 418 of

the most clinically relevant variables were identified by domain experts based

on common standards33. Among the 418 variables, we identified 258 variables

with redundancies (i.e., reported in different lab names but essentially the

same measurements). After further data pre-processing, including the config-

uration of pre-diagnosis data and the propensity score matching, the number

of the final set of variables was reduced to 206. Grouping by redundant vari-

ables, we created 32 bundled variables from those 206 individual variables,

and we call them combo variables (Table S2).

Configuring pre-diagnosis data

We configured the PC dataset into pre-diagnosis data by eliminating the lab

measurements obtained after or at the time of their first PC diagnosis date.

Based on the average percentage reduction of the total number of measure-

ments in this process of removing post-diagnosis data and configuring the

data into pre-diagnosis data for each variable, we assigned random diagnosis

dates for non-PC patients and configured the non-PC dataset into pre-diag-

nosis data. A more detailed description can be seen in our previous study.1

We substituted missing values with 0.

Propensity score matching

In order to eliminate confounding biases in lab measurements due to baseline

characteristics (e.g., race, ethnicity, sex, zip code, patient language, age,

smoking, obesity, diabetes), our final negative control group was selected

on the basis of matching the full joint probability distributions of these observ-

ables. This was done systematically with propensity score matching using the

Pymatch package for Python (v.3.9). We performed 100 iterations of fits to the

logistic regression model, given the imbalance of the data (i.e., 158,117 non-

PC versus 1,196 PC; Figure S1), and measured average accuracy, stopping

at an accuracy close to 50% (implying inseparability of the two populations

in the data). Through the propensity score matching procedure, we reduced

the separability resulting from the baseline characteristics from 72% to 55%.
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Structured deep embedding models with grouping strategies

We designed three different structured deep embedding models with

different levels of hierarchy: (1) base model: 1st level hierarchy, (2) combo

model: 2nd level hierarchy, and (3) composite model: 3rd level hierarchy (Fig-

ure 1). The base model consists of two sequential components: an embed-

ding layer followed by a prediction layer. In the embedding layer, an indepen-

dent set of trainable weights were used to learn a dimensionally reduced

representation of each time-series variable, thus producing one simplified

feature vector for each sequence of measurements. These learned feature

vectors were then concatenated and passed through the prediction layer,

which uses a simple linear transformation to project the data to a binary pre-

diction space using the standard log softmax function. The combo model

has a grouping layer added after an embedding layer that groups redundant

variables identified in Table S2 and generates 32 combo embeddings (i.e.,

combos). The composite model has another grouping layer added after the

layer that groups redundant variables to group relevant variables among

32 combos according to the grouping strategies and to create composite

indices. Since our goal is to evaluate utility of one representative value

(e.g., composite index), we set the output dimension of neural networks

from each embedding layer to be 1.

We tested three grouping strategies for creating composite indices, one

based on organ systems guided by clinicians’ input (composite modelg1)

and two others (composite modelg2 and composite modelg3) based on the

correlation among the resultant 32 combo variables (Figure S3; Table 1)

from the combo model. We used the correlation matrix filtered by the values

greater than 0.3 for composite modelg2 and 0.4 for composite modelg3 (Fig-

ure S3), followed by bundling combo variables by the ones that are correlated

to each other. The remaining combo variables that were not correlated with

any other ones were bundled into comp3 in composite modelg2 and comp7

in composite modelg3 respectively (Table 1). The higher threshold, for example

>0.5, resulted in very few numbers of variables in correlation.
Model training

We performed 10 repetitive experiments for each model by randomly splitting

the dataset into a train set (80%) and a test set (20%). For each experiment, we

used early stopping in a 50 epoch training loop by monitoring loss on the test

set. We used AUROC and area under the precision-recall curve (AUPRC) as

performance evaluation metrics.

For evaluating early prediction performance, we created PC datasets

composed of earlier times on the basis of the date when patients received a

PCdiagnosis code. For example, to providemodel prediction at 12months prior

to diagnosis, we tested themodel trainedwith pre-diagnosis data with a dataset

containing lab results that were measured more than 12 months prior to

diagnosis.
Data analysis

Clustering

Using the resultant composite indices (i.e., one-dimensional embeddings)

from the model, we performed clustering analysis to quantify their classifica-

tion performance. We used the t-SNE34 method for clustering and plotted, in

a two-dimensional (2D) map, where each datapoint is colored in accordance

with PC and non-PC (Figure S2). To calculate the entropy of PC and non-PC

datapoints, we used Gaussian mixture model (GMM)35 clustering initialized

with K-means36 for subgroup labeling. The total entropy was measured by

following the equation37

X
i

 X
j

ðnij

�
niÞlogðnij

�
niÞ 3 wij

!
;

where nij indicates the number of datapoints labeled in j in cluster i and wij in-

dicates the relative weight of class label j in cluster i.

Feature importance

We tested four different classification methods on composite embeddings

from composite modelg1, composite modelg2, and composite modelg3,

respectively, to calculate feature importance scores and highlight the most

relevant composite indices to the target (e.g., PC): (1) logistic regression, (2)

decision tree,38 (3) random forest,38 and (4) xgboost.39
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Model interpretability

To provide further interpretations of the model, we used SHAP, which identifies

and visualizes important interactions made in the model. SHAP estimates the

impactof each featureon theprediction for everyobservation (e.g.,patient),while

algorithms such as tree-based methods or logistic regression produce a single

ranking of all features. We presented the mean absolute SHAP value of each

feature over all patients for every grouping layer involved in composite modelg1.

PheWAS

We analyzed the ICD signature of patients with PC compared with the control

group by performing a binary PheWAS to identify comorbidities associated

with each patient group. We used the pyPheWAS toolkit, an open-source

Python package40

First, we identified all ICD-9 and ICD-10 codes that patients have received

along the hospital visits. Second, ICD codes were mapped to corresponding

PheCodes, which includes 1,866 hierarchical phenotype codes, and sorted

according to 18 general categories (Figure S5A). Since the ICD mapping in

the package does not cover the full range of ICD-9 and ICD-10 codes, 34%

of ICD codes were removed in PheWAS. We found that many ICD-10 codes

in our dataset were not included in the ICDmapping. In order tominimize those

removal rate, we converted ICD-10 codes that do not exist in the mapping to

corresponding ICD-9 using the web scraping technique41. We used Beautiful

Soup, the most widely used Python library for web scraping, for parsing HTML

from https://www.icd10data.com/Convert and converting ICD-10 to ICD-9, or

vice versa, to see if the converted codes exist in the mapping. As a result, the

removal rate dropped to 20%. Finally, we performed mass logistic regression

across all PheCodes using pyPhewasModel in the toolkit.

Temporal analysis

To further investigate individual lab components involved in composite indices

(i.e., white blood cell group, red blood cell group, liver function group, kidney

group, diabetes group), we examined temporal changes in time at 0, 3, 6, and

12months prior to diagnosis (Figure S5B). At eachmonth of the measurement,

we usedmean values of themeasurements that were recordedwithin 2months

before and after from that particular month for each patient.

In order to conduct quantitative assessment on temporal changes in the

measurements, we applied linear regression and measured the coefficients,

which represent slope of the fitted lines. Considering that the normal ranges

for each variable are different, the slope also needed to be adjusted according

to those normal ranges. We measured adjusted slope (i.e., coefficientadjusted )

by dividing the resultant coefficient by the diagonal line slope of the normal

range window (i.e., green shade area shown in Figure S5B).

Statistics

We presented the results in either mean values with 95% confidence intervals

(CIs 95) or standard deviations, or boxplots with the ‘‘minimum,’’ 1st quartile

(Q1, 25th percentile), median (Q2, 50th percentile), and 3rd quartile (Q3, 75th

percentile), and the ‘‘maximum,’’ where the minimum and maximum values

are defined as Q1–1.5 * interquartile range (IQR) and Q3 + 1.5 * IQR, respec-

tively. A two-sample t test was used in the comparative analysis. A p value

of less than 0.05 was considered statistically significant.
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Fig S1. Data preprocessing flow chart. We obtained 458,252 patient samples with 30,195 lab variables 

from New York-Presbyterian Hospital (NYP)/Columbia University Medical Center (CUMC) EHR data. 

We focused on high-risk popluation for PC (i.e., red box: selected patients), composed of the patient 

group who has one of the four risk factors (i.e., smoking, obesity, diabetes, or chronic pancreatitis) 

documented and also received either imaging or biopsy. This selected patients’ data processed into the 

final dataset is composed of 206 lab variables in total and 15,528 patients where 1,176 are PC patients. 

  



Fig S2. Cluster analysis. We evaluated clusters created by the resulting embeddings from each model 

(i.e., 206 embeddings from the Base Model, 32 embeddings from the Combo Model, 5 embeddings from 

Composite Modelg1, 3 embeddings from Composite Modelg2, and 7 embeddings from Composite 

Modelg3). 



 

  

B 

A 



Fig S3. Correlation matrix of 32 embeddings from Combo Model. We filtered the correlation matrix 

by absolute value of correlation coefficients greater than 0.3 (A) and 0.4 (B) to come up with Composite 

Modelg2 and Composite Modelg3 respectively.  We then bundled combo variables with ones that were 

correlated to each other (Table 1). The remaining combo variables that were not correlated with any other 

ones were bundled into “comp3” and “comp7” in grouping strategy 2 and 3 respectively (Table 1). 



Fig S4. Accumulated feature importance test. (A) SHAP values of 5 composite indices from the 

Composite Model.  Accumulated SHAP values of 5 composite variables from (B) the Base Model and (C) 

the Composite Model by grouping the SHAP values of 206 individual variables into 5 composite indices. 



Fig S5. Phenome-wide association study (PheWAS) results. (A) Log Odds Ratio (LOR) plot where top 

10 PheCodes resulted in negative LOR and all PheCodes resulted in positive LOR are shown.  (B) 

Temporal changes in time at 0, 3, 6, and 12 months prior to diagnosis. Green shade area indicates normal 

ranges.  



Table S1. Baseline characteristics. This table shows brief baseline characteristics for the final dataset 

used in the analysis. A full demographics include 7 categories of race, 8 categories of ethnicity, 66 

categories of language, and 103 categories of zip codes, which are not shown in this table.  

PC/nonPC 

Total 1176 (8%)/14,352 (92%) 

Risk factors Smoking Yes 215 (18%)/2,670 (19%) 

Not documented 961 (82%)/11,682 (81%) 

Obesity Yes 235 (20%)/2,944 (21%) 

Not documented 941 (80%)/11,408 (79%) 

Diabetes Yes 880 (75%)/11,098 (77%) 

Not documented 296 (25%)/3,254a (23%) 

Demographics  Race White  543 (46%)/6,284 (44%) 

Asian  36 (3%)/368 (3%) 

African American  144 (12%)/1,882(13%) 

Other Combinations not described 103 (10%)/1,451 (10%) 

Unknown  344 (29%)/4,288 (30%) 

Ethnicity Caucasian 21 (2%)/280 (2%) 

Hispanic 9 (1%)/68 (1%) 

Not Hispanic 240 (20%)/2,453 (17%) 

African American 124 (11%)/1,517 (10%) 

Unknown 778 (66%)/9,981 (70%) 

Sex Male 631 (54%)/7,644 (53%) 

Female 545 (46%)/6,708 (47%) 

Zip code Starts with 0 (MA, NH, ME, VT, CT, NJ) 186 (16%)/1,904 (13%) 

Starts with 1 (NY, PA) 958 (82%)/12,029 (85%) 

Starts with 3 (GA, FL, AL, TN, MS) 20 (2%)/215 (2%) 



Language English 637 (55%)/7,440 (53%) 

Spanish 103 (9%)/1,520 (11%) 

Other 311 (27%)/4,109 (29%) 

Unknown 105 (8%)/1,035 (7%) 

Age 73.9 (CI95%=73.2-74.6)/74.5 (CI95%=74.3-74.7) 



Table S3. Performance comparison of model results We performed 10 repetitive experiments for each 

model by randomly splitting the dataset into train set (80%) and test set (20%), and presented mean 

AUROC and AUPRC with 95% confidence intervals.  

Prediction model Train set Test set 

AUROC AUPRC AUROC AUPRC 

Base Model 0.873 ± 0.004 0.473 ± 0.010 0.846 ± 0.008 0.410 ± 0.020 

Combo Model 0.888 ± 0.005 0.524 ± 0.017 0.855 ± 0.010 0.436 ± 0.022 

Composite Modelg1 0.893 ± 0.004 0.538 ± 0.009 0.858 ± 0.009 0.435 ± 0.033 

Composite Modelg2 0.893 ± 0.005 0.539 ± 0.020 0.859 ± 0.008 0.444 ± 0.025 

Composite Modelg3 0.888 ± 0.006 0.523 ± 0.018 0.854 ± 0.011 0.432 ± 0.029 
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