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SUMMARY
Activation of cellular hypoxia pathways, orchestrated by HIF (hypoxia-inducible factor) transcription factors,
is a common feature of multiple tumor types, resulting from microenvironment factors and oncogenic muta-
tion. Although they help drive many of the ‘‘hallmarks’’ of cancer and are associated with poor outcome and
resistance to therapy, the transcriptional targets of HIF vary considerably depending on the cell type. By inte-
grating 72 genome-wide assays of HIF binding and transcriptional regulation from multiple cancer types, we
define a consensus set of 48 HIF target genes that is highly conserved across cancer types and cell lineages.
These genes provide an effective marker of HIF activation in bulk and single-cell transcriptomic analyses
across a wide range of cancer types and in malignant and stromal cell types. This allows the tissue-orches-
trated responses to the hypoxic tumor microenvironment and to oncogenic HIF activation to be deconvo-
luted at the tumor and single-cell level.
INTRODUCTION

Low levels of tissue oxygen (hypoxia) arise when oxygen con-

sumption, driven by aerobic metabolism and cell proliferation,

exceeds the ability of the vasculature to deliver oxygenated

blood to the region. Intra-tumor hypoxia is a common feature

of many solid malignant tumors (Vaupel et al., 2004), in which

dysregulated cell proliferation often outstrips the ability to

develop new functional blood vessels. Hypoxia pathways may

also be activated in response to mutation or dysregulation of

key tumor suppressor genes or oncogenes (Maxwell et al.,

2001; Semenza, 2003). In many types of cancer, tumor hypoxia

is associated with a clinically aggressive phenotype and resis-

tance to therapy (Hockel and Vaupel, 2001; Semenza, 2010;

Vaupel and Mayer, 2007). Hypoxia helps drive many of the ‘‘hall-

marks’’ of cancer, including cell proliferation, apoptosis, meta-

bolism, immune responses, genomic instability, vascularization,

and invasion and metastasis (Hanahan and Weinberg, 2011; Se-

menza, 2012b). The keymediator of cellular responses to hypox-

ia is the family of HIF (hypoxia-inducible factor) transcription fac-

tors. There are three known members of the HIF family, HIF-1,

HIF-2, and HIF-3. Each comprises a heterodimer of a regulated

alpha subunit, HIF-1a, HIF-2a (also known as EPAS1 -

endothelial PAS domain protein 1), or HIF-3a, together with a

common constitutive beta subunit, HIF-1b (also known as
C
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ARNT - aryl hydrocarbon receptor nuclear translocator) (Kaelin

and Ratcliffe, 2008; Semenza, 2012a). HIF-1a and HIF-2a share

similar DNA binding, dimerization, regulatory, and transactiva-

tion domains with well-established roles in transcriptional regu-

lation, but little is currently known about the function and role

of HIF-3 in oxygen homeostasis (Duan, 2016). When oxygen is

abundant, a family of prolyl hydroxylases, PHD1–PHD3 (also

known as EGLN1–EGLN3) hydroxylate key prolyl residues on

HIF-1a and HIF-2a, which facilitates its binding to the von Hip-

pel-Lindau (VHL)-ubiquitin-E3 ligase complex and leads to its

rapid degradation (Epstein et al., 2001; Ivan et al., 2001; Jaakkola

et al., 2001). Oxygen-dependent hydroxylation of an asparaginyl

residue also blocks interaction of HIF with transcriptional co-ac-

tivators, such as p300 (Hewitson et al., 2002; Lando et al., 2002;

Mahon et al., 2001). When oxygen is limited, hydroxylation is

restricted, and HIF is stabilized. HIF then binds consensus 50-
(A/G)CGTG-30 hypoxia response element (HRE) motifs,

enhancing transcription of its target genes (Wenger et al.,

2005). In clear cell renal cell cancer (ccRCC), these pathways

are constitutively active because of loss-of-function mutations

of the VHL tumor suppressor gene, which forms part of the E3

ligase central to regulation of HIF (Maxwell et al., 1999).

Genes activated by the HIF transcriptional pathway act to in-

crease oxygen delivery to the cell (e.g., VEGFA, EPO) and reduce

its oxygen consumption (e.g., by regulating cellular metabolism).
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Recent pan-genomic analyses of transcriptional regulation by

hypoxia and binding of the HIF transcription factors to chromatin

in cancer cell lines have highlighted the complexity of these re-

sponses, with many hundreds of genes under direct transcrip-

tional regulation by HIF (Betts et al., 2013; Chi et al., 2006;

Choudhry et al., 2014; Elvidge et al., 2006; Eustace et al.,

2013; Ghazoui et al., 2011; Halle et al., 2012; Mole et al., 2009;

Ortiz-Barahona et al., 2010; Schodel et al., 2013; Seigneuric

et al., 2007; Smythies et al., 2019; Sorensen et al., 2010;

Toustrup et al., 2011; Xia and Kung, 2009; Xia et al., 2009;

Yang et al., 2018). However, different studies have identified

non-overlapping sets of regulated genes in response to hypoxia.

A meta-analysis of (largely) microarray assays of hypoxic gene

regulation found that only a small number of genes were regu-

lated in all studies (Ortiz-Barahona et al., 2010). However, the

studies examined in this overview used heterogeneous experi-

mental conditions encompassing varying degrees/durations of

hypoxia, and it is not clear to what extent these differences affect

the HIF target gene repertoire and hypoxic gene regulation.

Other groups have attempted to define common hypoxia-

induced genes by clustering gene expression patterns in micro-

array analysis of solid tumors with small sets of canonical hypox-

ia-regulated genes (Buffa et al., 2010; Hu et al., 2009; Winter

et al., 2007) or with pimonidazole staining (Ragnum et al.,

2015). However, studies often rely on previously defined gene

signatures and have largely focused on only a few cancer types.

Therefore, it is not clear to what extent they reflect hypoxic gene

activation in other tumor types. Some of the most widely used

hypoxia signatures were unable to distinguish constitutive acti-

vation of hypoxia pathways in ccRCC when applied to gene

expression datasets in the large tumor databases TCGA (The

Cancer Genome Atlas) and ICGC (International Cancer Genome

Consortium) (Bhandari et al., 2019, 2020). Specifically, renal tu-

mors (approximately 90% of which are ccRCCs) exhibited mid-

range hypoxia scores relative to other tumor types in two studies;

ranking 11th across 19 tumor types defined in one study (Bhan-

dari et al., 2019) and ranking 14th across 27 tumor types in

another (Bhandari et al., 2020). This suggests that the most

commonly used hypoxia signatures reflect tissue-specific re-

sponses to hypoxia, which could be inherent to the models in

which they were generated. These studies have been based

solely upon transcriptional analyses and do not distinguish direct

transcriptional targets of hypoxia pathways from indirect conse-

quences. Recent studies have attempted to identify bona fide

direct consequences of hypoxia on gene expression by

combining transcriptomics approaches with analysis of HIF

binding using chromatin immunoprecipitation sequencing

(ChIP-seq) (Choudhry et al., 2014; Mole et al., 2009; Schodel

et al., 2010; Xia and Kung, 2009; Xia et al., 2009). However, to

date, these have been confined to relatively few cancer types,

and their applicability across multiple tumor types has not

been examined.

We therefore performed transcriptional profiling and whole-

genome HIF binding assays (RNA sequencing [RNA-seq] and

ChIP-seq) in NCBI cancer cell lines from 6 of the most common

solid tumor types worldwide (WHO International Agency for

Research on Cancer, 2020)—A549 cells (lung cancer), HCT116

cells (colorectal cancer), T47D cells (breast cancer), PC3 cells
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(prostate cancer), HepG2 cells (hepatocellular carcinoma), and

RCC4 cells (kidney cancer)—to identify the direct transcriptional

targets of HIF in each. However, ChIP-seq and RNA-seq ana-

lyses are restricted to the cell lines available and are biased

against tumor types for which there are no cell line models,

including rare cancer types or those that are not amenable to

growth in vitro. Solid tumors are comprised of many (interacting)

cell types, and these will not be captured in a cell monoculture.

Even where such cell lines exist, they may not fully represent

the heterogeneity seen across a range of different tumors. Just

as non-malignant healthy cells often lose their physiological

functions in vitro, tumor cells may also behave differently in cul-

ture than in their native environment. Tumor hypoxia often varies

from region to region in the tumor, and this will not be adequately

represented in monolayer culture. We therefore employed an in-

tegrated analysis of our 72 transcriptome and whole-genome

binding datasets to define a core set of 48 HIF target genes

that are conserved across multiple cell types. We then leveraged

our core signature of HIF targets across 9,760 cancers in the

TCGA bulk RNA-seq dataset to provide a pan-cancer analysis

of HIF pathway activation across 32 different tumor types. We

also show that these conserved HIF target genes can be applied

to single-cell RNA-seq datasets from solid tumors and used to

examine intra-tumor heterogeneity in HIF pathway activation in

individual cancer samples and between different tumors. Using

a panel of genes reduces the phenomenon of ‘‘dropout’’ typically

observed in gene-level expression in single-cell datasets. Last,

applying this gene signature to single-cell data allows the hypox-

ia response to be deconvoluted across diverse cell types in het-

erogeneous tumor samples. This includes not only identification

of HIF activity in cancer cells but also in non-cancer cells in the

tumor, allowing the effects of intra-tumor hypoxia on stromal re-

sponses (such as tumor angiogenesis) to be studied in vivo in

solid tumors.

RESULTS

Analysis of HIF pathways in cell culture
First, RNA-seq assays were performed in triplicate in each cell

line (a total of 36 RNA-seq datasets) after incubation in 21% ox-

ygen (normoxia) or 0.5% oxygen (hypoxia) for 16 h (RCC4 cells

were stably transfected with wild-type VHL to restore oxygen

sensitivity to the HIF pathway) (Figure 1A). Immunoblot analysis

confirmed induction of HIF-1a and HIF-2a in all 6 cell lines (Fig-

ure S1). Differentially expressed genes (adjusted p < 0.05, fold

change > 1.2) were identified in each cell line (Figures 1A and

S2A–S2F). There were approximately equal numbers of upregu-

lated genes (average, 2,292 genes) and downregulated genes

(average, 2,188 genes) in each cell line in hypoxia (Figure 1B).

There were 6,604 genes upregulated by hypoxia and 6,356

genes downregulated by hypoxia in one or more cell lines. Of

these, 47% (3,085 upregulated and 3,045 downregulated genes)

were unique to a single cell line, only 1.8% (157 upregulated and

77 downregulated genes) were common to all 6 cell lines, and

6.6% (429 upregulated and 427 downregulated genes) were

shared among 5 or more cell lines (Figure 1C).

We next examined HIF binding in each of the six cell lines using

ChIP-seq with antibodies directed against HIF-1a, HIF-2a, and



Figure 1. RNA-seq and ChIP-seq analysis of cancer cell lines

(A) Schematic of dataset analysis.

(B) the number of genes upregulated (red) or downregulated (blue) in each of the 6 cell lines. Adjusted p < 0.05, fold changeR 1.2 (those shown in dark red/blue

are unique to that cell line).

(C) The number of genes upregulated (red) or downregulated (blue) in the specified number of cell lines.

(D) The number of canonical HIF-1 (blue), HIF-2 (red), or shared (purple) binding sites in each of the 6 cell lines.

(E) The median distance from the HIF-binding site to the nearest TSS for HIF-1 (blue) and HIF-2 (red).

(F) Heatmap showing p values for gene set enrichment analyses (GSEAs) for the first, second, third, etc. closest gene to each HIF-1 binding site among genes

induced by hypoxia.

(G) The same heatmap for genes closest to HIF-2 binding sites.

(H) Gene Ontology biological pathway (GO:BP) analysis for genes upregulated and bound by HIF in each of the 6 cell lines using gProfiler.

(I) The same analysis for genes downregulated in each cell line.
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HIF-1b (a total of 36 ChIP-seq datasets). High-confidence

canonical HIF-1 and HIF-2 sites were defined based on ChIP-

seq peaks called by MACS (model-based analysis of ChIP-

seq) in both HIF-a and both HIF-1b ChIP-seq datasets. The total

number of binding sites identified in each cell line ranged from

388 (RCC4 cells) to 1,269 (HCT116 cells) (Figure 1D), and

although this broadly reflected the number of upregulated genes

in each cell line (r = 0.74), with only 6 cell lines, the association did

not reach statistical significance (p = 0.09). A549 cells had a

higher proportion of HIF-2-bound sites, commensuratewith rela-

tively higher levels of HIF-2a protein in this cell line (Figures 1D
and S1). HIF-a levels are a balance between production and

degradation. Therefore, factors that alter the transcription and/

or translation of each isoform in different cell types may further

modify HIF-a levels and HIF target gene expression in hypoxia

and after VHL inactivation. In each case, the canonical HREmotif

RCGTG was the most enriched motif at HIF-1a- and HIF-

2a-bound sites. In line with previous analyses, HIF-1 bound

closer to the transcriptional start site of genes than HIF-2

(Figures 1E and S2G–S2R).

HIF binding was then correlated with gene regulation by hyp-

oxia in each individual cell line using gene set enrichment
Cell Reports 41, 111652, November 15, 2022 3
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analysis (GSEA). In each cell line, the genes closest to each HIF

binding site were enriched among genes upregulated in hypoxia

but not among genes downregulated by hypoxia (Figures 1F, 1G,

and S2S–S2X). This is consistent with HIF acting as an activator

but not as a repressor. However, not all closest genes were up-

regulated in hypoxia. We therefore examined the second-closest

gene to each HIF binding site and found that these were also en-

riched among hypoxia-induced genes (Figures 1F and 1G). In

several cell lines, genes even more distant from HIF binding sites

were enriched among hypoxia-induced genes. Taking this into

account, to distinguish potential direct transcriptional targets

of HIF binding, we identified genes that were upregulated by

hypoxia (adjusted p < 0.05, fold change > 1.2) and one of the

three closest genes to a HIF binding site in each of the cell lines.

The number of HIF-bound and hypoxia-induced genes in each

cell line ranged between 207 (T47D cells) and 673 (HCT116

cells). T47D cells having the lowest number of HIF-bound

and hypoxia-upregulated genes was in line with consistently

lower overall HIF-a protein levels in T47D cells (Figure S1). Bio-

logical pathways enriched among genes bound by HIF and upre-

gulated by hypoxia in each cell line, using gProfiler, included

glycolysis/gluconeogenesis, response to hypoxia, and ATP gen-

eration (Figure 1H). Genes downregulated in hypoxia were en-

riched for mitochondrial gene expression, ribosomal processes,

protein translation, and cyclic compound metabolic processes

(Figure 1I).

The majority (909 of 1,345 or 68%) of HIF-bound and upregu-

lated genes were unique to a single cell line (Figures 2A and 2C).

The number of genes shared between the different combinations

of 2, 3, or 4 cells lines was comparatively small, and these were

collectively under-represented (Figure 2B). However, genes that

bound HIF and were upregulated by hypoxia in all 6 cell lines

were over-represented (48 genes) (Figures 2A and 2B; Table 1).

This strongly suggests the presence of a small core set of HIF-

bound and hypoxia-upregulated genes with an increased likeli-

hood of being shared in other cell lines. These genes were highly

enriched for hypoxia pathways, glycolysis, and 2-OG (2-

oxoglutarate)-dependent dioxygenases in gProfiler analysis. All

48 genes that were bound and upregulated in the 6 cell lines

were bound by both HIF isoforms and so were identified in all

36 ChIP-seq datasets (Figure 2C). Each gene was upregulated

in all 6 RNA-seq analyses (based on another 36 datasets). There-

fore, these genes are likely to be extremely robust to statistical

variation. Finally, these common genes were bound by HIF in

considerably closer proximity to the transcriptional start site

(TSS) (median distance 426 bp, p = 6 3 10�9, Wilcoxon rank-

sum test) than at those genes that were bound and regulated

in fewer cell lines or were unique to a single cell line (median dis-

tance, 12,226 bp) (Figure 2D). The cell-type-specific binding

sites potentially represent HIF-bound enhancers (rather than

HIF-bound promoters), which is consistent with enhancers often

being promoter distal and cell type specific. At 4 of 48 gene loci,

HIF had cell-type-specific binding sites that were in proximity to

a common hypoxia-induced gene.

We next determined whether the core, consensus set of HIF-

bound and hypoxia-upregulated genes identified in our 6 cell

lines was induced by hypoxia and bound by HIF in cancer cell

lines from an additional two, unrelated, common cancer types
4 Cell Reports 41, 111652, November 15, 2022
(cervical cancer: HeLa cells, GEO: GSE169041; melanoma:

mel501 cells, GEO: GSE95280) (Louphrasitthiphol et al., 2019;

Ortmann et al., 2021). In HeLa cells, all 48 genes were upregu-

lated in hypoxia (Figure 2E) and bound by HIF (data not shown).

Although only 41 of the 48 genes were detected in mel501 cells,

39 of these 41were upregulated by hypoxia (Figure 2F). Thus, the

core set of genes identified in our 6 cell lines defines a set of

genes that are consistently hypoxia upregulated and HIF bound

in other cancer cell lines. 43 of 48 genes were also induced by

hypoxia in the human umbilical vein endothelial cell (HUVEC)

cell line (GEO: GSE89840) (Tiana et al., 2018), indicating the

applicability of this gene signature to non-cancerous and non-

epithelial cells (Figure 2G). The hypoxia conditions used to

generate HeLa, mel501, and HUVEC datasets differed from

that used for our 6 cell line datasets; HeLa cells were exposed

to 1% O2 for 6 h, mel501 cells were exposed to 1% O2 for 24

h, and HUVECs were exposed to 1% O2 for 16 h. Therefore,

these putative HIF target genes transcend the specific hypoxic

conditions used in this study; thus, our gene signature can likely

be applied to cells subjected to different durations of hypoxia.

Analysis of HIF pathways using TCGA RNA-seq datasets
We then examined whether our 48-gene signature similarly re-

flected HIF activation in solid tumors using TCGA RNA-seq

data from 9,760 tumors across 32 different tumor types. This da-

taset includes RNA-seq analysis of 538 kidney renal clear cell

carcinoma (KIRC) cancers. This tumor type is associated with

a high prevalence of VHL mutation and constitutive activation

of HIF. We initially combined the expression of the 48 genes

into a single ‘‘HIF metagene’’ score that reflected their combined

expression in each tumor. The expression of individual genes

was first quantile normalized so that highly expressed genes

would not dominate the signature before the scores for each

gene were added. As predicted, clear cell renal cancers have

the highest HIF metagene expression of any of the 32 tumor

types (Figure 3A). This is in contradistinction to a previously

defined hypoxia gene signature based on hypoxic gene expres-

sion in a limited number of cancer types that does not incorpo-

rate analysis of HIF binding (Bhandari et al., 2019, 2020).

We next compared HIF metagene expression in these tumor

samples with that in normal solid tissue samples from the

same TCGA projects. Clear cell renal cancers (KIRC) had signif-

icantly higher expression than normal tissue samples from the

same project (p < 2.2 3 10�16), consistent with constitutive HIF

activation resulting from loss of the VHL tumor suppressor

gene (Figure 3B). Conversely, kidney renal papillary cell carci-

noma and kidney chromophobe RCCs (KIRP and KICH) had

only modest increases in the HIF metagene compared with

normal tissue (p = 0.0008 and p = 0.03, respectively)

(Figures 3C and 3D). This indicates that the HIF metagene can

reliably detect HIF activation in the TCGA bulk RNA-seq

datasets.

Even within a specific tumor type, individual samples dis-

played a wide-range of HIF-metagene scores (Figure 3A). To

determine whether this reflected biological variation in HIF acti-

vation rather than simply statistical noise, we next examined

whether the HIF metagene score correlated with other well-

recognized HIF target genes within a single tumor type. Within
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Figure 2. Overlap between HIF target genes in cancer cell lines

(A) UpSetR analysis of genes bound by HIF and upregulated in hypoxia in each of the 6 cell lines. The blue horizontal bars show the total number of HIF-bound,

hypoxia-upregulated genes in each cell line. The red vertical bars show the number of genes common to the combinations of cell types denoted by the black dots

as well as those unique to individual cell lines. The magenta vertical bar shows the number of genes common to all 6 cell types.

(B) Bar chart showing the deviation from expected in the number of genes common to different numbers of cell lines.

(C) Bar chart showing the number of genes bound byHIF-1, HIF-2, or both isoforms according to the number of cell lines in which they are bound and upregulated.

(D) Box-and-whisker plot showing the distance between HIF binding site (HBS) and transcriptional start site (TSS) for genes bound by HIF and upregulated under

hypoxia in the denoted number of cell lines.

(E–G) Volcano plots showing �log10(adjusted p value) versus log2(fold change in RNA-seq analysis of gene expression in (E) HeLa cervical cancer cells,

(F) mel501 melanoma cells, and (G) HUVECs (human umbilical vein cells) incubated under hypoxia versus normoxia.
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Table 1. Conserved HIF target genes and their inclusion in other hypoxia mRNA signatures
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the clear cell RCC (KIRC) cohort, the expression of several well-

recognized HIF-target genes that did not comprise part of the

HIF metagene was positively correlated with the metagene

(Figures 4A–4D). We then extended this analysis to examine

each of the genes that were previously identified as HIF bound

and hypoxia induced in 5 of 6 cell lines but did not form part of

the metagene itself. The correlation between the HIF metagene

and each of these genes was determined in each of the 32

TCGA tumor-specific datasets (Figure 4E). Many of these genes

correlated positively with the HIF metagene in multiple tumor-

specific datasets, including the canonical HIF target genes

ALKBH5, BNIP3, EGLN3, GAPDH, P4HA2, PDK1, PFKL,

PFKP, PLOD1, and TPI1. This co-variation of the HIF metagene

with other HIF target genes confirms an underlying biological

variation in HIF metagene expression within each tumor type.

This may arise from tumor-to-tumor differences or from differ-

ences in the region of each tumor sampled in the TCGA analysis.

We next examined whether geneticmutation within the tumors

might account for some of this tumor-to-tumor variability in HIF

metagene score. As expected, VHL copy number loss (p =

2 3 10�8) and VHL mutation status (p = 0.006) correlated with

increased HIF metagene scores in clear cell kidney cancer bi-

opsies (Figure S3). Mutation of PBRM1 (p = 0.0003) andmutation

of mTOR (p = 0.005) were also associated with increased HIF

metagene scores in this tumor type, consistent with previous

findings (Brugarolas et al., 2003; Gao et al., 2017; Hudson

et al., 2002; Treins et al., 2002). The HIF metagene score was

also associated with a number of other common gene mutations

in non-renal cancer types (Figures S3B and S3C). In particular,

TP53, MUC16, PTEN, ARID1A, and TTN mutations were each

associated with altered HIFmetagene levels in more than one tu-

mor type. Thus, although differences in intra-tumor oxygen

levels may also contribute to some of the observed variability

in the HIF metagene, common tumor-associated genetic

mutations also affect the HIF transcriptional output in different

tumors.
6 Cell Reports 41, 111652, November 15, 2022
We then leveraged this sample-to-sample variation in the HIF

metagene to systematically examine additional genes that co-

vary with the HIF metagene in each tumor type. A systematic

approach was employed to identify HIF metagene-associated

genes in each of the 32 tumor types by testing each of the

approximately 50,000 genes individually for correlation with the

HIF-metagene in each tumor type dataset (Table S1). A signifi-

cance threshold of p % 1 3 10�6 was used to allow multiple

gene comparisons, and the 48 genes that contribute to the HIF

metagene were excluded. In 12 of the tumor types (adrenocor-

tical carcinoma - ACC, cholangiocarcinoma - CHOL, diffuse

large B-cell lymphoma - DLBC, glioblastoma - GBM, kidney

chromophobe - KICH, mesothelioma - MESO, ovarian serous

cystadenocarcinoma - OV, rectum adenocarcinoma - READ,

sarcoma SARC, skin cutaneous melanoma - SKCM, uterine car-

cinosarcoma - UCS, and uveal melanoma - UVM), very few

genes reached statistical significance, likely because of the

small numbers of tumors in each of these datasets underpower-

ing these analyses (Figure 4F). However, overall, in each cancer

type, a median of 698 genes correlated positively with the HIF

metagene, and a median of 484 genes correlated negatively

with the HIF metagene. Most of these genes were specific to

either one or just a few cancer types; in total, 6,863 (54.8%) of

the HIF metagene positively correlated genes were identified in

a single cancer type, 2,467 (19.7%) correlated in two cancer

types, and 1,181 (9.4%) correlated in three cancer types (Fig-

ure 4G). This is similar to the pattern observed in the cell culture

models, in which most HIF-target genes were cell type specific.

However, 168 genes were positively correlated with the HIF

metagene in more than 10 cancer types (62 genes in 15 or

more cancer types and 23 genes in 20 or more cancer types).

These genes were strongly enriched for hypoxia/HIF and carbo-

hydrate metabolism pathways and included a number of well-

described canonical HIF target genes, such as CA9, EGLN3,

BNIP3, and VEGFA, that are not in our cell-line-derived HIF

metagene. This validates our correlative approach of leveraging
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Figure 3. The HIF metagene identifies HIF

activation in solid tumors

(A) HIF metagene expression in RNA-seq analysis of

9,760 tumors from the TCGA database. Tumors are

grouped according to tumor type and ranked ac-

cording to median expression for that tumor type.

(B–D) HIF metagene expression in RNA-seq anal-

ysis of tumors and normal tissue for (B) clear cell

RCC (TCGA-KIRC), (C) papillary RCC (TCGA-KIRP),

and (D) chromophobe RCC (TCGA-KICH). The p

values are for Wilcoxon rank-sum test.
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the HIF metagene to identify additional HIF associated genes

from the TCGA RNA-seq analyses.

Similarly, genes negatively correlated with the HIF metagene

were also highly specific to one or just a few cancer types; in to-

tal, 6,704 (58.1%) of the HIF metagene negatively correlated

genes were identified in a single cancer type, 2,968 (21%) corre-

lated in two cancer types, and 1,272 (9%) correlated in three

cancer types. Only 8 genes were negatively correlated in more

than 10 cancer types, although 179 genes were negatively corre-

lated in 7 or more and were enriched for transcriptional regula-

tion pathways. Because HIF activates (and does not repress)

its direct transcriptional targets, the genes that negatively corre-

late with the HIF metagene will reflect genes indirectly downre-

gulated upon HIF activation. Therefore, not only can our HIF

metagene be utilized to study tissue-specific HIF target genes,

but it can also be used to identify the indirect consequences of

HIF activation on gene expression.

We next examined the genes that positively correlated with

the HIF metagene in individual TCGA tumor types for enrich-

ment among Gene Ontology biological pathways (GO:BP) using

gProfiler (Figure S4A). For each tumor type in which more than

200 genes correlated, the 200 genes with the strongest corre-

lation were analyzed. As expected, pathways involved in

cellular responses to hypoxia and carbohydrate metabolism

were commonly enriched among positively correlated genes
Ce
in many of the tumor types. Genes

involved in epithelial development, kerati-

nization, and cornification were enriched

among HIF metagene-associated genes

in stomach adenocarcinoma (STAD),

esophageal (ESCA), bladder urothelial

carcinoma (BLCA), and head and neck

squamous cell carcinoma (HNSC) tumors.

Genes involved in cell death were also en-

riched among positively correlated genes

in these tumor types as well as in cervical

squamous cell carcinoma and endocervi-

cal adenocarcinoma (CESC), sarcoma

(SARC), lung squamous cell carcinoma

(LUSC), and glioblastoma multiforme

(GBM) tumors. Genes involved in copper

metabolism are positively correlated with

the HIF metagene in testicular germ cell

tumors (TGCTs), whereas those involved

in exocytosis pathways are enriched for
HIF metagene-associated genes in thyroid carcinoma (THCA)

tumors. Finally, angiogenic pathway genes are particularly en-

riched among HIF metagene-associated genes in papillary

renal (KIRP) tumors.

Conversely, genes involved in regulation of transcription were

negatively correlated with the HIF metagene in testicular germ

cell tumors (TGCT), HNSC, uterine corpus endometrial carci-

noma (UCEC), thymoma (THYM), THCA, and liver hepatocellular

carcinoma (LIHC) tumors (Figure S4B). Similarly, genes nega-

tively correlated with the HIF metagene in breast invasive carci-

noma (BRCA) and LUSC tumors were enriched for roles in the

immune response, and genes negatively correlated in brain

lower grade glioma (LGG) tumors were enriched for roles in

DNA repair, DNA replication, and cell cycling.

Analysis of HIF pathways in scRNA-seq datasets
We next examined whether the HIF metagene derived from the 6

cancer cell lines might also be applied to single-cell RNA-seq

(scRNA-seq) datasets. As an initial test, scRNA-seq was per-

formed on 2,926 cells from primary patient-derived cell cultures

from 2 regions within ccRCC and from the surrounding (normal)

kidney. Cultures were incubated in 21% oxygen (normoxia) or

0.5% oxygen (hypoxia) for 16 h before being subjected to 30

scRNA-seq on the 10X Genomics platform. Cells from the two

tumor samples formed clusters separate from normal renal cells.
ll Reports 41, 111652, November 15, 2022 7
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Figure 4. Analysis of genes correlated with the HIF metagene in the

TCGA tumor RNA-seq datasets

(A–D) Scatterplots showing the Pearson correlation between the HIF

metagene and individual canonical HIF target genes in the TCGA-KIRC

dataset.
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Normal cells formed several subclusters representing different

cell types, each of which included cells from the normoxic and

hypoxic cultures (Figure 5A). This indicates that changes in

gene expression resulting from hypoxia are minor compared

with those that distinguish different cell types and that hypoxia

does not interfere with the ability to distinguish cell identity in

scRNA-seq analysis. Compared with normal renal cells, cells

from the two tumor samples had high levels of the HIF metagene

(p < 2 3 10�16, Wilcoxon rank-sum test), consistent with inacti-

vation of VHL and constitutive stabilization of HIF in tumor cells

(Figures 5B and 5C). Normal renal cells incubated under nor-

moxia had low levels of the HIFmetagene, and normal cells incu-

bated under hypoxia had intermediate levels of the HIF meta-

gene (Figure 5C). Hypoxic induction of the HIF metagene was

observed in all cell clusters from normal renal cultures, including

those representing epithelial and non-epithelial cells (Figure S5).

This indicates that the HIF metagene can act as a marker of cell

hypoxia in scRNA-seq analysis for multiple cell types and across

cell lineages. Because hypoxic normal cells do not cluster

distinctly from normoxic normal cells, this indicates that unsu-

pervised clustering algorithms cannot distinguish cells subject

to acute hypoxia and highlights the need for a HIF metagene to

identify these cells.

We next examined whether this approach could also be

applied to scRNA-seq analysis of freshly dissociated cells from

tissue samples, which more closely reflect in vivo oxygenation

and include more diverse cell types that do not grow well in cul-

ture. Because tissue samples may become ischemic ex vivo, we

first examined whether sample storage might confound HIF

metagene expression in scRNA-seq analyses. Data for

239,226 cells derived from lung, esophagus, and spleen samples

stored at 4�C for 0, 12, 24, or 72 h prior to analysis were down-

loaded from https://www.tissuestabilitycellatlas.org (Madissoon

et al., 2019), and HIF metagene scores were generated for each

cell. Overall, HIF metagene scores correlated poorly with cold

ischemia time in each tissue (Figure S6), with no consistent trend

observed across tissue types (r = 0.049, r = �0.055, and r =

�0.13, respectively). This indicates that HIF metagene scores

are robust to delays in biospecimen handling.

Data for 13,213 normal and tumor cells from untreated patients

with clear cell kidney cancer (Krishna et al., 2021) were thendown-

loaded from https://trace.ncbi.nlm.nih.gov/Traces/index.html?

view=analysis&acc=SRZ190804. ccRCC cells are frequently

characterized by chromosomal copy number alterations (CNAs).

These often encompass loss of chromosome 3p, resulting in inac-

tivation of one VHL allele (the other allele generally being inacti-

vated through mutation). InferCNV was therefore used to identify

copy number abnormalities present in the tumor cell population,

using the 3,110 normal cells as a reference (Figure 5D). Of the

10,103 cells in the tumor sample, 5,395 (53%) had loss of
(E) Heatmap showing the correlation coefficient between the HIF metagene

and individual genes (those bound and regulated in 5 of 6 cell lines but not

included in the metagene) in each of the 32 TCGA tumor types.

(F) Bar chart showing the number of positively and negatively correlated genes

(p % 1 3 10�6) in each of the TCGA datasets.

(G) Bar chart showing the number of positively and negatively correlated genes

(p % 1 3 10�6) shared between multiple TCGA datasets.

https://www.tissuestabilitycellatlas.org
https://trace.ncbi.nlm.nih.gov/Traces/index.html?view=analysis&amp;acc=SRZ190804
https://trace.ncbi.nlm.nih.gov/Traces/index.html?view=analysis&amp;acc=SRZ190804


Figure 5. The HIF metagene identifies HIF activation in scRNA-seq analysis

(A–C) scRNA-seq analysis of cultured ccRCC cells andmixed population of normal kidney cells (incubated under normoxia and 0.5%hypoxia for 16 h). Shown are

UMAP (uniform manifold approximation and projection) plots with (A) cells colored according to sample and (B) cells colored according to HIF metagene

expression and (C) a violin plot showing HIF metagene expression in cultured mixed normal kidney cells incubated under normoxia and hypoxia and in ccRCC

cells (**p < 10�16, Wilcoxon rank-sum test).

(D–I) scRNA-seq analysis of freshly dissociated kidney and ccRCC samples.

(legend continued on next page)
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chromosome 3p (encompassing the VHL locus) and formed a

distinct cluster previously characterized as malignant cells by

the authors based on marker gene expression. The remaining

cells had no chromosomal abnormalities and have been previ-

ously annotated as immune and stromal cells in the same way

(Krishna et al., 2021). Cells from normal kidney samples and chro-

mosomally normal cells from the tumor samples had comparable

levels of HIF metagene expression (Figures 5E and 5F). However,

tumor cells with loss of chromosome 3p had significantly higher

levels of HIF metagene expression (p < 2 3 10�16, Wilcoxon

rank-sum test) than cells from the normal kidney sample or chro-

mosomally normal stromal and immune cells from the tumor sam-

ple (Figures 5E and 5F). This confirms that the HIF metagene can

identify HIF activation in ccRCC cells in scRNA-seq analysis of

freshly excised tissue. Because 48 individual genes contribute

to the HIF metagene, very few cells exhibit the phenomenon of

‘‘dropout,’’ where no expression is detected for any of the 48

genes. Therefore, information about the state of HIF activation

can be obtained from themajority of cells. However, the HIFmeta-

gene score varied widely between individual cells, even within the

tumor cell (3p_loss) cluster. To determine whether this reflected

biological variation in HIF activation between cells or simply sto-

chastic differences in gene measurement, we again examined

the correlation between the HIF metagene and other canonical

HIF target genes that did not contribute to the metagene. CA9

and BNIP3 correlated positively with the HIF metagene

(p < 10�16) in multiple regression analysis, even after potential

confounding variables, such as the number of counts and features

per cell, were taken into account (Figures 5G and 5H). This sug-

gests that at least some of the variation in the HIF metagene in

the tumor cells is due to different levels of HIF activation

and that the HIF metagene can be used to distinguish cells in a

specific cluster that have differing levels of HIF activation. Finally,

we tested whether the 100 genes correlating most strongly

with the HIF metagene in single ccRCC malignant cells (defined

by chromosome 3p loss) were regulated by hypoxia in the

VHL-recomplemented ccRCC cell line RCC4+VHL. Genes corre-

lating with the HIF metagene in scRNA-seq analyses were highly

enriched for genes that were induced by hypoxia in our cell line

bulk RNA-seq analyses, confirming the validity of this approach

(Figure 5I).

Because the HIF-metagene was derived from a core

consensus set of HIF-bound and hypoxia-induced genes in

cell lines from 6 diverse cancer types, we next examinedwhether

it also reflected HIF activation in non-ccRCC tumors, in which

HIF is regulated by intra-tumor hypoxia. Data for 178,441 normal

and tumor cells from 44 patients with early and late-stage lung

adenocarcinoma (Kim et al., 2020) were downloaded from

GEO (GEO: GSE131907). The HIF metagene score was signifi-
(D) UMAP plot showing single-cell chromosome 3p copy number variation in ce

normal kidney (from Krishna et al., 2021).

(E) UMAP plot showing HIF metagene expression in the same cells.

(F) Violin plot showing HIF metagene expression in normal cells and stromal and

tumor cells (characterized by chr3p loss) (**p < 2 3 10�16, Wilcoxon rank-sum te

(G and H) correlation between the HIF metagene and canonical HIF target genes

(I) GSEA of the top 100 genes correlating with the HIF metagene in cells with chr3p

cell line RCC4+VHL (ES = 0.94, NES = 1.39, p = 0.003). ES - enrichment score, N
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cantly increased in early- and late-stage adenocarcinoma cells

compared with normal alveolar epithelial cells (Figure 6A). Malig-

nant cells from late-stage tumors (tL/B) had a higher HIF meta-

gene score than those from early-stage tumors (tLung). Malig-

nant cells from brain (mBrain) and lymph node metastases

(mLN) also had an elevated HIF metagene score comparable

with that of malignant cells from late-stage primary tumors (tL/

B). This is consistent with a more hypoxic microenvironment in

tumors than in normal lung tissue or possible HIF activation by

other oncogenic pathways. However, when we extended the

analysis to non-malignant cells within the tumors, we observed

that endothelial cells from early-stage tumors and frombrainme-

tastases had a significantly elevated HIF metagene score

compared with endothelial cells from normal lung tissue (Fig-

ure 6B), concordant with the differences observed in normal

epithelial/malignant cells. This indicates that the HIF metagene

can be used to determine levels of hypoxia in non-malignant

stromal cells in the tumor. Because endothelial cells do not har-

bor oncogenic mutations, it suggests that the observed HIF acti-

vation in lung adenocarcinoma cells results from intra-tumor

hypoxia rather than oncogenic HIF activation. There were insuf-

ficient numbers of endothelial cells from late-stage tumors and

frommLN to determine differences in these populations. Howev-

er, because each of these tumor categories comprises samples

from different individuals, we next examined whether the HIF

metagene could be used to determine differing levels of hypoxia

in early-stage tumors. Tumor cells from samples T18, T20, T28,

T31, and T34 had higher HIF metagene scores than the other 6

samples (Figures S7A and S7B). This pattern was again mirrored

in non-cancer cell populations from the same samples, which do

not harbor oncogenic mutations, so that themean HIFmetagene

score for cancer cells from each sample positively correlated

with that for non-cancer cells (p = 0.02). This correlation again in-

dicates that the differences between samples result, at least in

part, from differing degrees of intra-tumor hypoxia rather than

random variation.

HIF metagene scores varied widely within the malignant cell

population and within the endothelial cell population. We there-

fore examined whether this variation within cell populations

correlated with other canonical HIF target genes that were not

included in the HIF metagene. For both cell populations, several

canonical HIF target genes showed highly significant correlation

with the HIF metagene, including GAPDH (Figures 6C and 6D).

The 100 genes that correlated most strongly with the HIF-meta-

gene in malignant cells were significantly enriched among genes

induced by hypoxia in our RNA-seq analysis of the A549 lung

adenocarcinoma cell line (Figure 6E). Similarly, the 100 genes

that correlated most strongly with the HIF metagene in the

endothelial cell population were enriched among genes induced
lls extracted from an untreated clear cell kidney cancer and from surrounding

immune cells from the tumor (characterized by normal chr3 copy number) and

st).

in tumor cells with chromosome 3p loss.

loss, showing enrichment among genes upregulated by hypoxia in the ccRCC

ES - normalised enrichment score.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE131907


Figure 6. The HIF metagene identifies HIF

activation in non-ccRCC tumors

(A and B) HIF-metagene score in (A) epithelial/tumor

cells and (B) endothelial cells from normal lung

(nLung), early-stage lung adenocarcinoma (tLung),

late-stage lung adenocarcinoma (tL/B), and brain

(mBrain) and lymph node metastases (mLN) (data

from Kim et al., 2020) (**p < 2 3 10�16, Wilcoxon

rank-sum test).

(C and D) Correlation between the canonical HIF

target gene GAPDH and HIF metagene score in

(C) malignant and (D) endothelial cells. Cells were

first separated into quartiles according to HIF met-

agene score, and the GAPDH signal for each quar-

tile is shown by violin plot and scatterplot.

(E) The top 100 genes that correlated with the HIF

metagene in adenocarcinoma cells are enriched

among genes induced by hypoxia in the A549

adenocarcinoma cell line (ES = 0.95, NES = 1.66, p =

0.005).

(F) The top 100 genes that correlated with the HIF

metagene in endothelial cells are enriched among

genes induced by hypoxia in the HUVEC line (ES =

0.89, NES = 1.30, p = 0.11).
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by hypoxia in RNA-seq analysis of the HUVEC cell line (Tiana

et al., 2018) (GEO: GSE89831), although this did not reach sta-

tistical significance (Figure 6F). Similarly, many of the genes that

were identified as HIF target genes in 5 of 6 cancer cell lines

positively correlated with the HIF metagene in malignant cells

from each individual early-stage lung cancer sample (Fig-

ure S7C). This indicates that the HIF metagene can be used

to determine hypoxic gene activation between and within pop-

ulations of malignant and non-malignant tumor cells and in indi-

vidual tumor samples from diverse cancer types. This can

include tumor and non-tumor cell types for which there are no

cell line data.
Cell
DISCUSSION

We combined transcript analysis with

ChIP-seq in multiple cell types (represent-

ing breast, prostate, lung, colon, kidney,

and liver cancer) exposed to hypoxia under

uniform conditions to derive a HIF meta-

gene signature. By combining HIF binding

with hypoxic mRNA regulation, this

analysis distinguishes the direct transcrip-

tional response to hypoxia orchestrated by

HIF from indirect effects. In all cell lines,

HIF binding was associated with upregu-

lated but not downregulated genes, indi-

cating that HIF acts as a transcriptional

activator but not as a repressor. The

number of HIF target genes shared by all

6 cell lines was greater than expected

from the overlap between lesser numbers

of cell lines. These HIF target genes are

conserved as hypoxia-responsive genes

in RNA-seq analyses of cancer, non-can-
cer, epithelial, and non-epithelial cell lines. Therefore, this

48-gene set represents a core, consensus set of HIF targets

genes that transcends the cell types in which the gene signature

was defined.

We then demonstrate the applicability of a HIF metagene

signature based on this gene set to human tumor data (TCGA)

and to single-cell analyses of cultured and freshly derived cells.

Within the scRNA-seq analysis, assessing the combined expres-

sion of the 48 core HIF target genes allows a HIFmetagene score

to be assigned to the vast majority of individual cells. This cir-

cumvents the phenomenon of ‘‘dropout,’’ which applies when

examining single genes in scRNA-seq data.
Reports 41, 111652, November 15, 2022 11
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Importantly,wevalidatedour signatureagainst othermeasures

of hypoxic and oncogenicHIF activation at the tumor level and for

single cells. Unlike a number of other commonly used hypoxia

gene signatures (FigureS8), ourHIFmetagenecorrectly identifies

HIF activation in VHL-defective ccRCC in bulk RNA-seq analysis

of TCGA tumors and in scRNA-seq analysis of individual cells. In

the bulk RNA-seq analysis of TCGA tumors, there is considerable

variation between HIF metagene scores even between tumors of

the same type. This variation correlateswith otherwell-described

HIF target genes that are not part of our signature, indicating that

it represents biological variation in HIF activation between tu-

mors. We then leverage this variability to identify additional posi-

tively and negatively HIF-associated genes in each tumor type.

This allows us to identify novel and tissue-specific HIF-associ-

ated genes even in tumor types for which there are no cell line

data. Similar variability in HIF metagene scores is also observed

between individual cells in the scRNA-seq analyses, and again

this correlates with other well-described HIF target genes, indi-

cating that it can identify biological variation in HIF activation be-

tween individual cells. Again, this variability can be leveraged to

identify novel HIF-associated genes in diverse cell types within

the tumor. Even in a solitary sample, this scRNA-seq analysis

can be applied to deconvolute cell-type-specific transcriptional

responses to HIF activation. This allows other sources of vari-

ability to be minimized (by comparing cells in the same sample)

and demonstrates the applicability of this strategy even to

scRNA-seq datasets with a small sample size.

An exploration of the underlying causes of this observed bio-

logical variability revealed that the HIFmetagene is able to distin-

guish oncogenic and microenvironmental influences on HIF acti-

vation. First, in the TCGA bulk RNA-seq analysis of ccRCC, the

HIF metagene score correlated with mutation in PBRM1

(polybromo 1) and mTOR (mechanistic target of rapamycin ki-

nase), both of which have been associated previously with HIF

activation (Brugarolas et al., 2003; Gao et al., 2017; Hudson

et al., 2002; Treins et al., 2002). CNA on chromosome 2 (onwhich

the EPAS1 gene encoding the HIF-2a isoform resides) was also

correlated with the HIF metagene. Oncogenic mutation in other

tumor types also correlated significantly with HIF activation,

most commonly TP53, MUC16, PTEN, ARID1A, and TTN. This

indicates that oncogenic mutations beyond those in the VHL

gene are associated with altered HIF activation across a wide

range of tumor types. Second, in scRNA-seq analysis of cells

from multiple lung adenocarcinomas, we observed a correlation

between HIF metagene score in adenocarcinoma cells and

stromal cells. Because stromal cells do not harbor oncogenic

mutations, this must therefore represent HIF activation as a

consequence of microenvironmental factors and/or paracrine

signaling from tumor cells. Thus, in addition to oncogenic influ-

ences on HIF activity, the HIF metagene can distinguish in vivo

responses tomicroenvironmental hypoxia. This can be observed

in cancer cells and in multiple specific stromal cell subtypes, al-

lowing the tissue-orchestrated response to hypoxia to be decon-

voluted at the single-cell level.

Limitations of the study
Our analysis aims to define a set of commonly (rather than uni-

versally) HIF-regulated genes because it is impossible to analyze
12 Cell Reports 41, 111652, November 15, 2022
every cell type. Genesmay be lost from the list of common genes

when they fail to reach any one of several stringent statistical

thresholds in any of the cell lines studied. Our metagene does

represent a set of genes, the majority of which will be HIF target

genes in all cell types. A combined score based on these genes

will therefore represent HIF activation in most cell types.

Reducing the number of genes will make it less likely that the

HIF metagene will reflect HIF activation in each cell line.

Conversely, increasing the number of genes by relaxing the

criteria may increase the proportion of non-regulated genes in

any one cell type. This would dilute the ability of the metagene

to distinguish HIF activation from stochastic noise.
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Antibodies

Purified mouse monoclonal to HIF-1a

(Western blotting)

BD Transduction Laboratories RRID: AB_398272; Cat# 610959

Purified rabbit monoclonal to HIF-2a

(Western blotting)

Cell Signaling RRID: AB_10898028; Cat# 7096S

Purified rabbit polyclonal to HIF-1b

(Western blotting)

Cell Signaling RRID: AB_10694232; Cat# 5537S

Rabbit polyclonal antisera to HIF-1a

(ChIP-seq)

Lau et al., 2007 PM14

Rabbit polyclonal antisera to HIF-2a

(ChIP-seq)

Lau et al., 2007; Wiesener et al., 2003 PM9

Rabbit polyclonal antisera to HIF-1b

(ChIP-seq)

Novus Biologicals RRID: AB_10003150; Cat# NB100-110

Purified rabbit polyclonal to CA9 Abcam RRID: AB_2066533; Cat# ab15086

Purified rabbit polyclonal to VHL Cell Signaling RRID: AB_2716279; Cat# 68547S

Purified mouse monoclonal to b-actin

conjugated to HRP

Abcam RRID: AB_867494; Cat# ab49900

TotalSeq-A anti-human Hashtag 1

(GTCAACTCTTTAGCG)

Biolegend RRID: AB_2750015; Cat# 394601

TotalSeq-A anti-human Hashtag 2

(TGATGGCCTATTGGG)

Biolegend RRID: AB_2750016; Cat# 394603

TotalSeq-A anti-human Hashtag 3

(TTCCGCCTCTCTTTG)

Biolegend RRID: AB_2750017; Cat# 394605

TotalSeq-A anti-human Hashtag 4

(AGTAAGTTCAGCGTA)

Biolegend RRID: AB_2750018; Cat# 394607

TotalSeq-A anti-human Hashtag 5

(AAGTATCGTTTCGCA)

Biolegend RRID: AB_2750019; Cat# 394609

Chemicals, peptides, and recombinant proteins

Formaldehyde Sigma-Aldrich Cat# F8775-4X25ML

RNase A Thermo Fisher Cat# EN0531

Proteinase K (approx 18.2mg/mL) Sigma-Aldrich Cat# 3115887001

Protein A agarose beads Millipore Cat# 16–156

cOmplete protease inhibitor cocktail Roche Cat# 11836145001

TrypLE Express Thermo Fisher Cat# 12604013

Collagenase II Thermo Fisher Cat# 17101015

DNase I Sigma-Aldrich Cat# 11284932001

Fetal bovine serum Sigma-Aldrich Cat# F7524-500ML

Critical commercial assays

MinElute PCR purification kit Qiagen Cat# 28006

PrepXTM DNA Library Kit Takara Cat# 640102

mirVana miRNA Isolation Kit Thermo Fisher Cat# AM1560

RNeasy Plus Mini Kit Qiagen Cat# 74134

RNase-free DNase Set Qiagen Cat# 79254

RNase-Free Turbo DNase Ambion Cat# AM2238

ScriptSeq v2 RNA-seq Kit Epicentre Cat# SSV21124

NEBNext Ultra II Directional RNA Library

Prep Kit for Illumina

NEB Cat# E7765S/L

(Continued on next page)
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Deposited data

ChIP-seq analysis of HIF-1a and HIF-2a in

hypoxic PC3, T47D, A549 and HCT-116 cell

lines

This paper GEO: GSE200203

RNA-seq analysis of gene expression in

normoxic and hypoxic PC3, T47D, A549

and HCT-116 cell lines

This paper GEO: GSE200204

Single cell RNA-seq analysis of gene

expression in normoxic/hypoxic primary

normal kidney cultures and normoxic

ccRCC tumor cultures

This paper GEO: GSE200207

ChIP-seq analysis of HIF-1b in hypoxic

PC3, T47D, A549 and HCT-116 cell lines

Schmid et al., (2019) GEO: GSE130989

ChIP-seq analysis of HIF-1a, HIF-2a and

HIF-1b in hypoxic HepG2 cells and in

normoxic RCC4 cells

Smythies et al., (2019) GEO: GSE120885

ChIP-seq analysis of HIF-1a, HIF-2a and

HIF-1b in hypoxic HeLa cells

Ortmann et al., (2021) GEO: GSE159128

RNA-seq analysis of gene expression in

normoxic and hypoxic HepG2 and RCC4/

VHL cell lines

Smythies et al., (2019) GEO: GSE120886

RNA-seq analysis of gene expression in

normoxic and hypoxic HeLa cells

Ortmann et al., (2021) GEO: GSE169087

RNA-seq analysis of gene expression in

normoxic and hypoxic HUVEC cells

Tiana et al., (2018) GEO: GSE89840

RNA-seq analysis of gene expression in

normoxic and hypoxic mel501 cells

Louphrasitthiphol et al., (2019) GEO: GSE95280

Single cell RNA-seq analysis of gene

expression in normal and tumor cells from

patients with early and late stage lung

adenocarcinoma

Kim et al., (2020) GEO: GSE131907

Single cell RNA-seq analysis of gene

expression in normal and tumor cells from

patients with clear cell kidney cancer

Krishna et al., (2021); https://trace.ncbi.nlm.

nih.gov/Traces/index.html?

view=analysis&acc=SRZ190804

NCBI: PRJNA705464

Single cell RNA-seq analysis of gene

expression in spleen, esophagus and lung

samples subject to different durations of

cold ischaemia

Madissoon et al., (2019); https://www.

tissuestabilitycellatlas.org

NCBI: PRJEB31843

Pan cancer RNA-seq analysis of gene

expression in tumor and patient-matched

normal tissue from the TCGA database

http://cancergenome.nih.gov/ N/A

Pan cancer RNA-seq, mutation and CNV

analysis of gene expression in tumor tissue

from the TCGA database

https://www.cbioportal.org; Cerami et al.,

2012; Gao et al., 2013

N/A

Experimental models: Cell lines

A549 ECACC; Sigma-Aldrich RRID: CVCL_0023; Cat# 86012804-1VL

HCT116 ECACC; Sigma-Aldrich RRID: CVCL_0291; Cat# 91091005-1VL

T47D ECACC; Sigma-Aldrich RRID: CVCL_0553; Cat# 85102201-1VL

HepG2 ATCC RRID: CVCL_0027; Cat# HB-8065

PC3 Validated by STR genotyping RRID: CVCL_0035

RCC4 Gift from C.H. Buys; validated by detection

of the VHL gene mutation

(chr3:10,183,841 G > del) in RNA-seq data

RRID: CVCL_0498

RCC4/VHL Maxwell et al., (1999) RRID: CVCL_2706

(Continued on next page)
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Normal kidney cells Schmid et al., (2019); Oxford Radcliffe

Biobank (ORB)

ORB ID: 110326; Lab ID: N3

ccRCC tumor cells - culture 1 Schmid et al., (2019); Oxford Radcliffe

Biobank (ORB)

ORB ID: 110324; Lab ID: T3A

ccRCC tumor cells - culture 2 Schmid et al., (2019); Oxford Radcliffe

Biobank (ORB)

ORB ID: 110325; Lab ID: T3B

Software and algorithms

BWA (0.7.5a-r405) https://github.com/lh3/bwa N/A

SAMtools (0.1.19) Li et al., (2009) N/A

BEDTools (2.17.0) Dale et al., (2011) N/A

Picard tools (2.0.1) http://broadinstitute.github.io/picard/ N/A

T-PIC (Tree shape Peak Identification for

ChIP-Seq)

Hower et al., (2011) N/A

MACS (model-based analysis of ChIP-seq) Zhang et al., (2008) N/A

TrimGalore (0.3.3) https://github.com/FelixKrueger/

TrimGalore

N/A

HISAT2 (2.05) Kim et al. (2019); http://daehwankimlab.

github.io/hisat2/

N/A

HTSeq (0.5.4p3) Anders et al., (2015) N/A

DESeq2 Love et al., (2014) N/A

Seurat (4.0.3) Hao et al., (2021) N/A

InferCNV https://github.com/broadinstitute/inferCNV N/A

GSEA (gene set enrichment analysis) Subramanian et al., (2005); Xiao et al.,

(2014)

N/A

gProfiler Raudvere et al., (2019) N/A

UpSetR (1.4.0) Conway et al., (2017) N/A

R (4.0.5) https://www.r-project.org/foundation/ N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact David Mole

(david.mole@ndm.ox.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Bulk RNA-seq data, ChIP-seq data and single-cell RNA-seq data generated in this study have been deposited at GEO and are

publicly available as of the date of publication. The accession numbers are listed in the key resources table.

d This paper also analyzes existing, publicly available data. The accession numbers are listed in the key resources table.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human cell lines
A549, HCT116 and T47D cells were purchased from ECACC; HepG2 cells were purchased from ATCC; and PC3 cells were validated

by STR genotyping. RCC4 cells were a gift from C.H. Buys. A549 and PC3 cells were grown in Ham’s F12K medium; HCT116 cells

were grown in McCoy’s 5a medium; and HepG2, RCC4, RCC4-VHL and T47D cells were grown in DMEM. All cell lines were grown

with 100 U/mL penicillin, 100 mg/mL streptomycin, 2mM L-glutamine and 10% fetal bovine serum (Sigma-Aldrich) and regularly

tested for mycoplasma infection. All cells were maintained in 10cm plates at 37�C in a humidified incubator with 5%CO2. When cells
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reached approximately 80% confluency, cells were washed in PBS before 2mL of 0.05% Trypsin-EDTA (Sigma-Aldrich) was added

for 3–10 min. A portion of the suspension was re-plated to maintain sub-confluency. Cells were kept in culture for approximately a

month before being discarded and a new, early passage vial revived.

Primary cell cultures
Primary renal cell cultures were generated from freshly excised ccRCC tissue and tumor-adjacent normal kidney from amale subject

(age unknown) undergoing radical nephrectomy as part of cancer treatment (Schmid et al., 2019). The subject gave their informed

consent for inclusion before they participated in the study. The study was conducted in accordance with the Declaration of Helsinki,

and the protocol was approved by the Ethics Committee of Oxford University Hospitals NHS Foundation Trust. Briefly, tissue blocks

were washed in Hank’s Balanced Salt Solution (HBSS) before being minced using scalpels. Tissue was digested by incubating in

HBSS supplemented with 193U/mL Collagenase II and 3.33ug/mL DNase I for one hour at 37�C with vigorous shaking every 5–

10 min. Suspensions were sequentially passed through 100um, 70um and 40um cell strainer to remove debris and undissociated

tissue. Cell pellets were washed in growth medium (DMEM/F12 1:1, supplemented with L-glutamax, penicillin-streptomycin, insu-

lin-transferrin-sodium selenite, 4 ng/mL triiodo-L-thyronine, 100 ng/mL epidermal growth factor, 36 ng/mL hydrocortisone and

10% fetal bovine serum) and plated on gelatinized dishes in growth medium. Cells were maintained at 37�C in a humidified incubator

with 5% CO2. When cells reached 80–100% confluency, cells were washed in PBS before being removed from dishes using 0.05%

Trypsin-EDTA (Sigma-Aldrich) for 3–5 min. A portion of the suspension was re-plated to sub-confluency. Experiments were per-

formed after the second or third passage.

METHOD DETAILS

Western blotting
Cell lysates were prepared in Urea-SDS lysis buffer (6.7M Urea, 10% glycerol, 1%SDS, 10mM Tris/HCl pH 6.8) supplemented with

freshly added cOmplete protease inhibitor cocktail (Roche), phosphatase inhibitor cocktails 2 and 3 (Sigma-Aldrich), and 1mM DTT.

Lysateswere sonicated using aBioruptor (Diagenode) atmedium intensity for three cycles of 15s on/30s off, before being syringed 10

times through a 21G needle. Protein concentrations were determined by BCA assay (Pierce) and normalized. Sampleswere prepared

for SDS-PAGE by adding Laemmli buffer and 0.1M DTT, then were resolved on AnyKD Mini-PROTEAN TGX precast gels (Bio-Rad)

using mini-PROTEAN tetra cells (Bio-Rad). Proteins were transferred to PVDF membranes using mini-trans-blot cells (Bio-Rad). All

Western blotting solutions were prepared in PBST (PBS containing 0.1% tween). Membranes were blocked in either 5%BSA fraction

V or 5%milk for 1 h, before being incubated in primary antibodies for 2h at room temperature. Primary antibodies usedwere anti-HIF-

1a (BD cat no. 610959), anti-HIF-2a (Cell Signaling cat no. 7096S), anti-HIF-1b (Cell Signaling cat. no. 5537S), anti-CA9 (Abcam cat

no. ab15086), anti-VHL (Cell Signaling cat no. 68547S) and anti-b-actin (Abcam cat no. ab49900). HRP-conjugated secondary anti-

bodies (all Dako) were incubated for an hour. Membranes were developed using SuperSignal West Dura Extended Duration Sub-

strate (Thermo Scientific) and imaged using a Bio-Rad Chemidoc.

ChIP-seq
One or two 15cmplates of cells were used for each ChIP. The protocol was performed on ice/at 4�C unless otherwise stated. Protein-

DNA complexes were cross-linked by adding 1% formaldehyde (Sigma-Aldrich) in growthmedium to cells on tissue culture plates for

10–12 min with gentle agitation. The reaction was quenched by adding 125mM glycine and incubating with gentle agitation for 10–

12 min at room temperature. Cells were washed twice in PBS and then removed from plates by scraping. Cells were centrifuged and

resuspended in 500ul lysis buffer per plate (50mM Tris pH 8.1, 10mM EDTA, 1% SDS) supplemented with freshly added cOmplete

protease inhibitor cocktail (Roche) at 2X concentration. After 10 min, samples were diluted 1:1 with ChIP dilution buffer (16.7mM Tris

pH 8.1, 167mM NaCl, 1.2mM EDTA, 0.01% SDS, 1.1% Triton X-100) and then added to 15mL Bioruptor Plus TPX sonication tubes

(1mL sample per tube). Samples were sonicated using a Diagenode Bioruptor Plus water bath sonicator using sonication cycles of

15 s on/15 s off for 15–30min at high intensity. The sonication timewas optimized for each cell line such that themajority of chromatin

fragments lay in the range of 150–500bp, asmeasured on a Tapestation (Agilent) using D1000 reagents. Samples were centrifuged at

13000 rpm and the supernatant collected, before being diluted 6-fold in ChIP dilution buffer. Protein A agarose beads (Millipore) were

washed twice using ChIP dilution buffer and by rotating on an end-over-end rotator for 5 min 40ul of 50% of bead slurry was added

per ChIP sample then incubated on an end-over-end rotator for 1 h (to pre-clear lysates). Samples were centrifuged and the super-

natant was collected. 15ul of anti-HIF-1a (PM14), 15ul of anti-HIF-2a (PM9), or 10ul of anti-HIF-1b (Novus Biologicals NB100-110)

was added per ChIP, or 10ul of rabbit pre-immunization serum as a negative control. Samples were incubated overnight on an

end-over-end rotator. 90ul of 50% bead slurry was added to each ChIP and incubated on an end-over-end rotator for 1.5 h. Samples

were centrifuged at 380g for 8min to collect the beads and the supernatant was discarded. The following wash stepswere performed

by incubating samples in each buffer on an end-over-end rotator for 5 min per wash. Samples were washed once in low salt wash

buffer (20mM Tris pH 8.1, 150mM NaCl, 2mM EDTA, 0.1% SDS, 1% Triton X-100), once in high salt wash buffer (20mM Tris pH 8.1,

500mM NaCl, 2mM EDTA, 0.1% SDS, 1% Triton X-100), once in LiCl wash buffer (10mM Tris pH 8.1, 250mM LiCl, 1mM EDTA, 1%

sodium deoxycholate, 1% Igepal), then twice in TE buffer (10mM Tris pH 8.0, 1mM EDTA). The TE washes were performed at room

temperature. 120ul of freshly made elution buffer (0.1M NaHCO3, 1%SDS) was added to each ChIP and incubated in a thermomixer
Cell Reports 41, 111652, November 15, 2022 e4
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at room temperature/1400rpm for 15min. Samples were centrifuged, the supernatant collected, and another 120ul added to perform

a second elution as above, to obtain 240ul eluate per ChIP. Elution buffer was added to input samples up to 240ul and then input

samples were processed in parallel to ChIP samples as below, with care being taken to avoid contaminating ChIP samples with input

samples. 12.5ul of 4MNaCl was added and incubated in a thermomixer with a heated lid at 65�C/1400rpm overnight to reverse cross-

links. Samples were allowed to cool to room temperature before 2.2ul of proteinase K (Sigma-Aldrich) was added and incubated in a

thermomixer with a heated lid at 45�C/1400rpm for 4 h 1ul of RNaseA (Thermo Fisher) was added and incubated in a thermomixer at

37�C/1400rpm for 30 min 1mL of buffer PB (Qiagen) and 10ul of 3M sodium acetate pH 5.2 was added per sample, before being

purified using the MinElute PCR purification kit (Qiagen) according to manufacturer’s instructions. DNA was eluted in 20ul

nuclease-free water. A small aliquot (2ul) was diluted 16-fold and used in qPCR reactions to test for enrichment of canonical HIF bind-

ing sites as part of quality control. Automated library preparation was performed using the Apollo prep system (Takara, PrepX Comp

ILMN 32i DNA Lib 96. Cat number 640102.) All ChIP-seq experiments were performed in duplicate in accordance with ENCODE con-

sortium guidelines (The_Encode_Consortium, 2017).

ChIP-seq analysis
Adapter sequences were trimmed as above. Reads were aligned to GRCh37 using BWA (0.7.5a-r405). Low-quality mapping was

removed (MapQ <15) using SAMtools (0.1.19) (Li et al., 2009). Reads mapping to Duke Encode blacklist regions (http://hgwdev.cse.

uc sc.edu/cgi-bin/hgFileUi?db = hg19&g = wgEncodeMapability) were excluded using BEDTools (2.17.0) (Dale et al., 2011). Duplicate

reads were excluded using Picard tools (2.0.1) (http://broadinstitute.github.io/picard/). Read densities were normalized and expressed

as reads per kilobase per million reads (RPKM). One million random non-overlapping regions selected from ENCODE DNase Cluster II

peaks (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegDnaseClustered/) were used as a control.

ChIP-seq peakswere identified using T-PIC (Tree shape Peak Identification for ChIP-Seq) (Hower et al., 2011) andMACS (model-based

analysis of ChIP-seq) (Zhang et al., 2008) in controlmode. Peaks detectedbyboth peak callerswere filtered quantitatively using the total

count under the peak to include only peaks that were above the 99.99th percentile of random background regions selected from the

ENCODE DNase II cluster (p value <0.0001). Only peaks from each independent replicate that overlapped by at least 1 base pair

(BEDTools v2.17.0 (Dale et al., 2011)) were considered.

Bulk RNA-seq
Total RNA was prepared using the mirVana miRNA Isolation Kit (Life Technologies) or RNeasy Plus Mini kit (Qiagen) and treated with

RNase-Free Turbo DNase (Ambion) or RNase-free DNase Set (Qiagen) according to manufacturers’ instructions. RNA integrity was

assessed using RNA Reagents and RNA Screentapes on a Tapestation as part of quality control. PolyA + RNA libraries were then

prepared using the ScriptSeq v2 RNA-seq Kit (Epicentre, Madison, WI, USA) or the NEBNext Ultra II Directional RNA Library Prep

Kit for Illumina. All RNA-seq experiments were performed in triplicate in accordance with ENCODE consortium guidelines (The_EN-

CODE_Consortium, 2016).

Bulk RNA-seq analysis
Illumina adaptor sequences were trimmed using TrimGalore (0.3.3). Reads were aligned to Genome Reference Consortium GRCh37

(hg19) using HISAT2 (2.05) (http://daehwankimlab.github.io/hisat2/) (Kim et al., 2019). Non-uniquely mapped fragments were

excluded using Picard tools (2.0.1) (http://broadinstitute.github.io/picard/). Total read counts for each UCSC-defined gene were ex-

tracted using HTSeq (0.5.4p3) (Anders et al., 2015) with ‘‘intersection-strict’’ mode, and significantly regulated genes were identified

using DESeq2 (Love et al., 2014).

Single cell RNA-seq
Primary cell cultures were detached and made into single cell suspensions using TrypLE Express (Thermo Fisher) with pipetting.

Cells were labeled with hashtag antibodies to enable multiplexing, essentially as per manufacturer’s instructions (Biolegend,

https://www.protocols.io/view/totalseq-a-antibodies-and-cell-hashing-with-10x-si-261geo6mol47/v1). Single cell suspensions

were incubated with TotalSeq-A ‘hashtag’ antibodies (1ug antibody with approximately 5 3 105 cells) with the following barcode

sequences: anti-human 1 (GTCAACTCTTTAGCG), anti-human 2 (TGATGGCCTATTGGG), anti-human 3 (TTCCGCCTCTCTTTG)

and anti-human 4 (AGTAAGTTCAGCGTA). Cell viability and concentration were assessed using Trypan Blue and a TC10 auto-

mated cell counter (Bio-Rad). 2500 cells from each sample were pooled, loaded onto a single channel of a 10x genomics chip,

and single cell 30 RNA libraries were prepared according to manufacturer’s instructions (10x genomics, GEX-v3.1 chemistry, single

index).

Single cell RNA-seq analysis
scRNAseq analysis was performed using Seurat version 4.0.3 (Hao et al., 2021). Single-cell somatic large-scale chromosomal copy

number alterations were calculated using inferCNV (https://github.com/broadinstitute/inferCNV).
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Gene set analysis
Gene set enrichment analysis (GSEA) used 10,000 permutations, weighted enrichment score and pre-ranking of genes (Subramanian

et al., 2005). Both differential expression significances according to DESeq2 and fold-difference between the two conditions were

used to rank genes according to the equation (Xiao et al., 2014).

pi = 4ið � log10pviÞ
where ui is the log2 fold-change, and Pvi is the p-value for gene i. Functional enrichment analysis of biological categories enriched in

gene lists was performed using the gProfiler web server (Raudvere et al., 2019). Gene set overlap was examined using UpSetR

version 1.4.0 (Conway et al., 2017).

TCGA RNA-seq data
FPKM-UQ normalized RNA-seq data for 9,760 primary tumor samples and 730 normal samples were obtained from https://portal.

gdc.cancer.gov/repository on 07.09.2021 using the gdc-client version 1.5.0 and the following advanced filters: cases.project.prog-

ram.name in ["TCGA"], files.analysis.workflow_type in ["HTSeq - FPKM-UQ"], files.data_category in ["transcriptome profiling"], file-

s.experimental_strategy in ["RNA-Seq"] and either cases.samples.sample_type in ["primary tumor"] or cases.samples.sample_type

in ["solid tissue normal"].

Sequencing
Sequencing was performed on the HiSeq 2500, HiSeq 4000 or NovaSeq 6000 platforms according to Illumina protocols (Illumina).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using R version 4.0.5. All statistical details for experiments can be found in the figure legends

and the results section.
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Supplemental Figure 1. HIF subunit levels in cell lines used. Related to Figure 1. 
Immunoblot showing relative HIF-1a, HIF-2a and HIF-1β protein levels in A549, HCT116, 
HepG2, PC3, RCC4 and T47D cells. 
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Supplemental Figure 2. Summary of RNA-seq and ChIP-seq analyses in cell lines. Related to 
Figure 1. Volcano plots showing log2(fold-change) and -log10(p-value) for gene expression in 
hypoxia and normoxia in RNA-seq analysis of (A) A549, (B) HCT116, (C) HepG2, (D) PC3, (E) 
RCC4+VHL and (F) T47D cells. Histograms showing frequency distribution of distance to 
nearest TSS for (G-L) canonical HIF-1 binding sites and (M-R) canonical HIF-2 binding sites. (S-



X) Gene set enrichment analysis (GSEA) showing the enrichment of HIF-bound genes amongst 
genes induced, but not suppressed by hypoxia.  



 
Supplemental Figure 3. Association between genetic mutation and HIF-metagene in tumors 
from the TCGA database. Related to Figures 3 and 4. (A) Volcano plots showing the 
association between chromosomal arm-level copy number alterations and HIF-metagene 
score. Red dots show the effect of chromosomal amplification, blue dots show the effect of 
chromosomal deletion and grey dots show non-significant associations. (B) The number of 
tumor types in which commonly mutated genes are associated with significantly altered HIF-
metagene. (C) Volcano plot showing association between gene mutation and HIF-metagene 
score for the 10 most commonly mutated genes in each tumor type.  



 
Supplemental Figure 4. Pathway enrichment for genes correlating with HIF-metagene in 
tumors from the TCGA database. Related to Figures 3 and 4. Heatmap showing -log10(p-
value) for pathways enriched amongst (A) genes that positively correlate with the HIF-
metagene in each tumor type using RNA-seq analyses from the TCGA for 9,760 tumors drawn 
from 32 cancer categories and (B) genes that negatively correlate with the HIF-metagene. 
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Supplemental Figure 5. Subgroup analysis of individual clusters in scRNA-seq analysis of 
cultured normal cells. Related to Figure 5. (A) Immunoblot showing HIF-1a, CA9, pVHL and 
b-actin protein levels in normoxia and hypoxia. UMAP plots showing (A) sample of origin, (B) 
individual clusters denoted 1=distal tubular epithelial cells, 2=proximal tubular epithelial 
cells, 3=non-epithelial cells and tumor=ccRCC cancer cells, (C) expression of the distal 
tubular marker, CDH1, and (D) expression of the proximal tubular marker, CDH2. (E) Violin 
plot showing HIF-metagene expression in cells from each normal cell cluster incubated in 
normoxia and 0.5% hypoxia for 16 hours (**, p<10-16, Wilcoxon rank sum).  
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Supplemental Figure 6. The effect of cold ischemic storage on HIF-metagene in scRNA-seq. 
Related to Figures 5 and 6. (A) UMAP plot and (B) violin plot showing HIF-metagene scores 
in scRNAseq analysis of cells from lung samples subjected to 0, 12, 24 and 72 hours cold 
ischemic storage prior to processing (Madissoon et al). The same analyses in cells from (C 
and D) esophagus samples and (E and F) spleen samples. 
  



 
Supplemental Figure 7. HIF-metagene in individual early-stage lung cancer samples. (A) 
Violin plot showing HIF-metagene expression in tumor cells from each early-stage lung 
cancer sample in Kim et al. (B) Violin plot showing HIF-metagene expression in non-tumor 
cells from the same samples. (C) Heatmap showing Pearson correlation coefficient between 
the HIF-metagene and second-tier HIF-target genes (identified in 5/6 cancer cell lines) in 
tumor cells from each, individual early-stage lung cancer sample. 
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Supplemental Figure 8. Hypoxic gene expression signatures in tumors from the TCGA 
database. Scatter/box-and-whisker/violin plots showing metagene expression in RNA-seq 
analysis of 9,760 tumors from the TCGA database using genes from (A) our 48-gene HIF-
metagene (B) Benita, (C) Betts and Eustace, (D) Buffa, (E) Elvidge, (F) Ghazoui, (G) Halle, (H) 
Hu, (I) Ortiz-Barahoma, (J) Ragnum, (K) Seineuric, (L) Sorensen, (M) Toustrup, (N) Winter and 
(O) Yang. Tumors are grouped according to tumor type and ranked according to median 
expression for that tumor type. 
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