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1 CGMD Forcefield

The complete potential energy function for a ternary complex is

U (x; b, q) = UENM (xE) + UENM (xT ) + Uspring (xP ) + UWCA (xP )

+ Ubind (xP ,xT ; b) + Ubind (xP ,xE; b) + UWCA (xP ,xT ) + UWCA (xP ,xE)

+ UWCA (xE,xT ) + Uelec (xE,xT ; q) + ULJ (xE,xT ; ϵLJ)

(1)

where xE, xT , and xP indicate the coordinates of the E3 ligase, the target protein, and

the PROTAC respectively, q represent the charges of protein beads, and b are indicators of

whether protein beads are at the binding pocket or not. All PROTAC beads are modeled

with 0 charge and no attraction to the proteins. All parameters and variables are defined

using a length scale of the large bead (σ = 0.8 nm) and an energy scale of ϵ = kT where k

is the Boltzmann constant and T = 310 K.

1.1 Internal energy terms

Interactions within a protein are modeled by an elastic network model (ENM) such that

every pair of beads within distance Rc is connected by a harmonic spring:

UENM (x) =
∑

(i,j)∈D

kspring (∆xij − dij)
2

(2)

where kspring is the spring constant, dij is the optimal distance between xi and xj, and

D = {(i, j) |dij < Rc}. The optimal distance between a pair of beads is its initial distance in

the experimental structure. Experimental structures used in this work include VHL (PDB:

5T351 chain D), BRD4BD2 (PDB: 5T351 chain A), CRBN (PDB: 6BOY2 chain B), and

BTK (PDB: 6W7O3 chain A), and Schrödinger Maestro4 is used to fill in missing atoms

and perform energy minimization before building the CG ENM. Additional details on the

parameterization are described in a separate section below.
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PROTAC is modeled as a linear molecule, where adjacent beads are connected by springs

(Uspring (xP )) and non-adjacent beads are subjected to steric repulsions (UWCA (xP )).

1.2 Interaction energy terms

PROTAC-protein interactions consist of binding interactions modeled by springs between

a binding moiety bead in the PROTAC and all beads in the corresponding binding pocket

(Ubind (xP ,xT ; b) and Ubind (xP ,xE; b) in eq.(1)) and steric repulsions (UWCA (xP ,xT ) and

UWCA (xP ,xE)) between the remaining parts of PROTAC and protein. Steric repulsions

in intra-PROTAC, PROTAC-protein, and inter-protein interactions are all modeled by the

Weeks-Chandler-Andersen (WCA) potential, a shifted and truncated version of Lennard-

Jones (LJ) potential.

Protein-protein interactions are captured by the steric repulsions (UWCA (xE,xT )), and

depending on the modeling purpose, electrostatics (Uelec (xE,xT ; q)) or nonspecific attrac-

tions (ULJ (xE,xT ; ϵLJ)). The electrostatic interaction is modeled by a Debye-Hückel (DH)

potential. The functional forms and parameterization of both potentials can be found in.5

When reducing the screening of electrostatics between BRD4BD2 and VHL, the Debye length

κ is multiplied by 10. The solvent in our system is treated implicitly. Nonspecific attractions

aimed at broadly including Van der Waals forces and hydrophobic interactions are modeled

by LJ potentials. The strength of the attraction is kept under that of electrostatic interac-

tions (Fig. S1). The well depth of LJ, ϵLJ, is currently set to be the same for all pairs of

beads for nonspecific attraction. For future efforts, minor modifications to the formula6 and

parameterization of ϵLJ to depend on the Wimley-White hydrophobicity scale, for example,

can capture more sequence-specific interactions such as the hydrophobic effects.

1.3 Parameterization of ENM

ENM is a model that represents the tertiary structure of a protein by connecting every pair

of protein beads within a certain distance cutoff Rc by a Hookean spring of spring constant
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Figure S1: The strengths of various interaction potentials are plotted over the distance
between protein beads. The two vertical dashed grey lines bound the distance between 1
and 2 σ. The electrostatic potentials (DH) are plotted for beads with +1 and +1 charges or
+1 and -1 charges.

kspring. Despite the simplicity of its parameterization, slow modes in ENM can capture bio-

logically significant conformational changes.7,8 This structure-based model can also be used

in combination with other physics-driven forcefields to model macromolecular complexes.

Protein-protein associations and viral capsid assembly have both been successfully modeled

by using Elnedyn, an ENM at the resolution of 1 residue per bead,9 on top of the MAR-

TINI CG forcefield. By fitting to atomistic simulations, Elnedyn preserves both structural

properties and dynamics within each protein subunit for the CG simulations.

We follow a similar protocol and fit our CG ENM parameters in eq.(2) to Elnedyn

simulations results. Three proteins – IKZF1ZF2 (PDB: 6H0F10 chain C), BRD4BD1 (PDB:

6BOY2 chain C), and CRBN (PDB: 6BOY2 chain B) – are chosen for the fitting to represent

the range of protein sizes based on the publicly available crystal structures of PROTAC-

mediated ternary complexes. Elnedyn is supported as an option in the MARTINI 2 CG

forcefield,9 and we use the default parameters to generate Elnedyn simulations of these

proteins with GROMACS version 5.0.7. Two equilibration stages were run, first at 1 fs
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timestep for 50 ps, and then at 10 fs timestep for 1 ns. Then, only the dynamics stage

was used for fitting, which was run at 10 fs timestep for 40 ns. Four metrics are used to

examine how well a particular combination of kspring and Rc captures information in Elnedyn

simulations: the difference of time-averaged root-mean-squared-deviation (∆RMSD), bead-

averaged root-mean-squared-fluctuation (∆RMSF), Kullback–Leibler (KL) divergence of the

RMSD distributions, and the root-mean-squared inner product of the principal components

(RMSIP) of the trajectories.

Within a single metric, we usually observe a degeneracy within a certain region of kspring

and Rc values (Fig. S2), and this was also observed in Elnedyn fitting to atomistic simula-

tions.9 This is because increasing either kspring or Rc can increase the stiffness of a protein

and, therefore, can compensate for each other to some extent. Nevertheless, despite the de-

generacy, given the wide range of protein sizes, there is no single combination of kspring and

Rc values that works best for all three proteins. We chose kspring = 100ϵ/σ2 and Rc = 2.0σ

as they are near the optimal degeneracy region under most metrics and consistent with the

values of Elnedyn parameters (kspring = 124.25ϵ/σ2 and Rc = 1.125σ). This combination

of kspring and Rc was selected without a global optimization function that combines all four

metrics, and should be subjected to finer tuning if a specific system is of interest.

2 Analysis of alchemical free energy calculations

We perform various checks to address two common concerns in alchemical simulations: 1) are

there sufficient intermediate states along the alchemical reaction pathway, and 2) are there

sufficient samples from each state for accurate free energy calculations. The BTK-PROTAC

(10)-CRBN complex is used as an example for the analysis below.

We first validate that there are sufficient intermediate states for a converged estimation

of ∆Gternary(WCA). The convergence of free energy calculations depends on the overlap of

the phase space, i.e. the distribution of sampled conformations, between neighboring states.
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Figure S2: Fitting results of ENM parameters arranged by proteins (rows) and evaluation
metrics (columns). Numbers in parenthesis next to protein names are the number of CG
beads. For each plot, blue regions indicate kspring and Rc values that result in good fitting, and
red regions indicate significant differences between our simulations and Elnedyn simulations.
Each column shares the same colorbar range. In general, the boxed regions around kspring =
100ϵ/σ2 and Rc = 2.0σ has good fitting.
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Substantial overlap is achieved when the neighboring states are similar, which requires a fine

spacing of the coupling parameter values. In practice, distributions of quantities such as ∆U

and ∂U/∂λ that are directly involved in free energy estimations are often treated as proxies

for the high-dimensional phase space.11 The similarity between distributions is quantified

by KL divergence, where 0 indicates identical distributions and ≫ 1 suggests concerning

differences. Based on this metric, all neighboring states have substantial overlap, as the

Kullback–Leibler (KL) divergence values of ∆U and of ∂U/∂λ distributions both stay below

1 (Fig. S3a).

Bennett’s overlapping histogram12 provides another qualitative test for the overlap of ∆U

distributions. The difference between gλi+1
(∆Uλi,λi+1

) = Pλi
(∆Uλi,λi+1

) + (1 − C) ∆Uλi,λi+1

and gλi
(∆Uλi,λi+1

) = Pλi+1
(∆Uλi,λi+1

) − C∆Uλi,λi+1
is plotted over ∆Uλi,λi+1

values, where

C is an arbitrary constant between 0 and 1 and Pλi
(∆Uλi,λi+1

) and Pλi
(∆Uλi,λi+1

) are the

distributions of ∆Uλi,λi+1
obtained by sampling from neighboring alchemical states λi and

λi+1 respectively. Continuous oscillations of gλi+1
(∆Uλi,λi+1

) − gλi
(∆Uλi,λi+1

) around the

estimated ∆Gλi,λi+1
over a range of ∆Uλi,λi+1

values suggests good overlap (Fig. S3b).13 For

states of higher λLJ values, higher energetic penalty of steric repulsions prevents sampling

over a wide range of ∆U values, but the KL divergence and visualization of the distributions

(Fig. S3a,c) both indicate the quality of the overlap.

Next, we examine sampling within each state. For each state, a simulation needs to be

post-processed to discard the initial unequilibrated part and then subsampled to obtain de-

correlated data for accurate uncertainty quantification of the free energy estimation. Thus,

the length of the simulations is dictated by the equilibration time, autocorrelation time,

and the number of de-correlated samples needed for converged estimations. We examine the

values of ∆U , ∂U/∂λ, and other collective variables over the simulation time, which typically

equilibrate after 0.9 s (Fig. S4a). To find out the decorrelation time, we discard the initial

0.9 s of simulations and plot the autocorrelation functions of these variables over different

time lags up to half of the simulation time to ensure that the autocorrelation is calculated
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Figure S3: Phase space overlap in calculating ∆Gternary(WCA) for BTK-CRBN in Fig. 2. (a)
Overlap of ∆U and ∂U/∂λ distributions between adjacent states are quantified by the KL
divergence. (b) Example Bennett’s overlapping plots for λLJ = 0, 0.005 states (left) and
λLJ = 0.7, 1 states (right). The grey bands represent ∆Gλi,λi+1

±1 std estimated using BAR.
(c) Example distributions of ∆Ui,i+1 are shown with Gaussian smoothing (red and blue solid
curves) for better visualization.
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from a sufficient number of samples. The autocorrelation times all plummet to 0 before 0.63

s (Fig. S4b). Both equilibration time and decorrelation time are longer for simulations in

lower value of λLJ states that retain more memory of previously sampled configurations due

to lower energetic costs. Currently, the equilibration and autocorrelation cutoffs depend on

each system. For convenience, we used the same cutoffs for all λ states. In the future, this

can be customized for each state to maximize the number of samples, especially from states

of high λ values that requires less equilibration and decorrelation time (Fig. S4b).
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Figure S4: Detecting equilibration and autocorrelation time in calculating ∆Gternary(WCA)

for BTK-CRBN in Fig. 2. (a) ∆Uλi,λi+1
over simulation time and (b) the autocorrelation

of ∆Uλi,λi+1
from λLJ = 0 (left) and λLJ = 1 (right). The red curves and the shaded regions

represent the average value ±1 standard deviation based on 64 independent trajectories.
The vertical dashed lines in this example mark 0.9 s in (a) and 0.63 s in (b). The horizontal
dotted lines in (b) mark the 0 autocorrelation value.
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Figure S5: ∆∆Gs calculated by TI and BAR are superimposed onto the MBAR results
shown in Figure 3 to show that all three alchemical free energy calculation methods agree
within noise.
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Figure S6: ∆∆Gs calculated by TI and BAR agree with MBAR results shown in Figure 4
for the BRD4BD2-VHL system modeled with protein charges included. (a) ∆∆Gs at each
PROTAC linker length calculated by TI and BAR are broken down using waterfall plots
similar to Figure 4b. In each triplet, columns from left to right correspond to ∆Gbinary,
−∆Gternary(other), and −∆Gternary(charges). Columns are arranged cumulatively such that the
end point of a triplet of columns represent the final ∆∆G value calculated by the corre-
sponding method. MBAR ∆∆G values with ±1 standard deviation are shown as horizontal
yellow bands for reference. (b) TI and MBAR calculations of the electrostatic contribution
to ∆∆G under different forcefield setups at the linker length of 3 beads agree with each
other. Note that ∆Gternary(charges) is shown here rather than −∆Gternary(charges) in panel (a).
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Figure S7: The structure of MZ1, which is a PROTAC with linker length of 3 beads using a
JQ1 warhead, extracted from the ternary crystal structure (PDB: 5T351) and the structure of
I-BET726 warhead extracted from the crystal structure of a binary complex (PDB: 4BJX14)
are superimposed to highlight the difference in exit vectors (black arrows).
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