	Science
1	MAAAS
1 2	
2	
3	
4	Supplementary Materials for
5	
6 7	GPNMB confers risk for Parkinson's Disease through interaction with alpha- synuclein
8	
9	Maria E. Diaz-Ortiz, Yunji Seo, et al.
10 11	Correspondence to: chenplot@pennmedicine upenn edu
12	Correspondence to. chenplot@peninnedicme.upenin.edu
13	
14	
15	This PDF file includes:
16	
17	Materials and Methods
18	Figs. S1 to S7
19	Tables S1, S4 to S11 C_{1} C_{2}
20	Captions for Tables S2 to S3, S12
21	Caption for Data S1
22 23	Other Supplementary Materials for this manuscript include the following:
$\frac{23}{24}$	Other Supplementary Waterials for this manuscript include the following.
25	Tables S2 to S3_S12
26	Data S1 [Cell profiler pipeline for image processing]
27	
28	
29	
30	

31 Materials and Methods:

32 RNA isolation and library preparation from human brain samples:

33 Human postmortem brain samples from neurologically normal controls (NC, n = 2) and 34 PD (n = 4) individuals were obtained from the University of Pennsylvania Center for 35 Neurodegenerative Disease Research (CNDR) Brain Bank and dissected as previously described 36 (29). Demographics are summarized in **Table S1**. The regions analyzed included the caudate 37 nucleus, cingulate gyrus, and cerebellum. Samples comprised predominantly gray matter. 38 Genotypes for the brain samples were obtained as previously described (29, 30). 39 Total RNA was isolated from postmortem brain samples using the Qiagen RNeasy kit as 40 previously described (29). After RNA isolation, RNA purity and integrity were assessed by 41 spectrophotometric measurement of 260/280 nm OD ratios and by capillary electrophoresis on 42 an Agilent 2100 Bioanalyzer. 43 Library preparation was performed with the KAPA RNA HyperPrep Kit (KR1350, 44 Illumina Platforms, Roche, WI). Briefly, RNA was fragmented using heat and magnesium for 8 45 minutes at 94°C to obtain 100-200bp fragments. The first cDNA strand was then synthesized 46 using a thermocycler, followed by the second strand synthesis combined with A-tailing. Unique 47 adapters were then ligated onto the library insert fragments and amplified using high-fidelity, 48 low-bias PCR. The products then underwent a bead-based cleanup for purification of the cDNA 49 libraries. 50 SeqCap RNA ChoiceTM probe pool design:

51 The SeqCap RNA probe design pool was designed by Roche Sequencing Solutions
52 Custom Design (Roche, WI). The pool was designed to contain probes about 60bp in length with
53 no more than 20 "close matches" in the genome, as determined by the Sequence Search and

54 Alignment by Hashing Algorithm (SSAHA), for the purposes of providing sufficient coverage of 55 transcripts of interest while minimizing potential off-target effects. A "close match" was defined as any genomic sequence that differed from one of the probe sequences by five or fewer single-56 57 base insertions, deletions, or substitutions. The majority of included probes had no off-target 58 matches, with an exceedingly small percentage of probes displaying very few off-target matches. 59 Only exonic probes covering the transcripts of interest were included and, to minimize SNP-60 mediated capture bias, probes that overlapped any SNPs in linkage disequilibrium ($r_2 > 0.2$) with 61 the sentinel PD GWAS SNP were excluded.

62 <u>Target cDNA enrichment and sequencing:</u>

63 Target cDNA enrichment and sequencing was performed as previously described (14)64 using the SeqCap EZ Accessory kit v2 (07145594001, Roche, WI). Briefly, equimolar amounts 65 of cDNA libraries were combined for a total mass of 1ug. Each of these libraries underwent multiplexed PCR with unique index oligonucleotides. The libraries were then hybridized with 66 67 capture probes using the SeqCap EZ Hybridization and Wash Kit (05634261001, Roche, WI). In brief, libraries were dried with heat in a vacuum and resuspended with hybridization reagents. 68 69 Pooled capture probes for each region were added to the resuspended libraries and incubated for 70 20 hrs in a thermocycler at 47°C, with the lid temperature at 57°C. The captured multiplex 71 cDNA samples then underwent stringent washing steps and were amplified using ligation-72 mediated PCR (LM-PCR). These post-capture PCR amplified libraries were pooled and 73 sequenced on two lanes of an Illumina HiSeq 2500 with 150bp paired-end reads, yielding ~150 74 million read pairs per lane.

75 <u>Read mapping and allele specific expression analyses:</u>

76	To assess RNA-seq reads quality we employed FastQC (31), while for reads quality
77	filtering and trimming we used Trimmomatic (Version 032) (32). We ran Trimmomatic to
78	remove low quality fragments in a 4 base wide sliding window (average window quality below
79	PHRED 20), and low quality leading and trailing bases (below PHRED 10). We also dropped all
80	the reads with average PHRED quality below 25, as well as reads shorter than 75 bases.
81	Depending on the sample, 65–80% of reads passed this trimming and filtering step, resulting in
82	6.5–24 million read pairs per sample for mapping.
83	To perform unbiased allele specific read mapping to the reference human genome (hg19)
84	we applied WASP–STAR pipeline (Figure S7). First, we mapped reads with STAR (33)
85	applying 2 step alignment and filtered them for mapping bias using WASP (34). Before
86	proceeding with variant calling, we removed duplicate reads using rmdup_pe.py script
87	incorporated into WASP pipeline. To call and filter SNV we used GATK tools; HaplotypeCaller,
88	SelectVariants and VariantFiltration. We obtained allele specific read counts by GATK –
89	ASEReadCounter. In order to filter out intergenic variants, we functionally annotated SNVs
90	using VariantAnnotation (35) and TxDb.Hsapiens.UCSC.hg19.knownGene (36) R packages. To
91	test for allele specific expression (ASE) at the gene level, we first selected proxy SNP's that
92	were highly linked ($r^2 > 0.6$) with rs199347 and located within a coding region for the gene of
93	interest in order to assign allele of origin. For GPNMB, we assigned the allele of origin for each
94	transcript read based on genotype at rs199355, and for KLHL7, we assigned the allele of origin
95	based on genotype at rs2072368. We then tested for allelic imbalance with a beta-binomial
96	model with overdispersion using the MBASED R package (13). P-values were adjusted for false
97	discovery rate using the Benjamini-Hochberg method (37).
98	Colocalization analysis:

99	Colocalization analysis was performed as previously described (11) using the 'coloc'
100	package in R (version 4.0-2). Summary statistics from the latest PD GWAS (2) excluding the
101	23andMe cohort were downloaded from the article's supplementary information. The data
102	includes 17.5M SNPs for 33.6K cases and 44.9K controls. All SNPs within 1Mb up or
103	downstream of the top GWAS SNP (rs199351) were included in the analysis. Full summary
104	eQTL data for whole blood, caudate nucleus, and substantia nigra were downloaded from the
105	GTEx portal (Version 7) (10). GTEx contains paired-end RNA-seq (Illumina TruSeq) and whole
106	genome sequencing data from normal individuals. The prior probabilities of p1, p2, and p12
107	were set to 1e-4, 1e-4, and 1e-5 respectively. Significant colocalization was determined as
108	having a PPH4 $> 75\%$. Sensitivity analysis was performed to determine whether PPH4 is robust
109	over plausible values of p12 (1e-5 to 1e-6) (38). Association plots were generated using
110	LocusComparer package (version 1.0.0) (39) in R.
111	Immortalized cell line transfection and collection:
112	For co-immunoprecipitation (co-IP) experiments, HEK293 or HeLa cells were plated at
113	700,000 or 1 million cells per well, respectively, and 18 hours after plating, transfection was
114	performed with 4ug of each DNA construct and Lipofectamine 2000 (Thermo Scientific) in
115	serum-free DMEM. Cells were transfected with either GPNMB-myc-DDK pCMV6-Entry
116	(Origene) and 5' UTR-Syn pcDNA3.1+ (obtained from Dr. Kelvin Luk) for the GPNMB-flag IP
117	or GPNMB untagged clone pCMV6-XL4 (Origene) and Syn-Myc pcDNA3.1+ (obtained from
118	Dr. Kelvin Luk) for the Syn-Myc IP. 4 hours post-transfection, media was changed to DMEM
119	with 10% FBS 1% L-Glut and 1% Pen-Strep. 20 hours post-transfection, cells were washed in
120	dPBS and lysed in CHAPS buffer (25mM Tris, 150mM NaCl, 1mM EDTA 1% CHAPS, 5%

121	glycerol, pH to 7.4). Lysates were collected and spun down at 4°C for 30 minutes at 21380 xg.
122	BCA assays (Thermo Scientific) were used to determine protein concentrations.
123	For immunofluorescence experiments, HEK293 or HeLa cells were plated at either
124	100,000 or 200,000 cells per well on either PDL-coated or untreated 12mm glass coverslips in a
125	12-well format. 18 hours after plating, the cells were transfected with 1.6ug of each DNA
126	construct (GPNMB untagged clone pCMV6-XL4 and 5' UTR-Syn pcDNA3.1+) and
127	Lipofectamine 2000 (Thermo Scientific) in serum-free DMEM. Cells were fixed, stained, and
128	imaged 20 hours post-transfection as described in the immunofluorescence section.
129	Co-immunoprecipitation:
130	To immunoprecipitate (IP) GPNMB, 300 µL anti-Flag-conjugated beads (Sigma A2220)
131	or mouse IgG-conjugated beads (Sigma A0919, used as a negative control) were used to IP from
132	1,000 μ g of lysate from GPNMB-myc-DKK and 5'UTR-syn double-transfected cells in CHAPS
133	buffer overnight at 4°C. To IP α-synuclein, 300 µL anti-c-Myc-conjugated beads (Sigma A7470)
134	or rabbit IgG-conjugated beads (Sigma A2909, used as a negative control) were used to IP from
135	1,000 μ g of lysate from GPNMB untagged clone and Syn-Myc double-transfected cells in
136	CHAPS buffer overnight at 4°C. After 24 hours, the protein-conjugated beads were washed 3x
137	with CHAPS buffer and the bound protein was competitively eluted from the beads using either
138	250 µM 3x flag peptide (Sigma) or 250 mM myc peptide (Sigma) for 1 hour at 4°C. The input,
139	eluates, and flow-throughs were run on a mini-protean 4-20% polyacrylamide gradient gel at an
140	input:IP:flow-through ratio of 1:10:1 or 1:100:1 ratio, as indicated in the text.
141	CRISPR-Cas9 knock-out of human iPSC's:
142	Human induced pluripotent stem cells (iPSC) with Neurog1 and Neurog2 in a bicistronic
143	doxycycline-inducible expression cassette (22) were used for generation of GPNMB knock-out

144	(KO) iPSC and rapid induction of iPSC-derived neurons (iPSC-N). The protocol for generating
145	CRISPR edited iPSC's is summarized in Figure S3. iPSCs were dissociated with Accutase
146	(Innovative Cell Technologies), spun down at 200xg for 4 minutes, and plated at 240k cells/well
147	on Matrigel (CORNING)-coated 12-well plates in mTeSR1 media (STEMCELL Technologies)
148	with 2uM Thiazovivin (Cayman Chemical). The next day, GPNMB sgRNA (Synthego) and
149	TrueCut Cas9 (Invitrogen) were mixed at a 0.75:1 molar ratio in OptiMEM. An equal volume of
150	OptiMEM + 1:10 Lipofectamine STEM reagent (Thermo Fisher) was added to the sgRNA/Cas9
151	mixture and allowed to incubate at room temperature for 15 minutes. The media was replaced
152	with serum-free OptiMEM + 2uM thiazovivin and transfected with the
153	sgRNA/Cas9/Lipofectamine mixture for 3-4 hours, after which, an equal amount of mTeSR1
154	was added. 18h after transfection, the media was replaced with 100% mTeSR1 and 48h later, the
155	cells were dissociated with Accutase and plated as single cells in a low-density manner (2,000-
156	4,000 cells per 10cm plate).
157	Colonies resulting from individual clones were isolated; a small fraction of the colony
158	was processed for genomic DNA using QuickExtractTM DNA extraction solution (Lucigen) and
159	the rest was plated for expansion. QuickExtract DNA from individual clones was screened for
160	indels using T7 Endonuclease 1 (T7E1) assay. Briefly, a region spanning the cut site in an
161	asymmetric manner was amplified by PCR using the following primers:
162	Fwd: 5'-TACGTGTCGCTTGGAATCTTGA-3'
163	Rev: 5'-ATATTGCCAAGTCCAGGTGC-3'
164	The PCR product was incubated with T7E1 for 30 minutes at 37°C, after which the reaction was
165	stopped with EDTA. The reaction product was run on a 1.5% agarose gel and clones with 2
166	bands of different sizes (rather than a single band of larger size) were prioritized for further

167	validation. PCR products were purified and Sanger sequenced. The sequencing results were
168	analyzed with Synthego's ICE tool (<u>https://ice.synthego.com/#/</u>), which allowed us to identify 5
169	clones of interest (showing two bands on T7E1 assay and predicted indels on one or both DNA
170	strands) that, along with a wild-type (WT) clone, were expanded and validated by TOPO
171	cloning.
172	Briefly, high quality genomic DNA was isolated using QIAamp DNA mini kit
173	(QIAGEN) and the region of interest was PCR amplified with the primers listed above. PCR
174	products were purified and incubated with pCR TM 4-TOPO® vector (Invitrogen) for 5 minutes at
175	RT. One Shot® chemically competent E. coli were transformed with the TOPO reaction
176	products, streaked on LB + Kanamycin selective plates, and incubated at 37°C overnight. The
177	next morning, 30 colonies per clone were picked and miniprepped, and the resulting DNA was
178	sent for sanger sequencing. Sequences were aligned using Benchling's alignment tool and
179	protein sequences were predicted using the Expasy protein translator tool
180	(https://web.expasy.org/translate/). Cells populations were determined to be clonal if only 2
181	alleles were present at a ~50:50 ratio (tested by binomial likelihood ratio test).
182	GPNMB KO in iPSC's was validated by qPCR using either the SYBR-green or TaqMan
183	master mixes and the following primers:
184	GPNMB (fwd): 5'- CTTCTGCTTACATGAGGGAGC-3'
185	GPNMB (rev): 5'- CTCCCTTCCAGGAGTTTTTCC-3'
186	ACTB: 4352935E, Applied Biosystems
187	qPCR data was analyzed using the $\Delta\Delta$ Ct method.
188	Culture and differentiation of iPSC-Neurons:

189	Prior to differentiation, iPSC cultures were maintained on Matrigel-coated 6cm tissue
190	culture plates with mTeSR1 media and mechanically passaged every 4 days with StemMACS
191	passaging solution XF. The neural induction protocol is described in detail in Figure S4 (40). To
192	initiate neuronal induction, iPSCs were dissociated with Accutase, spun down at 200xg for 4
193	minutes, and plated at 700k cells/well on Matrigel-coated 6-well plates in N2 pre-differentiation
194	media (KnockOut DMEM/F12 (Gibco) with 1x N-2 supplement (Gibco), 1x MEM Non-essential
195	Amino Acid (MEM NEAA) solution (Gibco), 10ng/ml BDNF (Gibco), 10ng/ml NT-3 (Gibco,
196	Preprotech), 0.2ug/ml Laminin (Gibco), and 2ug/ml doxycycline hyclate (Sigma)) with 10ug/ml
197	Y-27632 (Tocris). Full media changes were performed at 24 and 48hrs with and without Y-
198	27632 respectively. 12mm round glass coverslips were placed in a 12-well plate, and coverslips
199	or 6-well plates were coated with $10ug/mL$ poly-D-lysine (PDL, Sigma) in borate buffer (pH =
200	8.4) for 1hr at room temperature. The PDL-coated coverslips or plates were then rinsed three
201	times with tissue culture grade water (Lonza) and coated with 1:100 Matrigel in DMEM/F12
202	(Gibco) for 1hr at room temperature prior to being stored at 37°C overnight. On day 3, the cells
203	were re-plated at 200,000 cells/well on PDL/Matrigel coated coverslips (for
204	immunofluorescence) or at 1 million cells/well in PDL/Matrigel coated 6-well plates (for
205	immunoblotting or RNA isolation). Pre-differentiated iPSC-N were dissociated with Accutase,
206	spun down at 200xg for 4 minutes, and resuspended in classic neuronal media (50%
207	DMEM/F12, 50% Neurobasal-A media (Gibco), 1x MEM NEAA, 0.5x N-2 supplement, 0.5x
208	GlutaMAX supplement (Gibco), 0.5x B27 supplement (Gibco), 10ng/ml BDNF, 10ng/ml NT-3,
209	1ug/ml Laminin, and 2ug/ml doxycycline) for plating. Half media changes were performed every
210	7 days with neuronal media without doxycycline.
211	Immunofluorescence:

212 The media was aspirated from coverslip-containing wells, and the cells were fixed in 2% 213 paraformaldehyde in dPBS for 15 minutes at room temperature. After fixing, the coverslips were 214 rinsed 5x with dPBS and blocked/permeabilized with blocking buffer (3% bovine serum albumin 215 + 0.05% saponin in dPBS) for 1hr prior to incubating in primary antibody overnight. The 216 coverslips were then rinsed 4x with blocking buffer and incubated with secondary antibody for 217 1hr at room temperature. Finally, the coverslips were rinsed 4x with blocking buffer and either 218 incubated in DRAQ5 for 30 minutes or mounted onto microscope slides without DRAQ5 using a 219 small amount of ProLong Gold (ThermoFisher). Slides were sealed with clear nail polish and 220 stored at 4C. Image stacks of 1um thickness were acquired by confocal microscopy (Leica SP5) 221 using a 40x oil immersion objective with 2x Zoom. Antibody concentrations are summarized in 222 the Key Resources Table.

223 Image processing and quantification:

224 Image processing to quantify synaptic proteins was performed using a Cell Profiler 225 pipeline based on Danielson et. al.'s previously published work (41). A single slice was chosen 226 from each stack to focus our analysis on the plane with the most abundant synapsin-1 staining. 227 TUBB3 images underwent image enhancement for neurite-like features and were used to 228 calculate TUBB3+ area for normalization and expanded to generate a mask. Synapsin-1 and α-229 synuclein images underwent enhancement for speckle-like features, followed by object 230 identification and characterization of object size/intensity. The total integrated intensity (i.e. sum 231 for all particles) was used for analysis. The pipeline used has been made publicly available as 232 supplementary material.

aSyn pathology in iPSC-N was also quantified using CellProfiler. Maximum intensity
 projections of z-stack images were created using FIJI. Desired 81a+ objects were identified with

intensity thresholding and the toal area of 81a+ objects were normalized with total area of
DRAQ5+ objects. To quantify MJFR1+ staining in HEK293 overexpressing GPNMB, nuclei
artifact staining was removed by generating DRAQ5+ nuclei mask and excluding MJFR1+
speckles within the mask. Total area of MJFR1+ objects was normalized by total area of
DRAQ5+ objects.

A researcher blinded to sample identity was provided with randomly ordered maximum intensity projection of z-stack images of iPSC-N treated with AF594-PFF. Scores ranging from 0 to 3 were given for each criterion: intensity, length and frequency of internalized PFF. The three scores were added, and were normalized to the average score of WT iPSC-N for each individual experiments.

245 Synaptosome extraction:

246 Synaptosomes were extracted using Syn-PERTM Synaptic Protein Extraction Reagent 247 (Thermo-Fisher) per the user instructions. Briefly, 14-day and 21-day iPSC-N's cultured in 6-248 well plates were rinsed twice with ice cold PBS, then scraped into 200ul SYN-PER reagent plus 249 protease inhibitors (25mg Pepstatin in 3mL EtOH, 25mg Leupeptin, 25mg TPCK, 25mg TLCK, 250 25mg Trypsin Inhibitor from soybean, 5mL of 0.5M EDTA and add H₂O to a final volume of 251 25mL, to use at 1:1000) and phenylmethylsulfonyl fluoride (VWR) per well. The samples were 252 spun down for 10 minutes at 1200 xg and 4°C and the supernatant was transferred to a new tube. 253 The supernatant was then spun down for 20 minutes at 15,000 xg and 4°C, after which the 254 supernatant (cytosolic fraction) was transferred to a new tube and the residual pellet 255 (synaptosomal fraction) was resuspended in 20ul of Syn-PER reagent per well.

256 <u>Immunoblotting:</u>

257	Samples were diluted in 5X concentrated sample buffer (10g Sucrose, 1.85mL 0.5M Tris,
258	pH 6.8, 1.0mL 0.1M EDTA, 1.0mL of 0.1% Bromophenol Blue, 1.0mL of 0.05% Pyronine
259	Yellow, 0.615g of DTT, 10mL of 10% SDS, and adjusted to a final volume of 20mL with Milli-
260	Q Water) and boiled at either 100°C for 10 minutes or 70°C for 15 minutes for heat-sensitive
261	proteins (GPNMB). Samples were run on 4-20% polyacrylamide TGX gels (Bio-Rad
262	Laboratories) and transferred onto 0.2 nitrocellulose membrane (Bio-Rad Laboratories). When
263	blotting for α -synuclein, membranes were fixed in 0.4% PFA for 30 minutes (42). Membranes
264	were blocked in 5% milk in TBS for 1 hour and blotted overnight at 4°C with specific antibodies.
265	The membranes were incubated for 2 hours in HRP-conjugated secondary antibodies and
266	developed using Western Bright ECL and Sirius HRP substrates (Advansta). Antibody
267	concentrations are summarized in the Key Resources Table. Densitometry was performed using
268	the Bio-Rad Image Lab Software.
269	RNA sequencing of iPSC-N:
270	RNA was extracted from iPSC-N on days 0 and 14 after doxycycline induction using
271	QIAGEN RNAeasy ® mini kit. RNA integrity was measured using RNA nano chips (Agilent)
272	on an Agilent 2100 Bioanalyzer. All samples had RIN > 9.4. Library preparation was performed
273	by the Penn Next Generation Sequencing (NGS) Core staff with the TruSeq Stranded mRNA
274	Library Prep kit (Illumina cat #20020595) using 225ng total RNA and following manufacturer
275	instructions. High sensitivity DNA chips (Agilent) were used to balance libraries prior to
276	sequencing. In total 30 RNA samples (3 genotypes (WT, Het and KO) x 2 differentiation time
277	(days 0 and 14) x 5 biological replicates) were sequenced. All 30 samples were sequenced

average 3.69 x 10⁷ reads per sample, ranging from 2.9 x 10⁷ to 5.3 x 10⁷). A summary of the
Illumina NovaSeq run is provided in **Table S12**.

281 <u>Read quality control and filtering:</u>

A quality check of the raw reads was assessed using FastQC (31) and summarized with

283 MultiQC (43). Next, the adapters were removed and filtering of the low quality reads was

conducted employing Trimmomatic, Version 0.39 (32) with the following parameters:

285 ILLUMINACLIP:TruSeq3-SE.fa:2:30:10 LEADING:5 TRAILING:5 SLIDINGWINDOW:5:20

286 MINLEN: 50 AVGQUAL: 30 HEADCROP: 10. The adapters that matched the sequences provided

by TruSeq3-SE.fa were removed. The low-quality bases were cut off the start and off the end of

reads if their PHRED score was below 5. The sliding window of 5 bp was applied to trim the

bases if the window PHRED score dropped below 20. The 10 bases from the start of the reads

290 were also cropped. Finally, the reads were discarded if the average PHRED score of the read was

291 below 30.

292 Read alignment and quantification:

293 The sequence alignment BAM files generated by Bowtie 2 were used as the input to 294 RSEM software tool, in order to quantify gene expression levels (44). On average, 3.61×10^7 295 (97.8%) of reads per sample passed the filtering steps and were mapped versus reference genome 296 GRCh38 using Bowtie 2 the with the following parameters: bowtie2 -q --phred33 --sensitive --297 dpad 0 --gbar 99999999 --mp 1,1 --np 1 --score-min L,0,-0.1 --nofw -p 32 -k 200 -x, as suggested 298 by RSEM manual. The read alignment rate was on average >89% (Table S13). To obtain the raw 299 read counts at the gene level, an expectation maximization algorithm (RNA-seq by Expectation 300 Maximization) was run by the following RSEM command: rsem-calculate-expression --301 bowtite2 -- forwardprob 0.

Differential gene expression analysis:

303 To detect significant differences in iPSC-N gene expression data between Day 0 and Day 304 14 and between the genotypes (WT, Het, and KO), DESeq function form DESeq2 305 Bioconductor's R package (45) was used. RNA-seq data was modeled using the negative 306 binomial distribution that accounts for overdispersion. In particular, DESeq function calculates 307 the library size factors for each sample using the *median of ratios method*. Then, the gene-wise 308 dispersion was assessed using the parametric argument of the *estimateDispersions* function, 309 which estimates the dispersions using the negative binomial distribution. To conduct the pairwise 310 comparisons (Day 14 vs. Day 0 in WT, KO vs. WT, Het vs. WT, and KO vs Het at Day 14) for 311 each gene the *nbinomWaldTest* statistic was used. The Wald test P-values were calculated by 312 scaling the coefficients by their standard errors and then compared to a standard Normal 313 distribution. After DGE analysis, the lfcShrink function from R package apeglm (46) was 314 applied to shrink the log2FC. We corrected for FDR using the Benjamini & Hochberg method 315 (37). Genes with a BH corrected P-value < 0.01 and a $|\log 2$ fold-change| > 1 were considered to 316 be significantly differentially expressed. To visualize the results of DGE analyses we used 317 EnhanceVolcano R package version 1.10.0 (47).

318 Modular co-expression network analysis:

Modular co-expression network analysis of iPSC-Ns was performed using R package *CEMiTool* (Co-Expression Molecules identification Tool) version 1.14.1 (48). The rlog
normalized expression data (15981 genes in 15 samples) was used as an input to *cemitool*function. As a first step, cemitool conducted an unsupervised filtering of expression data using
the inverse gamma distribution to model the variance of genes. Out of 15981 genes, 1100 genes
with the P-value < 0.1 survived this filtering were used for downstream analyses. The genes were

then separated into modules using the dissimilarities measures and the *Dynamic Tree Cut*package (49). The minimum number of genes per module was set to 20, and similar modules
were merged together based on correlation.

328	To determine biological functions associated with the co-expression modules, the Gene
329	Ontology gene sets $c5.all.v7.4$, which contain GO resources (BP = biological process, CC =
330	cellular component and MF = molecular function) and human phenotype ontology (HPO) from
331	MSigDB database (50), were used in overrepresentation analysis (ORA). The module gene set
332	enrichment analysis (GSEA) was performed using the fgsea R package (51) within the CEMitool
333	pipeline. First, a z-score gene normalization on all input genes was performed following by
334	calculation of the mean for each sample class (GPNMB WT, Het, and KO). Next, a pre-ranked
335	GSEA was performed independently for each GPNMB genotype. The module activity was
336	visualized by normalized enrichment score (NES), which represents enrichment score (ES) for a
337	module in each iPSC-N GPNMB genotype normalized by the number of genes in the module.
338	To construct the gene interactions network in the co-expression modules, the combined human
339	protein-protein interaction data, downloaded from GeneMANIA (24), were added to the
340	CEMiTool object using the function <i>interactions_data</i> . The interactions between the genes were
341	visualized using the <i>plot_interactions</i> function.

342 <u>aSyn pre-formed fibril internalization and immunofluorescence experiments:</u>

Human wild-type pre-formed fibrils (PFF) and fluorescent fibrils including Alexa Fluor 594 (AF594) conjugated aSyn were provided by Dr. Kelvin Luk at the Penn CNDR. All fibrils were kept at -80°C until use. After the stock of 5mg/mL was diluted to a working concentration of 0.1mg/mL in dPBS, fibrils were sonicated (Diagenode Biorupter® Plus) on high, sonicating for 30 sec followed by 30 sec rest for total of 10 minutes. Sonicated PFFs were then added to

348 classic neuronal media according to appropriate concentrations. Each PFF transduction

experiment was repeated and quantified at least three times from independently differentiatedneurons.

For AF594-PFF internalization experiments using iPSC-N, 10ug of PFF were added per well of a 12-well plate. iPSC-N were incubated in 4°C for 30 min, followed by an additional 30 min incubation at 4°C for the negative control (to inhibit endocytosis) or 1 hour 30 min in 37°C for experimental wells. All cells were immediately fixed and stained afterwards.

To demonstrate aSyn pathology following PFF transduction, we replaced regular media of iPSC-N at day 14 with classical neuronal media containing total of 1ug of human wild-type PFF per well. iPSC-N were fixed and stained after 14 days (at day 28 of neuronal induction). To extract soluble proteins, coverslips were fixed with 2% paraformaldehyde and 1% Triton X-100 in dPBS. 3% bovine serum albumin without saponin in dPBS was used as blocking buffer.

360 For wild-type PFF internalization experiments using HEK293, cells were plated at 361 200,000 cells per well in PDL-coated 12mm glass coverslips in a 12-well format. 18 hours after 362 plating, the cells were transfected with 1ug of DNA (GPNMB untagged clone pCMV6-XL4 or 363 TMEM106B-Flag) and Lipofectamine 2000 (Thermo Scientific) in serum-free DMEM. At 20 364 hours post-transfection, media was replaced with DMEM containing 1ug of PFF per well. The 365 plates were incubated for 30 min at 4°C followed by an additional 30 min incubation at 4°C for 366 negative control (to inhibit endocytosis) or 1 hr 30 min in 37°C for experimental wells. All cells 367 were immediately fixed and stained for immunofluorescence afterwards.

368 <u>Patient samples and genotypes:</u>

Plasma and CSF samples of PD patients and neurologically normal controls were
obtained as part of the Penn CNDR Neuropathology, Biomarker, and Genetics Biobank and the

371	Parkinson's Disease Molecular Integration in Neurological Diagnosis Initiative (MIND) studies.
372	PD patients had a clinical diagnosis of PD made by a movement disorders specialist at the
373	Parkinson's Disease and Movement Disorder Clinic (PDMDC) at the University of
374	Pennsylvania, while controls had no known neurological disorder. Data were stored in the Penn
375	Integrated Neurodegenerative Disease Database (INDD) (30). These studies were approved by
376	the UPenn Institutional Review Board (IORG0000029). Informed consent was obtained at study
377	enrollment. Participant demographics are reported in Tables S4 – S7. Individuals with known
378	GBA1 mutations (N370S, E365K, L444P) were excluded from the analysis, since GPNMB
379	elevation has been reported in patients with Gaucher disease, a lysosomal storage disorder
380	caused by homozygous mutations in GBA1 (52, 53). Genotyping of SNP rs199347 was
381	performed by Infinium Global Screening Assay (Illumina), NeuroX genotyping platform (30),
382	PANDoRA (Sequenom) panel (30), or MIND panel based on allele-specific PCR performed
383	using FlexSix Dynamic Array integrated fluidic circuits (Fluidigm) and genotyping using
384	BioMark HD system (Fluidigm) (54).
385	A subset of PD individuals had measures of disease severity as assessed by the motor
386	subscale of the Unified Parkinson's Disease Rating Scale (UPDRS- III) (25). These individuals
387	are part of the University of Pennsylvania U19 Cohort (formerly Udall Cohort), which has been
388	previously described (55).
389	Enzyme-Linked Immunosorbent Assay (ELISA):
200	CDNMD protein levels within hymon plasma and CSE somples were measured with

GPNMB protein levels within human plasma and CSF samples were measured with
ELISA kits (R&D systems) according to manufacturer's instructions. CSF and plasma samples
were diluted by factors of 1 in 2 and 1 in 30 respectively to obtain optical density measurements
within the standard range. All samples were run in duplicates and absorbance at 450nm was

394	determined by a microplate reader (Berthold Technologies, Tristar LB 941). Only duplicate
395	samples with a coefficient of variation (CV) <25% were retained for analysis, and the average
396	CV across all samples used was 3.3%. Moreover, replicate samples assayed by ELISA on
397	different days, by different operators, across multiple freeze-thaw cycles, demonstrated excellent
398	reproducibility (Pearson r=0.97).
399	The log_{10} GPNMB concentration (pg/mL) for each sample was interpolated from a
400	sigmoidal (4 parameters logistic) standard curve using GraphPad Prism 9.
401	Multiple Linear Regression Analyses:
402	Multiple linear regression was used to determine factors that are significant predictors of
403	GPNMB concentration in plasma and CSF. Age, sex, PD status, and rs199347 genotype were
404	included as independent variables. A codominant genetic model, which considers each allele
405	combination (GG, AG, AA) as a separate factor (56), was used to model the effect of rs199347.
406	Regression coefficients were calculated with GG as the reference.
407	The relationship between GPNMB levels and disease severity was established in two
408	different PD cohorts. GPNMB values for the discovery cohort were generated by ELISA (R&D
409	systems), whereas GPNMB values for the replication cohort were generated using an aptamer-
410	based platform (26). UPDRS-PIII values were downloaded from the Penn INDD.
411	Statistical analyses:
412	Statistical analyses were performed with either PRISM or R. Data was tested for
413	normality with a Shapiro-Walk test. Data with more than two categorical groups was analyzed
414	by either 1-way ANOVA (followed by post-hoc Tukey or Dunnett tests) or Kruskal-Wallis test
415	(followed by post-hoc Dunn's test) depending on the data's distribution. Data with only two
416	groups was analyzed by either a Welch's two-sample t-test or Mann-Whitney-U test depending

417	on the data distribution. Correlations were determined using Spearman's rank correlation.
418	Multiple linear regression (glm) was used to determine associations between two variables
419	adjusting for potentially confounding covariates. Outlier determination was performed using
420	ROUT method, Q (FDR)=1%.
421	Immunohistochemistry
422	Formalin-fixed, paraffin-embedded cingulate and temporal cortex samples were obtained
423	from the Penn CNDR. Patient demographics are reported in Table S1. 6µm sections were
424	cleared in xylenes and a descending EtOH series. Endogenous peroxidases were quenched in
425	30% H ₂ O ₂ and 70% MeOH solution for 30 minutes. Slides were microwaved in citric acid
426	Antigen Unmasking Solution (Vector Laboratories). After cooling, slides were rinsed in TBS-T
427	(0.1 M Tris Buffer/0.05% TWEEN) and blocked (TBS-T/2%FBS/3%BSA). Sections were
428	incubated overnight at 4°C in the primary antibody (see Key Resources table for antibody
429	conditions). Once washed with TBS-T, sections were incubated for 1 hour at room temperature
430	in the secondary antibody (see Key Resources table for antibody conditions). VECTASTAIN
431	ABC Standard (Vector Laboratories) was applied for 1 hour at room temperature followed by
432	ImmPACT DAB (Vector Laboratories). Sections were counterstained with Harris Hematoxylin
433	(Thermo Scientific) for 40 seconds. Slides were dehydrated in an ascending EtOH series and
434	xylenes then coverslipped with Cytoseal (Thermo Scientific).
435	Dephosphorylation and deglycosylation
436	For deglycosylation of cell and brain lysates, 5.0uL of PNGase F was added to 125ug of brain
437	lysates or 60ug of cell lysates and incubated at 37°C for 30 minutes. For dephosphorylation
438	experiments, 1uL of Lambda protein phosphatase was added to 125ug of brain lysates or 50ug of
439	cell lysates and incubated at 30°C for 30 minutes.

440 Key Resources Tables:

Antibodies						
Name	Product ID	Dilution				
Anti-Alpha-synuclein antibody (MJFR1)	Abcam (ab138501)	IF: 1:300 – 1:1000* WB: 1:1000				
Anti-Synapsin-1	SySy (106-011)	IF: 1:500 WB: 1:1000				
Anti-α-synuclein Antibody (syn211)	Santa Cruz (sc-12767)	WB: 1:200				
Anti-α-synuclein (phospho S129) Antibody (81a)	Provided by Center for Neurodegenerative Disease Research (CNDR) at University of Pennsylvania	IF: 1:5000				
Anti-Human Osteoactivin/ GPNMB Antibody	RnD Systems (AF2550)	IF: 1:500 IHC: 1:200 WB: 1:1000				
Anti-GPNMB (E1Y7J) Rabbit mAb	Cell Signaling Technology (#13251)	WB: 1:1000				
Anti-GPNMB Antibody (D-9)	Santa Cruz (sc-271415)	IF: 1:500 WB: 1:250				
Anti-beta Actin antibody (AC-15)	Abcam (ab6276)	WB: 1:5000				
Anti-beta-III Tubulin Antibody	Novus Biologicals (NB100-1612)	IF: 1:500				
Anti-Flag M2 Mouse Monoclonal Antibody	Sigma Aldrich (F1804)	IF: 1:1000				
Anti-GAPDH Antibody	Advanced Immunochemical Anti-GAPDH	WB: 1:3000				
Anti-LAMP1 Antibody (H4A3)	University of Iowa Hybridoma Bank	IF: 1ug/mL				
Goat Anti-Chicken Alexa Fluor 647	Invitrogen (A-32933)	IF: 1:1000				
Goat Anti-Rabbit Alexa Fluor 488	Invitrogen (A-21206)	IF: 1:1000				
Donkey Anti-Mouse Alexa Fluor 594	Invitrogen (A-21203)	IF: 1:1000				
DRAQ5	Thermo-Fischer (62251)	IF: 1:5000				
Goat Anti-Mouse HRP	Jackson Immuno Research (115-035-062)	WB: 1:3000				

Goat Anti-Rabbit HRP	Jackson Immuno Research (111-035-144)	WB: 1:3000			
Biotinylated Rabbit Anti-Goat	Vector Laboratories (BA-5000-1.5)	IHC: 1:5000			
IF: Immunofluorescence, WB: Western blot, IHC: Immunohistochemistry					

Cell Lines							
Name	Species		Obtained from		Citations		
HeLa	Homo sapiens		Michael S. Marks				
QBI293	Homo sapiens		Penn Center for Neurodegenerative Disease Research (CNDR)				
iPSC-N	Homo sapiens		George Church		(22)		
	Degly	cosyl	ation and dephosphorylation				
Nam	e		Product ID		Protocol		
PNGase F (Deglycosylation) N		Ne	New England Biolabs Inc., Catalog # P0704L		As per product instructions		
Lambda Protein Phosphatase (Dephosphorylation)		New England Biolabs Inc., Catalog # P0753S		As per product instructions			

445 <u>*MJFR1 was used at 1:300 to stain endogenous</u> α-synuclein in iPSC-N and 1:1000 to stain

446 overexpressed α -synuclein in HEK293 and HeLa cells.

- 451 Fig. S1. Colocalization analyses suggest *GPNMB* as the target gene of chromosome 7 PD
- 452 **GWAS risk locus.** (A) Locus plot of PD-risk GWAS p-values (2) for chromosome 7 locus.
- 453 (**B-J**) Locus plots showing p-values for GTEx (10) tissue-specific eQTL's in the caudate nucleus
- 454 (B-D), whole blood (E-G), and substantia nigra (H-J) for potential target genes GPNMB
- 455 (**B**,**E**,**H**), *KLHL7* (**C**,**F**,**I**), and *NUPL2* (**D**,**G**,**J**). Posterior probability of colocalization (PP4) for
- 456 each tissue-specific eQTL and PD-risk GWAS is specified on the upper right of each panel.
- 457 Significant colocalization is defined as PP4 > 75%. Red font indicates significant colocalization
- 458 of GWAS and genome-wide significant (p < 5E-8) eQTL signal. The purple diamond
- 459 corresponds to the top GWAS SNP, rs199347. All other SNPs are colored according to their r^2
- 460 measure of linkage disequilibrium with rs199347. Dashed line indicates genomewide
- 461 significance threshold of 5E-8.

464 Fig. S2: Characterization of GPNMB in HEK293 cells and human brain lysate.

HEK293 cells over-expressing GPNMB and alpha-synuclein (SNCA) show (A) co-localization
of GPNMB (red, D9 antibody) and SNCA (green, MJFR1 antibody) on immunofluorescence
confocal microscopy, (B) co-IP of SNCA when GPNMB is IP'd (top, SNCA detected with
MJFR1 antibody), and co-IP of GPNMB when SNCA is IP'd (bottom, GPNMB detected with
E1Y7J antibody). For all IP's, a negative control IgG IP is shown, along with input (10% of IP),
and flow-through (FT) lanes. When GPNMB is IP'd, bands corresponding to higher-molecular
weight multimers or aggregates of SNCA are observed occasionally (red bar) in HEK293 cells,

472	whereas no other bands appear on the GPNMB immunoblots. In both HeLa cells (C) and human
473	brain lysates (D), GPNMB appears as 1-2 bands >95kD, collapsing to a single 72kD band with
474	deglycosylation. For (C) and (D), the order of the bands is as follows: sample heated to 95° C for
475	10 minutes, sample kept on ice (not boiled or N.B.), sample deglycosylated with PNGase F (N.B.
476	De-glycos), and sample dephosphorylated with Lambda protein phosphatase (N.B. De-Phos).
477	
478	
479	

A) CRIPSR-Cas9 KO Workflow:

Fig. S3. CRISPR-Cas9 generation of GPNMB WT, Het, and KO iPSC lines.

484	A) Schematic outlining experimental design. sgRNA targeting GPNMB exon 2 was designed
485	using Synthego software. Cells were transfected with Cas9 RNP using lipofectamine STEM
486	reagent. Desired clones were identified by T7E1 assay, TOPO cloning, and sequencing. Created
487	with <u>BioRender.com</u> . B) Indel length and predicted protein translation products based on
488	sequencing of individual strands for each cell line. C) qPCR validation of GPNMB knock-out in
489	iPSC. $n = 3$ wells from independent differentiations per line. Statistical test used was one-way
490	ANOVA, followed by post-hoc Tukey tests. * p < 0.05, *** p < 0.001, **** p < 0.0001.
491	

494 Fig. S4. Differentiation of GPNMB-edited iPSC lines into neurons (iPSC-N).

- 495 A) Schematic outlining differentiation protocol for iPSC-N. Created with <u>BioRender.com</u>. **B**)
- 496 Brightfield images of GPNMB WT, Het, KO1, and KO2 lines on days 0, 3, 7, and 14 after
- 497 doxycycline induction. Scale bar = $200 \mu m$.
- 498

500 Fig. S5. Additional RNAseq Analysis of Day 0 and 14 iPSC-N.

501 (A) Heatmap showing clustering of days 0 and 14 iPSC-N using the top 35 most variable genes.

502 The first bar along the top row shows clustering of iPSC-N cells by GPNMB status within

503	timepoints, whereas the second bar shows stronger clustering by timepoint (day 0 or 14 after
504	neuronal indeuction). Samples (columns) and genes (rows) were clustered by hierarchical
505	clustering (hclust) using the complete linkage method and Euclidian distances. (B) Principal
506	component analysis (PCA) using all expressed genes shows, as expected, highly differential gene
507	expression in undifferentiated (day 0) vs. neuronally-differentiated (day 14) samples (separation
508	along PC1). Additionally, while undifferentiated samples showed some separation by GPNMB
509	KO status, this separation widened substantially with neuronal differentiation (day 14, separation
510	along PC2). (C) Volcano plot showing genes with differing expression in day 14 (neuronal) cells
511	compared to day 0 (undifferentiated) cells, independent of GPNMB status. The horizontal axis
512	indicates the log ₂ fold-change (log ₂ FC) in gene expression. The vertical axis indicates the -log ₁₀
513	of Benjamini-Hochberg adjusted p-value (Padj). The horizontal dotted line indicates the
514	significance threshold ($P_{adj} = 0.01$), with genes above this line showing significant differential
515	expression (FDR < 0.01). The genes are red colored if they passed both thresholds ($P_{adj} < 0.01$
516	and $ log_2FC > 1$), blue if they met only the P_{adj} criteria, green if they passed only the log_2FC
517	criteria, and dark gray if they met neither criterion. (D-E) Module gene expression profiles for
518	module M1 (D) and M2 (E) show the individual gene expression profiles within modules. The
519	colors represent GPNMB status (WT, Het, or KO). The median expression of all genes within
520	the module is indicated by the black line. (F) Module activity for each GPNMB subtype (WT,
521	Het, or KO). The enrichment score (ES) of a module is normalized (NES) by the number of
522	genes in the module. Red color indicates higher activity and blue represents lower activity. The
523	circle size and color intensity are proportional to the NES values.
524	

527 Fig. S6. RNAseq expression of key genes over time.

- 528 (A-C) Normalized expression of neuronal differentiation markers (A), pluripotency markers (B),
- 529 and other genes of interest (C) in GPNMB WT, Het, and KO iPSC-N at days 0 and 14 after dox
- 530 induction. n = 5 samples from 3 independent differentiations per cell line per timepoint.

531

534 Fig. S7. Allele specific expression (ASE) workflow.

535 (A) RNA-seq data were first QC filtered and then mapped to the human reference genome 536 (GRChg37) with STAR aligner using a 2-step approach. To remove allelic bias the aligned reads 537 were split into reads that did and did not overlap with SNVs and into separate BAM files. (B). 538 The SNV genotypes were flipped in all reads that overlapped a SNV (in each read the genotype 539 was swapped with that of the other allele) and re-mapped to reference genome again. Reads that 540 did not re-mapped to the original location were discarded. (C) Filtered BAM files were then 541 merged with BAM files that didn't overlap with SNVs. Duplicate reads were removed using *rmdup_pe.py* script incorporated into the WASP pipeline. (D) SNV were called and 542 543 filtered using GATK tools. The allele specific counts were obtained by ASEReadCounter GATK 544 tools. MBASED algorithm was used to test for ASE at the gene level.

545 **Table S1.**

546 Summary of demographics and brain regions used for human postmortem brain experiments.

547 ASE=allele-specific expression, WB=Western blot, IHC=immunohistochemistry. The

representative cases depicted in Figure 1's IHC are Patient ID 119534 and Patient ID 118273,

549 but all 6 cases were stained and evaluated.

Assay	Patient ID	Clinical Diagnosis	Age at Death (yrs)	Sex	Disease Duration (yrs)	Caud- ate	Cingu- late	Cere- bellum	Tem- poral Cortex
ASE	100671	PD with Dementia	88	F	17	х	х	х	
	104173	PD with Dementia	73	М	14	х	х	х	
	105484	PD with Dementia	67	Μ	6	х	х	х	
	114691	PD with Dementia	72	М	8	x	x	x	
	101060	Normal	72	М		х		х	
	118624	Normal	70	М		х			
WB	118624	Normal	70	М		x			
	113756	Depression	43	М	6	x			
	112090	Normal	83	F		x			
	101060	Normal	72	М		x			
	116519	Normal	67	F		x			
	114653	PD with Dementia	80	М	14	x			
	104717	PD with Dementia	87	Μ	28	x			
	108649	PD with Dementia	72	М	23	x			
	116280	PD with MCI	82	F	23	х			
	109853	PD with	77	М	16	x			
		Dementia							
	121111	Normal	60	N.4					
IHC	121111	Normai	50				x		х
	117925	Normal	78	M			x		х
	119534	Normal	72	F			х		х
	125654	Parkinsonism	56	М	5		x		x
	118273	PD with Dementia	83	М	10		х		х

	121672	DLB	74	М	6		х		х
--	--------	-----	----	---	---	--	---	--	---

Table S4.

554 Cohort demographics for comparison of GPNMB plasma levels between PD and NC.

	Diagn	osis	Statistics		
Variable	PD	NC	Test	P-value	Signif.
Ν	731	59	NA		
Sex (N)	Female: 247 Male: 484	Female: 35 Male: 24	Fisher's Exact	0.0002	***
Age (Yrs) Mean ± SD	67.64 ± 8.96	71.53 ± 7.84	T-test	0.0005	***
Disease Duration (Yrs) Mean ± SD	7.16 ± 5.94	NA			

557 n.s. = $p \ge 0.05$, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.001

Table S5.

Cohort demographics for GPNMB plasma pQTL analysis.

	Diagn	osis	Statistics		
Variable	PD	NC	Test	P-value	Signif.
Ν	724	32			
Sex (N)	Female: 246 Male: 478	Female: 21 Male: 11	Fisher's Exact	0.0005	***
Age (Yrs) Mean ± SD	67.69 ± 8.98	69.06 ± 6.65	T-test	0.2694	n.s.
Disease Duration (Yrs) Mean ± SD	7.15 ± 5.93	NA			

n.s. = $p \ge 0.05$, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.001

Table S6.

567 Cohort demographics for comparison of GPNMB CSF levels between PD and NC.

	Diagn	osis	Statistics		
Variable	PD	NC	Test	P-value	Signif.
Ν	72	40			
Sex (N)	Female: 37 Male: 35	Female: 20 Male: 20	Fisher's Exact	1	n.s.
Age (Yrs) Mean ± SD	66.46 ± 6.61	69.2 ± 6.70	T-test	0.0456	*
Disease Duration (Yrs) Mean ± SD	6.38 ± 4.42	NA			

n.s. = $p \ge 0.05$, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.001

Table S7.

574 Cohort demographics for GPNMB CSF pQTL analysis.

	Diagnosis		Statistics		
Variable	PD	NC	Test	P-value	Signif.
Ν	70	31			
Sex (N)	Female: 36 Male: 34	Female: 18 Male: 13	Fisher's Exact	0.666	n.s.
Age (Yrs) Mean ± SD	66.44 ± 6.67	67.61 ± 6.18	T-test	0.395	n.s.
Disease Duration (Yrs) Mean ± SD	7.22 ± 4.51	NA			

n.s. = $p \ge 0.05$, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.001

Table S8.

580 Results for linear regression of plasma GPNMB ~ PD diagnosis + rs199347 genotype

581 (codominant model) + age + sex.

Variable	Estimate (β)	Std. Error	t value	P-value	Signif.
(Intercept)	2.735117	0.132445	20.65103	2.21E-75	****
Sex (Male vs. Female)	0.042786	0.028966	1.477142	0.140057	
Age (Yrs)	0.000796	0.00155	0.51368	0.607627	
Cohort (PD vs. NC)	0.141329	0.068611	2.059848	0.039757	*
rs199347 (AA vs. GG)	0.044773	0.038803	1.153834	0.248935	
rs199347 (GA vs. GG)	0.061689	0.037284	1.654552	0.098433	•

 $584 \qquad .=p<0.1,\, *=p<0.05,\, **=p<0.01,\, ***=p<0.001,\, ***=p<0.001,\, ****=p<0.0001$

Table S9.

Results for linear regression of CSF GPNMB ~ PD diagnosis + rs199347 genotype (codominant model) + age + sex.

Variable	Estimate (β)	Std. Error	t value	P-value	Signif.
(Intercept)	1.82835	0.168931	10.82303	2.92E-18	****
Sex (Male vs. Female)	0.04961	0.029236	1.696886	0.092992	
Age (Yrs)	0.010435	0.002301	4.534395	1.68E-05	****
Cohort (PD vs. NC)	0.06314	0.031755	1.988362	0.049649	*
rs199347 (AA vs. GG)	0.199285	0.043897	4.539812	1.65E-05	****
rs199347 (GA vs. GG)	0.123633	0.040998	3.015597	0.00329	**

p=p<0.1, *=p<0.05, **=p<0.01, ***=p<0.001, ***=p<0.001, ****=p<0.0001

Table S10.

594 Results for linear regression of plasma GPNMB ~ UPDRS-PIII score + age + sex in the

595 Discovery cohort.

Variable	Estimate (β)	Std. Error	t value	P-value	Signif.
(Intercept)	2.611333	0.310946	8.398015	5.32E-13	****
UPDRS-PIII	0.007614	0.00268	2.841321	0.005532	**
Age (Yrs)	0.001364	0.004803	0.283907	0.777119	
Sex (Male vs. Female)	0.075098	0.078812	0.952885	0.343145	

. = p < 0.1, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001, **** = p < 0.0001

Table S11.

Results for linear regression of plasma GPNMB ~ UPDRS-PIII score + age + sex in the Replication cohort.

Variable	Estimate (β)	Std. Error	t value	P-value	Signif.
(Intercept)	3.953842	0.090524	43.67715	7.65E-63	****
UPDRS-PIII	0.001392	0.000774	1.797537	0.075567	
Age (Yrs)	-0.00042	0.001328	-0.31824	0.751034	
Sex (Male vs. Female)	-0.01343	0.018397	-0.73021	0.46714	

. = p < 0.1, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001, **** = p < 0.0001

609 Module 1 genes in top 10 categories from overrepresentation analysis.

Table S3.

- 612 Module 2 genes in top 3 categories from overrepresentation analysis.

Table S12.

- 616 Summary of Illumina NovaSeq RNAseq run.

619 Data S1.

620 Cell profiler pipeline used for image processing.