2 3 Supplemental Table 1. Nucleic acid sequences of single-guide RNAs, primers, and probes

Assay	Name	Sequences (5' to 3')
sgRNAs	AAVS1	ACCCCACAGTGGGGCCACTA
	RPS19.1	TACCCCCAGCTTCCACAGCG
	RPS19.2	TGTAAAAGACGTGAACCAGC
	RPS19.3	CTGACGTCCCCCATAGATCT
	TP53	TCCTCAGCATCTTATCCGAG
NGS primers	AAVS1 forward	AGTCTTCTTCCTCCAACCCGGGCCC
	AAVS1 reverse	CCTGCCAAGCTCTCCCTCCCAGGAT
	RPS19.1 and 3	GTGGGTGAGGAGAGGGGGGCTGTCAG
	forward	
	RPS19.1 and 3	TCAATGCAGCCCCCTCTACCCTGCT
	reverse	
	RPS19.2	TGAAGGGGCCGTGGGAAGTAACG
	forward	
	RPS19.2	GCCTCGCCTGCCAGGGACCG
	reverse	
	TP53 forward	GGCGCTGCCCCACCATGAG
	TP53 reverse	CTGGAGGGCCACTGACAACCACCCT
ddPCR primers and probes	Psi forward	ACTTGAAAGCGAAAGGGAAAC
	Psi reverse	CACCCATCTCTCTCCTTCTAGCC
	Psi probe	5'FAM-
		AGCTCTCTCGACGCAGGACTCGGC
	RPP30 forward	GCGGCTGTCTCCACAAGT
	RPP30 reverse	GATTTGGACCTGCGAGCG
	RPP probe	5'HEX-CTGACCTGAAGGCTCT
Northern blot probe	ITS1 probe	CCTCGCCCTCCGGGCTCCGTTAATGA

Supplemental Table 2: Reference sequence and top 10 most frequent edited reads for three different sgRNAs targeting RPS19. sgRNA-binding sequences are in red, insertions are in blue, and deletions are represented as dashes.

Name	Sequence	Read frequency (%)	Read count	Frameshift
Reference sequence (RPS19.1)	CACTACCCCCAGCTTCCACAGCGCGGCACCTGTACCTCCG			
Edited reads	CACTACCCCCAGCTTCCACAAGCGCGCGCACCTGTACCTCC	35.2	345	Yes
	CACTACCCCCAGCTTCC TGTACCTCCG	3.6	35	Yes
	CACTACCCCCAGCTTCCAC CTGTACCTCCG	3.1	30	Yes
	CACTACCCCCAGC GGCACCTGTACCTCCG	1	10	Yes
	CACTACCCCCAGCT GTACCTCCG	0.9	9	Yes
	CACTACC TCCG	0.6	6	Yes
	CACTACCCCCAGCTTCCAC CTCCG	0.5	5	Yes
	CACTACCCCCAGCTTCCACAAAGCGCGGCACCTGTACCTC	0.5	5	Yes
	CACTACCCCCAGCTTCCACAAGCGCGGCGCCTGTACCTCC	0.4	4	Yes
	CACTACCCCCAGCTTCCAGCGCGGCACCTGTACCTCCG	0.4	4	Yes
Reference sequence (RPS19.2)	TACTGTAAAAGACGTGAACCAGCAGGAGTTCGTCAGAGCT			
Edited		23.02	325	Ves
Teaus		23.02	122	Ves
		7.1	100	Ves
		2.6	36	No
		2.0	33	Yes
		2.0	31	Ves
		2.2	20	Ves
		2.1	23	Ves
		10	20	Ves
		1.3	26	Ves
		1.0	20	163
Reference sequence (RPS19.3)	GGTTGGCTCCATGACCAAGATCTATGGGGGACGTCAGAGA			
Edited				
reads	GGTTGGCTCCATGACCAAGAATCTATGGGGGACGTCAGAG	12.3	44	Yes
	GGTTGGCTCCATGACCAAGA GGGGGACGTCAGAGA	9.8	35	Yes
	GGTTGGCTCCATGACCAAGA TGGGGGACGTCAGAGA	8.4	30	Yes
	GGTTGGCTCCATGACCAAGA TATGGGGGGACGTCAGAGA	7.5	27	Yes
	GGTTGGCTCCATGACCAAGATTCTATGGGGGACGTCAGAG	6.7	24	Yes
	GGTTGGCTCCATGACCAAGACTCTATGGGGGGACGTCAGAG	4.2	15	Yes
	GGTTGGCTCCATGACCAAGA ATGGGGGGACGTCAGAGA	3.3	12	No
	GGTTGGCTCCATGACCAAGA - CTATGGGGGACGTCAGAGA	2.2	8	Yes
	GGIIGGCICCATGACCAAGAGTCTATGGGGGGACGTCAGAG	1.7	6	Yes
1	I GGTTGGCTCCATGACCAAGA GGGGACGTCAGAGA	1.4	15	I NO

22 23 24 Supplemental Table 3. Media and cytokines

Medium	Component	Manufacturer	Catalog #	Final
			eatereg "	Concentration
HSPC	X-Vivo 10 (base)	Lonza	BEBP02-055Q	
maintenance				
	Human stem cell	R&D Systems	255-SC/CF	100 ng/mL
	factor			
	Thrombopoietin	R&D Systems	288-TP/CF	100 ng/mL
	FLT-3 ligand	R&D Systems	3088-FK/CF	100 ng/mL
Em Alena i d				
differentiation	Common to all pha			
	IMDM (base)	Thermo Fisher	12440061	
	Human male AB plasma	SeraCare	1810-0001	2%
	Human AB	Atlanta	S40110	3%
	serum	Biologicals		
	Heparin	Sagent	NDC 25021-	3 IU/mL
		Pharmaceuticals	401-02	
	EPO	Amgen	NDC 55513- 144-01	3 IU/mL
	Penicillin– Streptomycin	Thermo Fisher	15070063	Penicillin 50 U/mL Streptomycin 50 µg/mL
	1			
Erythroid differentiation (Phase I)	Add the following	to the common com	ponents:	
	Human holo- transferrin	Millipore	T0665	200 µg/mL
	Human stem cell factor	R&D Systems	255-SC/CF	10 ng/mL
	Human IL-3	R&D Systems	203-IL/CF	1 ng/mL
			•	
Erythroid differentiation (Phase II)	Add the following	to the common com	ponents:	
	Human holo- transferrin	Millipore	T0665	200 µg/mL
	Human stem cell factor	R&D Systems	255-SC/CF	10 ng/mL

Supplemental Table 4. Antibodies used in flow cytometry panels and Western blo	ots
--	-----

Panel	Antibody	Clone	Manufacturer	Catalog #
Mouse bone	BV786 Anti-Mouse	30-F11	BD Biosciences	564225
marrow studies	CD45			
	BV605 Anti-Human	HI30	BD Biosciences	564047
	CD45			
	PE-Cy7 Anti-	P67.6	BD Biosciences	333946
	Human CD33			
	PE Anti-Human CD19	4G7	BD Biosciences	349209
	Alexa Fluor 700 Anti-Human CD34	581	BD Biosciences	561440
	PerCP-Cy5.5 Anti- Mouse Ter119	TER-119	BD Biosciences	560512
	APC Anti-Human CD235	GA-R2 (HIR2)	BD Biosciences	551336
	APC-Cy7 Anti- Human CD3	ŠK7	BD Biosciences	557832
				_
Erythroid differentiation	BV421 Anti- CD235a	GA-R2 (HIR2)	BD Biosciences	562938
	BV510 Anti-CD41a	HIP8	BD Biosciences	563250
	PE Anti-CD117	A3C6E2	BioLegend	323408
	PE-CF594 Anti- CD105	266	BD Biosciences	562380
	PE-Cy7 Anti-IL3R	6H6	BioLegend	306010
	APC Anti-CD34	Clone 582	BD Biosciences	555824
	APC-H7 Anti-CD71	M-A712	BD Biosciences	563671
Myeloid differentiation				
	BV605 Anti-CD45	HI30	BD Biosciences	564047
	Alexa Fluor 488 Anti-CD15	W6D3	BioLegend	323010
	PE-Cy7 Anti-CD33	P67.6	BioLegend	366618
Western Blot				
	RPS19	EPR10423	Abcam	181365
	TP53	DO-1	BD Biosciences	554293
	CDKN1A	12D1	CST	2947
	GFP	N/A	Abcam	AB6556

RPS19 + GFP separated by auto-cleaving P2A sequence, driven by EF1 α core promoter.

A se R	c gRN PS	A JA 19	С Т .1	T/	4 (C (C	С	С	С	A	G	C	; 1	Γ	C(A	С	A	G	С	G	C P/	G	G 1	С	A		CO	<mark>;</mark> 1	- 0	; T	A	C	; C	; T	C	; (C	R re se	PS fei equ	:19 rer Jer) nce nce	9	
B W										A A A A A A A A A A A A A A A A A A A										G A A A A A A A A A A A A A A A A A A A		G C G G G G G G G G G G G G G G G G G G					A C				G T G G G G G - C T - G G - T T G G G G G G T G G - T G - G G G G	T G T T T T T T G G T T T T T T G T T T T	A T A A A A G T - A A - C T A A A A A A T A A - T A - A A A A A A			T C T T T T T T C C - T T - C C T T T T	CTCCCCCCCT - CC - TTCCCCCCTC - CCTCCCCCCCC				55550096555444333222222222222222222222222222222	6176221111111100000000000000000000000000	00 %%(3)3(1)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)	$\begin{array}{c} (3 \\ (3 \\ (5) \\ () \\ () \\ () \\ () \\ () \\ () \\ $	50)
												-	bo	1d	S In D P	ub se ele	st ert eti dio	itu ioi or	uti ns ns ed	or s	le	a١	/a	ge	e p	008	sit	io	n															0(2	.,	

Supplemental Figure 2 (related to main Figure 1). *RPS19* indels in CD34⁺ hematopoietic
stem and progenitor cells (HSPCs) 3 days after editing with Cas9 + RPS19.1 single-guide
RNA (sgRNA) ribonucleoprotein (RNP). (A) *RPS19* reference sequence with complementary
sgRNA RPS19.1 represented below. (B) Results of indel analysis performed on day 0 according
to the scheme shown in main Figure 1B. The unedited wild-type (WT) sequence is shown at top.
The percentage of each indel is shown at right, with the NGS read counts in parentheses.

Supplemental Figure 3 (related to main Figure 1). Reduced RPS19 protein and rescue by LV-derived RPS19 in *RPS19*-disrupted CD34⁺ HSPCs. Cells were edited with RPS19.1 RNP, transduced with or without LV, and analyzed 3 days after editing. (A) Representative Western blot showing RPS19 protein expression. (B) Relative RPS19 protein levels (normalized to actin) after editing with AAVS1 or RPS19.1 RNP. The bar chart shows the mean ± SD of 3 independent experiments (unpaired, 2-tailed Student *t*-test). (C) Western blot showing RPS19, GFP and actin loading control.

91 Supplemental Figure 4 (related to main Figure 2). Transduction with RPS19 lentiviral vector 92 (LV) partially rescues the erythropoietic defect of *RPS19^{+/-}* HSPCs. (A) CD34⁺ HSPCs were edited with the indicated concentrations of RPS19 RNP on day -3. On day 0, cells were switched 93 to erythroid differentiation medium and indel frequencies were determined serially. Bar chart 94 95 shows mean ± SD, with each symbol representing different HSPC donors. (B) RPS19 RNPtreated cells, ± RPS19 LV transduction, were generated as shown in main Figure 1B then grown 96 97 in culture in erythroid medium. The graph shows the RPS19 indel frequency versus time. The data points are the mean ± SD of 6 biological replicates performed using 3 different CD34⁺ HSPC 98 99 donors (2 experiments per donor), represented by different symbols (Mixed model-effects analysis). (C) Cells per BFU-E colony generated by AAVS1 or RPS19-targeted CD34⁺ HSPCs. 100 Each symbol represents data from a different CD34⁺ HSPC donor, with the bar chart showing the 101 102 mean ± SD (unpaired, 2-tailed Student t-test).

- 103
- 104
- 105
- 106
- 107
- 108

Supplemental Figure 5 (related to main Figure 3). RPS19^{+/-} HSPCs exhibit erythroid maturation defect. (A) Representative flow cytometry plots of normal CD34⁺ HSPC in vitro erythroid differentiation showing the gating strategy for BFU-E (erythroid progenitor [EP] 1) and CFU-E (EP 2-4). (B) Effects of RPS19 disruption on terminal erythroid maturation of CD34⁺ HSPCs. Cells were analyzed at day 14 of erythroid culture and gated as shown in Figure 3B. The bar chart shows the mean ± SD. Each symbol represents data from a different CD34⁺ HSPC donor (unpaired, 2-tailed Student t-test). (C) May–Grunwald and Giemsa–stained erythroblasts at days 7 and 14 of erythroid differentiation. Images were obtained with a Nikon Eclipse NI microscope, using a Nikon DS Qi2 camera.

Supplemental Figure 6 (related to main Figure 3). *RPS19* disruption does not impair in vitro myeloid differentiation. CD34⁺ HSPCs were treated with AAVS1 or RPS19 RNP as described in Figure 1B, grown in myeloid differentiation medium for 14 days, then analyzed for maturation markers. (A) Representative flow cytometry plots after staining with antibodies against myeloid surface markers. (B) Summary of multiple experiments performed as described above, using CD34⁺ HSPCs from 3 different donors. The bar chart shows the mean ± SD (unpaired, 2-tailed Student *t*-test).

Supplemental Figure 7 (related to main Figure 4). Multiplex editing of *RPS19* and *TP53* in CD34⁺ HSPCs. CD34⁺ HSPCs were edited with AAVS1 or RPS19.1 ± TP53 RNPs according to the protocol in Figure 1B. (A) Indel frequency corresponding to each targeting RNP at 3 days after electroporation. Each symbol represents data from different CD34⁺ cell donors. (B) Western blot showing TP53, CDKN1A and actin loading control. (C, D) Genotype distributions in BFU-E colonies generated from CD34⁺ HSPCs treated with RNPs targeting $RPS19 \pm TP53$. n = total colonies analyzed from biological replicate experiments using 2 different CD34⁺ HSPC donors. All bar charts show the mean ± SD.

임

RPS19

RPS19-

GFP

182

0

GFP

GFP

Input

LV

183 184 Supplemental Figure 8 (related to main Figure 5). RPS19 expressing LV partially rescues bone marrow repopulation defect of RPS19^{+/-} HSPCs. Normal donor HSPCs were treated with 185 RPS19.1 RNP ± RPS19-GFP LV then transplanted into NSGW mice, which underwent necropsy 186 16 weeks later, according to the protocol in Figure 4A. (A) Representative flow cytometry plots 187 showing the gating strategy used to assess human HSPC repopulation. Asterisks indicate 188 189 populations that were analyzed for RPS19 indels shown in main Figures 4D and 5C. (B) RPS19-190 GFP LV copy number per diploid genome in input HSPCs and after xenotransplantation. (C) LV-191 transduced (%GFP⁺) cells in input CD34⁺ HSPCs and 16 weeks after xenotransplantation. (D) 192 Percentages of human CD34⁺ HSPCs and their progeny in recipient mouse bone marrow at 16 weeks. All bar charts show the mean ± SD, with each symbol representing data from a different 193 194 CD34⁺ cell donor.

C

RPS19-

GFP

B

GFP

BM at 16 weeks

RNP AAVS1 RPS19 RPS19 AAVS1 RPS19 RPS19

GFP

RPS19-

GFP

× 0.5

RNP

LV

æ

AAVS1

GFP

RPS19

GFP

Supplemental Figure 9 (related to main Figure 6). Engraftment of RPS19/TP53 multiplex-207 edited human cells after xenotransplantation. Normal human HSPCs were edited and 208 209 transplanted into NSGW mice, as described in main Figure 4A. Necropsy was performed at 16 210 weeks, and recipient bone marrow populations were analyzed by flow cytometry. (A) Percentage of human CD45⁺ cells in recipient bone marrow at 16 weeks post transplant. Data were analyzed 211 by ANOVA test and pairwise testing was performed with Tuckey's adjustment for multiple 212 213 comparison. (B) Percentage of human CD34⁺ HSPCs and their differentiated progeny in recipient 214 bone marrow. The corresponding RPS19 indel frequencies in each population are shown in main Figure 6C. (C) CDKN1A mRNA fold change over time, relative to the level in unedited cells. Each 215 216 data point represents the mean ± SD of 3 biological replicate experiments using CD34⁺ cells from 217 different donors. Linear mixed-effects model approach was used to test for statistical significance. Bar charts show the mean ± SD of the data, with each symbol representing data from a different 218 219 CD34⁺ cell donor.