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Appendix

Physics behind experiments A-E

We constructed the experiments used in SciMED testing around the problem of a sphere settling in a fluid
under various fluid models and simplifying assumptions. The physics of settling spheres can be very simple
at low velocities or very viscous fluids, with an analytically solved linear drag force. It can become very
difficult when the settling velocities are not negligible, and the drag force becomes a highly non-linear
function of the velocity itself. In this part, we draw the parallel between the physics problem and the
mathematical description used for the SciMED for clarity. The experiments are constructed similarly to
physics experiments in which we measure some physical properties, similar to the case presented in [1],
repeating in some sense the famous Leaning Tower of Pisa experiment.

Experiment A

If in the experiment we measure velocity v(t) and acceleration a(t) of the settling sphere versus time, we can
present experiment A as the simplest case in which a = const, e.g. by [2]:

v = v0 + a t (1)

where v0 = v(t = 0) is the initial velocity of that object, a is its acceleration, and t is the elapsed time from v0
to v. In this experiment, we provide the system with a table of the measurements of multiple spheres for each
the initial velocity, time since the release, and acceleration as features, along with the velocity as a target.

Experiment B-E

For experiments B-E, we formulate our problem slightly differently. Similar to the Leaning Tower of Pisa
experiment and [1] we aim to find a law of falling bodies, extending it with an unknown fluid resistance force.
We are interested in finding the unknown equation for drag force FD exerted on a sphere settling at constant
velocity V through a viscous fluid. It is common to present the drag force using the non-dimensional drag
coefficient CD:

FD = 0.5CD ρ v|v|A (2)

where ρ is the fluid density, v is the velocity of the sphere relative to the fluid velocity, A = πd2/4 is the
cross-sectional area of the sphere, d is the diameter of the sphere, and CD is the dimensionless drag
coefficient [3]. This equation is used for experiment E, assuming the simplest cases of spheres settling in the
same direction of gravity (meaning v|v| = v2).

For the rest of the experiments, we also consider the spheres to be of smooth surface, settling with a
non-dimensional Reynolds number Re = V d/ν, where ν is the kinematic viscosity of the fluid, of up to
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Re = 2× 105. In this case, the drag coefficient can be expressed as a semi-analytical, semi-empirical function
with all non-dimensional terms (including a numerical constant 0.4, 24, and others) [3]:

CD = 0.4 +
24

Re
+

6

1 +
√
Re

. (3)

When the sphere moves at a constant velocity (zero acceleration), the drag balances the buoyancy force
(first term on the right-hand side):

0 = (ρp − ρ)gV − FD, (4)

where ρp is the sphere’s density, and V = πd3/6 is the volume of the sphere. Extracting CD from Eqs. 3-4,
we obtain:

CD =
4

3

ρp − ρ

ρ

gd

v2
. (5)

For experiment C, we use the dimensional form of the Eq. 5, substituting g = 9.81 m s−2 and looking for the
form of:

CD = 13.08
ρp − ρ

ρ

d

v2
. (6)

where 13.08 m s−2 is a “modified” gravitational acceleration for spheres.

Note that in experiment D, we use again the Eq. 6 to generate the data, but then eliminate the
measurements of velocity v before analyzing the data with SciMED.

Experiment B - feature selection part

In experiment B, we use the non-dimensional form of Eq. 5 to emphasize the strength of the dimensional
analysis along with the feature selection component of SciMED. Therefore, experiment B aims to a) test nine
hypotheses of dimensionless numbers governing the dynamic in a feature selection step and b) discover the
function for non-dimensional CD in Eq. 5. The ground truth based on the domain knowledge is the
multiplication of two non-dimensional numbers: ζ1 = (ρp − ρ)/(ρ) and ζ2 = (gd)/(v2) with a constant
non-dimensional prefactor of 4/3.

Dimensional analysis helps to formulate the search for the unknown non-linear function CD as a function
of non-dimensional arguments. Initially, we hypothesize nine plausible dimensionless ratios that may
represent some key mechanism for determining CD. The ratios can be seen as groups of dimensionless
parameters, where each parameter in a group represents a different physical relation. Therefore, the feature
selection component aims to identify which number in a group is dominant over the others, potentially
emphasizing the dominant physical mechanism. Only one non-dimensional parameter per group will
participate in the following steps.

We formed nine groups of dimensionless ratios using the physical properties of the problem, i.e.,
properties of the sphere: d, ρp, properties of the fluid: ρ, ν, and a measured quantity, particle velocity v. We
deliberately extended the number of groups and the possible variations to probe for the previously
unexplored physical mechanisms. Thus, we assume a possible effect related to some natural frequency, N
(units of 1/sec). This frequency is typically coupled with a representative time scale, and in some problems,
it’s called the Froude number. We suggest four such groups, each defined based on different time scale:
v/(dN), g/(vN), (gd)/νN), v2/(νN). Because we can construct frequency based on various density ratios
(particle to fluid, a difference of particle density to fluid density, and so on), we can formulate seven possible
combinations that we call for simplicity: N :

Ni =

√
g ρα
d ρβ

, (7)

where (ρα, ρβ) is one of the seven density combinations: (ρp − ρ, ρavg), (ρp − ρ, ρp), (ρp − ρ, ρ), (ρp, ρavg),
(ρp, ρ), (ρ, ρavg), (ρ, ρp), and ρavg = 0.5(ρp + ρ).

The other five groups are a) ratios of densities ρp/ρ, b) the group of the ratio of density difference to
density (ρp − ρ)/ρ, c) two groups of the combinations gd/v2, d) νg/v3, and e) the single-element group of the
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Reynolds number Re that in this simple case of a single length scale, d, and a single velocity scale v, cannot
get another representation.

Fig.2 represents the nine groups above on the left-hand side. The first four groups of Froude-like numbers
contain seven plausible non-dimensional parameters from which only one is chosen to proceed to the SR
component. The other five groups contain only one non-dimensional parameter, which proceeds to the SR
without a selection process. During the SR, the remaining nine non-dimensional parameters are reduced to
the two that construct the equation and emphasize the contribution of each group to the physical problem.

Comparing the relative contribution to the explainability of the target of the nine parameters selected by
the feature selection component (the middle column in Fig.2) may lead to additional insight. In more
complex problems, the non-dimensional parameter selected from the group can indicate different physical
mechanisms. For instance, in the drag force Eq. 3, one could study in detail how fluid resistance force
changes when the Reynolds number increases and what happens when CD varies from a constant 0.4 to
24/Re and then from linear relation to a non-linear 6/(1 +

√
Re). This competition of the nine groups is

provided by a feature importance graph produced by the AutoML component, as seen in Fig.1.
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