Supporting Information

Evaluating translational efficiency of noncanonical amino acids to inform the design of druglike peptide libraries

Alix I Chan⁺, Manali S. Sawant⁺, Daniel J. Burdick[‡], Jeffrey Tom⁺, Aimin Song⁺, and Christian N. Cunningham^{+*}

⁺ Department of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
 Current Address: Department of Antibody and Protein Engineering, 23andMe, Inc., South San Francisco, California 94080, United States

[‡] Department of Discovery Chemistry, Genentech, South San Francisco, California 94080, United States

* Email: cunningham.christian@gene.com

Figure S1. Luminescence signal in the FIT reaction of P3 is dependent on the aminoacylations of AcF-CAU-tRNAⁱⁿⁱ, Trp-GCA-tRNA^{Asn}, and Phe-GCA-tRNA^{Asn}. Luminescence production is negligible when Trp-GCA-tRNA^{Asn} is omitted, and reduced in the absence of AcF-acylated CAU-tRNAⁱⁿⁱ or Phe-acylated GGC-tRNA^{Asn}.

F

		Observed Mass			
			C. No GGC-	D. No CAU-	
Initiation	Calculated	B. All	tRNA ^{Asn}	tRNAini	
site	Mass	acylations	acylation	acylation	
1	2647.2	2647.2			
2	2458.1			2358.3	
3	2401.1			2401.3	
4	2254				
5	2116.9			2117.0	
6	2059.9			2060.0	
7	2002.9				
8	1865.8				
9	1728.8				
10	1671.8			1671.9	
11	1614.7				
12	1557.7				
13	1500.7			1500.8	
14	1443.7		1443.8	1443.8	
15	1356.6		1356.7	1356.7	
16	1269.6		1269.7		
17	1141.5				
18	1013.4				

Figure S2. MALDI-TOF characterization of translation readthrough or reinitiation products. (A) FLAGcontaining peptide sequence translated, with the sites of flexizyme-aminoacylated tRNAs noted. (B-D) MALDI-TOF spectra of peptides from IVT reactions under various acylation conditions. (E) Table of expected masses for peptide truncation products and observed masses in the spectra show in (B-D).

Figure S3 Selection and validation of test sequences for luminescence-based translational efficiency assay. (A) Assay schematic for luminescence-based detection of translated peptides. (B) Positional scan of amino acid incorporation and the effect on luminescence signal when incorporating either Phe, Tic or non-acylated GGC-tRNA^{Asn}. Template numberings correspond to positions annotated in Figure S3A.

Figure S4. MALDI spectra from IVT reactions of **P3**[Phe] and **P3**[Tic]. Major products correspond to fulllength expected product, with the only other observed product corresponding to truncation products after Ser18.

Table S1. Elongation amino acids tested in the study and their aminoacylation conditions. C = cyanomethyl ether, DNB = 3,5-dinitrobenzyl ester, ABT = amino-derivatized benzyl thioester H = HEPES pH 7.5; B = Bicine pH 9.0.

General name	Abbreviation	Activation Group	Flexizyme	Buffer	(hr)
L-Phenylalanine	Phe	CME	eFx	Н	2
L-Alanine	Ala	DNB	dFx	Н	5
L-Proline	Pro	DNB	dFx	Н	2
Glycine	Gly	DNB	dFx	Н	2
L-Tryptophan	Тгр	CME	eFx	Н	2
L-Serine	Ser	DNB	dFx	Н	5
L-Threonine	Thr	DNB	dFx	Н	5
L-Tyrosine	Tyr	CME	eFx	Н	2
L-Cysteine	Cys	DNB	dFx	В	2
D-Phenylalanine	D-Phe	CME	eFx	Н	5
D-Alanine	D-Ala	DNB	dFx	Н	5
D-Proline	D-Pro	DNB	dFx	Н	5
D-Tyrosine	D-Tyr	CME	eFx	Н	5
D-Cysteine	D-Cys	DNB	dFx	Н	5
L-Norleucine	Nle	DNB	dFx	Н	5
(S)-2-Aminoheptanoic acid	Ahp	DNB	dFx	Н	5
β-Cyclohexyl-L-alanine	Cha	DNB	dFx	Н	5
α-Aminoisobutyric acid	Aib	DNB	dFx	Н	5
1-Aminocyclopropane-1-carboxylic acid	Аср	DNB	dFx	Н	5
(S)-1,2,3,4-Tetrahydroisoquinoline-3- carboxylic acid	Tic	ABT	aFx	Н	2
L-4-methoxy-Phe	F4m	CME	eFx	В	2
L-Diphenylalanine	DiF	CME	eFx	Н	2
4-Phenyl-L-phenylalanine, Biphenylalanine	Вір	CME	eFx	Н	5
Ser(OMe)	SOM	DNB	dFx	В	2
Thr(OMe)	том	DNB	dFx	В	2
L-4-thiazolyl-Ala	4TzA	DNB	dFx	В	2
δ-pyrrolidyl-L-Asp	PyD	DNB	dFx	н	5
β -2-(S)-Homo-Phenylalanine	β²Phe	CME	eFx	В	2
β-2-(S)-Homo-Leucine	β²Leu	DNB	dFx	В	5
β-2-(S)-Homo-Valine	β²Val	DNB	dFx	В	18
γ-Glycine	γGly	DNB	dFx	В	2

N-Methyl-L-phenylalanine	MeF	CME	eFx	Н	5
N-Methyl-L-alanine	MeA	DNB	dFx	н	5
N-Methyl-L-norleucine	MeNle	DNB	dFx	н	5
N-Methyl-L-glycine (Sarcosine)	Sar	DNB	dFx	н	2
N-(2-Phenylethyl)-glycine	PEtG	ABT	aFx	н	2
Cyclopropyl-methyl-glycine	CpmG	DNB	dFx	В	2
N-n-Propyl-glycine	PrG	DNB	dFx	В	2
3-[(1-pyrenylacetyl)amino]-L-alanine	Dap(pyr)	CME	eFx	н	16
3-[[(7-methoxy-2-oxo-2H-1-benzopyran-3- yl)carbonyl]amino-L-alanine	Dap(Cou)	CME	eFx	Н	2
3-[(7-Nitro-2,1,3-benzoxadiazol-4- yl)amino]-L-alanine	Dap(NBD)	DNB	aFx	Н	16
L-Propargyl-Glycine	PropG	DNB	dFx	н	2
L-homopropargylglycine	hPropG	DNB	dFx	Н	2
L-bishomopropargylglycine	hhPropG	DNB	dFx	н	2
4-Ethynyl-L-phenylalanine	Ера	CME	eFx	В	2
L-Azido-Alanine	AN ₃	DNB	dFx	В	2
L-Azido-Homo-Alanine	hAN ₃	DNB	dFx	н	2
L-Azido-Ornithine	OrnN ₃	DNB	dFx	В	2
L-Azido-Lysine	LysN ₃	DNB	dFx	В	2
Biocytin	КВіо	DNB	dFx	В	2
4-Benzoyl-L-phenylalanine	Вра	CME	eFx	Н	5

Table S2. Initiator amino acids tested in the study and their aminoacylation conditions. H = HEPES pH 7.5; B = Bicine pH 9.0.

General name	Abbreviation	Activation Group	Flexizyme	Buffer	(hr)
N-Acetyl-L-phenylalanine	AcF	CME	eFx	н	2
N-Acetyl-L-alanine	AcA	DNB	dFx	В	5
N-Chloroacetyl-L-phenylalanine	CIAcF	CME	eFx	н	2
N-Chloroacetyl-L-alanine	CIAcA	DNB	dFx	В	2
N-Chloroacetyl-L-tyrosine	CIAcY	CME	eFx	н	2
N-Chloroacetyl-D-phenylalanine	ClAcf	CME	eFx	н	2
N-Chloroacetyl-D-alanine	ClAca	DNB	dFx	В	5
N-Chloroacetyl-D-tyrosine	ClAcy	CME	eFx	Н	2
N-Biotinyl-L-phenylalanine	BtnPhe	CME	dFx	Н	3

Figure S5. Translation efficiency vs acylation efficiency for all elongation amino acids tested in this study. No correlation is observed between acylation and translation efficiency ($R^2 = 0.12$).

Table S3. Theoretical diversities and calculated fractions of competent templates of the L8 and L14 library pools when translated with limited amino acid pools (See Figure 5B).

	L8-HiBit217		L14-H	liBiT-217
#aa	Diversity	% competent	Diversity	% competent
15	1.70×10^{7}	100%	2.80×10^{14}	100%
14	1.10×10^{7}	68%	1.30×10^{14}	46%
13	7.50×10^{6}	45%	5.70 × 10 ¹³	20%
12	4.80×10^{6}	29%	2.30×10^{13}	8%
11	3.00×10^{6}	18%	8.90 × 10 ¹²	3%
10	1.80×10^{6}	11%	3.10×10^{12}	1%
9	1.00×10^{6}	6.00%	1.00×10^{12}	0.40%
8	5.30 × 10⁵	3.20%	2.80×10^{11}	0.10%
7	2.60 × 10⁵	1.60%	6.90×10^{10}	0.02%
6	1.20 × 10 ⁵	0.70%	1.40×10^{10}	0.01%

Table S4. Quantitation of library concentrations after IVT, as measured against a HiBiT217 standard.

Scaffold	Codon table	Final Concentration (µM)
L8-HiBiT217	Natural	17.1
L8-HiBiT217	N-methyl	16.3
L8-HiBiT217	Low IVT efficiency	10.4
L14-HiBiT217	Natural	9.0
L14-HiBiT217	N-methyl	9.0
L14-HiBiT217	Low IVT efficiency	7.2

Characterization data of new compounds

¹H NMR spectrum of **DiF-CME**

Cyanomethyl (S)-2-amino-3,3-diphenylpropanoate hydrochloride (**DiF-CME**). White solid. Yield 72%. ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 8.89 (s, br, 2H), 7.56 - 7.54 (m, 2H), 7.36 - 7.19 (m, 8H), 5.08 (d, *J* = 11.2 Hz, 1H), 4.80 (q, *J* = 12.0 Hz, 2H), 4.37 (d, *J* = 11.2 Hz, 1H). ESI-MS [M+H]⁺ calcd. 281.1. found 280.9.

Analytical HPLC spectrum of DiF-CME

ESI-MS spectrum of **DiF-CME**

¹H NMR spectrum of AN₃-DNB

3,5-Dinitrobenzyl (S)-2-amino-3-azidopropanoate hydrochloride (**AN₃-DNB**). White solid. Yield 93%. ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 8.84 (t, J = 2.0 Hz, 1H), 8.77 (d, J = 2.0 Hz, 2H), 8.74 (s, 2H), 5.56 (d, J = 3.6 Hz, 2H), 4.56 (t, J = 4.0 Hz, 1H), 4.06 (dd, J = 13.6, 4.0 Hz, 1H), 3.94 (dd, J = 13.6, 4.0 Hz, 1H). ESI-MS [M+H]⁺ calcd. 311.1. found 310.9.

Analytical HPLC spectrum of AN_3 -DNB

¹H NMR spectrum of **hhPropG-DNB**

3,5-Dinitrobenzyl (S)-2-aminohept-6-ynoate hydrochloride (hhPropG-DNB). Yellow solid. Yield 81%. ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 8.83 (t, J = 2.0 Hz, 1H), 8.76 (d, J = 2.0 Hz, 2H), 8.66 (s, br 3H), 5.52 (s, 2H), 4.20 (t, J = 2.4 Hz, 1H), 2.80 (t, J = 2.8 Hz, 1H), 2.22 - 2.18 (m, 2H), 1.97 - 1.90 (m, 2H), 1.64 - 1.49 (m, 2H). ESI-MS [M+H]⁺ calcd. 322.1. found 321.9.

¹H NMR spectrum of CpmG-DNB

3,5-Dinitrobenzyl (cyclopropylmethyl)glycinate hydrochloride (**CpmG-DNB**). White solid. Yield 79%. ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 9.39 (s, br 2H), 8.85 - 8.81 (m, 1H), 8.77 - 8.73 (m, 2H), 5.52 (s, 2H), 4.14 (s, 2H), 2.87 (d, J = 6.8 Hz, 2H), 1.08 - 1.05 (m, 1H), 0.60 - 0.55 (m, 2H), 0.37 - 0.33 (m, 2H). ESI-MS [M+H]⁺ calcd. 310.1. found 310.2.

¹H NMR spectrum of **Acp-DNB**

3,5-dinitrobenzyl 1-aminocyclopropane-1-carboxylate hydrochloride (**Acp-DNB**) 1H NMR (400 MHz, DMSO) d 8.90 (s, 3H), 8.82 (t, J = 2.1 Hz, 1H), 8.74 (d, J = 2.1 Hz, 2H), 5.47 (s, 2H), 1.54 – 1.43 (m, 4H). Purity 99 %

HPLC and MS spectra of Acp-DNB

¹H NMR spectrum of **pyD-DNB**

3,5-dinitrobenzyl (S)-2-amino-4-oxo-4-(pyrrolidin-1-yl)butanoate hydrochloride (**pyD-DNB**) 1H NMR (400 MHz, DMSO) d 8.81 (t, J = 2.2 Hz, 1H), 8.69 (d, J = 2.1 Hz, 2H), 8.26 (s, 3H), 5.52 (d, J = 13.7 Hz, 1H), 5.43 (d, J = 13.7 Hz, 1H), 4.34 (t, J = 4.6 Hz, 1H), 3.48 – 3.34 (m, 2H), 3.27 (d, J = 6.9 Hz, 2H), 3.03 (dd, J = 17.5, 5.2 Hz, 1H), 2.94 – 2.81 (m, 1H), 1.89 (p, J = 6.6 Hz, 2H), 1.78 (p, J = 6.5 Hz, 2H). Purity 84.7 %

Analytical HPLC spectrum of pyD-DNB

ESI-MS spectrum of pyD-DNB

¹H NMR spectrum of 3,5-dinitrobenzyl acetyl-L-alaninate (AcA-DNB)

1H NMR (400 MHz, DMSO) d 8.79 (t, J = 2.2 Hz, 1H), 8.64 (d, J = 2.1 Hz, 2H), 8.39 (d, J = 6.6 Hz, 1H), 5.39 (s, 2H), 4.32 (p, J = 7.2 Hz, 1H), 1.86 (s, 3H), 1.32 (d, J = 7.3 Hz, 3H).

HPLC and MS spectra of AcA-DNB

S2

¹H NMR spectrum of 3,5-dinitrobenzyl (2-chloroacetyl)carbamate hydrochloride (**ClAcA-DNB**) 1H NMR (400 MHz, DMSO) d 8.82 – 8.74 (m, 2H), 8.66 (d, J = 2.1 Hz, 2H), 5.40 (s, 2H), 4.41 (p, J = 7.2 Hz, 1H), 4.10 (s, 2H), 1.36 (d, J = 7.2 Hz, 3H). Purity 99 %

HPLC and MS spectra of CIAcA-DNB

Cyanomethyl (2-chloroacetyl)-L-tyrosinate (CIAcY-CME)

1H NMR (400 MHz, DMSO) d 9.25 (s, 1H), 8.73 (d, J = 7.4 Hz, 1H), 7.05 – 6.95 (m, 2H), 6.70 – 6.61 (m, 2H), 4.99 (s, 2H), 4.53 – 4.43 (m, 1H), 4.07 (s, 2H), 2.95 (dd, J = 13.9, 5.9 Hz, 1H), 2.87 (dd, J = 13.9, 8.6 Hz, 1H).

S2

cyanomethyl (2-chloroacetyl)-D-phenylalaninate (**ClAcf-CME**) ¹H NMR (400 MHz, DMSO) d 8.80 (d, J = 7.4 Hz, 1H), 7.33 – 7.18 (m, 6H), 5.00 (s, 2H), 4.58 (ddd, J = 9.1, 7.5, 5.7 Hz, 1H), 4.06 (s, 2H), 3.14 – 2.93 (m, 2H). Purity 92.5 %

HPLC and MS spectra of CIAcf-CME

S2

3,5-dinitrobenzyl (2-chloroacetyl)-D-alaninate hydrochloride (**ClAca-DNB**) ¹H NMR (400 MHz, DMSO) d 8.82 – 8.74 (m, 2H), 8.66 (d, J = 2.1 Hz, 2H), 5.40 (s, 2H), 4.41 (p, J = 7.2 Hz, 1H), 4.10 (d, J = 0.8 Hz, 2H), 1.36 (d, J = 7.3 Hz, 3H). Purity 94 %

HPLC and MS spectra of (CIAca-DNB)

¹H NMR spectrum of cyanomethyl (2-chloroacetyl)-D-tyrosinate (ClAcy-CME)

¹H NMR (400 MHz, DMSO) d 9.25 (s, 1H), 8.73 (d, J = 7.4 Hz, 1H), 7.05 – 6.96 (m, 2H), 6.70 – 6.61 (m, 2H), 4.99 (s, 2H), 4.53 – 4.43 (m, 1H), 4.07 (s, 2H), 2.95 (dd, J = 13.9, 6.0 Hz, 1H), 2.87 (dd, J = 13.9, 8.7 Hz, 1H).

Purity 93 %

HPLC and MS spectra of CIAcy-CME

Peptide Synthesis

P1E (Ac-FGGHGGHHGGGGGGSSKKSGWRLF-acid). HPLC purity 95.3%. ESI-MS [M+2H]²⁺ calcd. 1155.1. found 1155.6.

Analytical HPLC spectrum of P1E

Chromatogram

atactor 1 21	4.000	Peak Table		
Peak#	Ret. Time	Area	Height	Area%
1	10.421	22469	3152	0.638
2	10.540	112782	14316	3.204
3	10.743	3354567	496631	95.297
4	10.929	30306	6560	0.861
Total		3520123	520659	100.000

ESI-MS spectrum of P1E

S3-

Table S5.	Oligonucleotide sequences.	
-----------	----------------------------	--

Name	DNA Sequence $(5' \rightarrow 3')$
FW	CTAGTAATACGACTCACTATAGGGTTAACTTTAAGAAGGAGATATACATATG
S1A-re	CGAAGCTTAGCTAATCTTCTTGAACAGCCGGCAGCCGCTCACCTTCTTACTAGATCCACCACC
	TCC
S1B-re	CGAAGCTTACAGAATCTCCTCGAACAGCCGGTAGCCGGTCACCTTCTTACTAGATCCACCACC
	TCC
S1C-re	CGAAGCTTACTTCTTGAACAGCCGGCAGCCGCTCTTCTTACTAGATCCACCACCTCC
S1D-re	CGAAGCTTAGCTAATCTTCTTGAACAGCCGCTTCTTACTAGATCCACCACCTCC
S1E-re	CGAAGCTTAGAACAGCCGGCAGCCGCTCTTCTTACTAGATCCACCACCTCC
FLAG re	CGAAGCTTACTTGTCGTCGTCGTCCTTGTAGTCCTTCTTACTAGATCCACCACCTCC
S1-temp	TAAGAAGGAGATATACATATGGGTGGCCACGGTGGCCATCACGGCGGAGGTGGTGGATCT
	AGTAAGAAG
S2-temp	TAAGAAGGAGATATACATATGGCCGGCCACGGTGGCCATCACGGCGGAGGTGGTGGATCT
	AGTAAGAAG
S3-temp	TAAGAAGGAGATATACATATGGGTGCCCACGGTGGCCATCACGGCGGAGGTGGTGGATCT
	AGTAAGAAG
S4-temp	TAAGAAGGAGATATACATATGGGTGGCGCCGGTGGCCATCACGGCGGAGGTGGTGGATCT
	AGTAAGAAG
S5-temp	TAAGAAGGAGATATACATATGGGTGGCCACGCCGGCCATCACGGCGGAGGTGGTGGATCT
	AGTAAGAAG
S6-temp	TAAGAAGGAGATATACATATGGGTGGCCACGGTGCCCATCACGGCGGAGGTGGTGGATCT
	AGTAAGAAG
S7-temp	TAAGAAGGAGATATACATATGGGTGGCCACGGTGGCGCCCACGGCGGAGGTGGTGGATCT
	AGTAAGAAG
S8-temp	TAAGAAGGAGATATACATATGGGTGGCCACGGTGGCCATGCCGGCGGAGGTGGTGGATCT
	AGTAAGAAG
S9-temp	TAAGAAGGAGATATACATATGGGTGGCCACGGTGGCCATCACGCCGGAGGTGGTGGATCT
	AGTAAGAAG
L8-temp	TAAGAAGGAGATATACATATGNNTNNTNNTNNTNNTNNTGGGGAGGTGGTGGAAGTAG
	C
L14-temp	TAAGAAGGAGATATACATATGNNTNNTNNTNNTNNTNNTNNTNNTNNTNNTNNTNNTNN
	GGGAGGTGGTGGAAGTAGC
Lib HiBit217 re	CCCGCCTCCCGCCCCCGTCCTAGAACAGCCGGCAGCCGCTCTTCTTGCTACTTCCACCACCT
	CCCCA