1	Investigating the specificity of the dehydration and cyclization reactions
2	in engineered lanthipeptides by synechococcal SyncM
3	
4	Patricia Arias-Orozco ¹ , Yunhai Yi ¹ , Fleur Ruijne, Rubén Cebrián ^{1,2} and Oscar P.
5	Kuipers ^{1*}
6	
7	¹ Department of Molecular Genetics, University of Groningen, Groningen, Nijenborgh
8	7, 9747AG, Groningen, The Netherlands.
9	² Department of Clinical Microbiology, Instituto de Investigación Biosanitaria ibs.
10	GRANADA, University Hospital Clínico San Cecilio, Av. De la Innovación s/n, 18016,
11	Granada, Spain.
12	*Corresponding author: Oscar P. Kuipers, o.p.kuipers@rug.nl
13	
14	
15 16	Supporting Information for Publication
17	FIGURES AND TABLES
18	
19	
20	

21

Supplementary Figure S1. Overview of SA2-SWAP of SyncA2 mutants. Dehydration and cyclization state analysis. A) MALDI-TOF spectra of SA2-SWAP; the dehydration state is depicted by arrows. Ring analysis with N-ethylmaleimide (NEM, red spectra correspond after NEM reaction). (+) Na-adduct B) LC-MS spectra. Detected masses

26	were found to correspond to non-dehydrated and -1H ₂ O peptides. C) MS ² spectra of
27	the non-dehydrated peptide. Ion fragments of the unmodified peptide are indicated. D)
28	MS^2 spectra of the -1H ₂ O peptide. Ion fragments of -1H ₂ O unmodified peptide are
29	indicated. Two options for dehydration were found. Form 1 with the S2 dehydrated.
30	Form 2 with the S15 dehydrated. Ion fragments of each form are differentiated with
31	color. (1-Orange, 2-Dark blue, same ion-Red). Masses that could correspond to both
32	peptides are identified in purple.

Supplementary Figure S2. LC-MS/MS spectra of SyncA2 macrocycle variants. A)
Shows the LC-MS chromatograms. Expected dehydration was found in all mutants.
SA2-+1A, SA2-+2A, SA2-+3A and SA2-+4^a. B) Ring formation analysis showing MS²
spectra of each macrocycle mutant: SA2-+1A, SA2-+2A, SA2-+3A, and SA2-+4^a
Fragmented ions, corresponding with the two-time mass charge in each mutant, are
depicted. A lanthionine ring was installed by SyncM in all variants.

47 Supplementary Figure S3. Ring analysis of SyncA6 mutants with the NEM reaction.
48 A) SyncA6 control. B) Mutants with a change in the dehydration and ring direction. C)
49 Single-ring mutants. Red lines correspond to spectra after NEM reaction and back line

- 50 (black, green and blue) depicts control spectra. No ring was formed in any of the
- 51 mutants.

53 **Supplementary Figure S4**. Ring analysis of single-ringed engineered SyncA's with 54 the NEM reaction. (+) Na adduct . A) The SA2.4 MALDI-TOF dehydration state is

depicted by arrows. Ring analysis with N-ethylmaleimide (NEM, red spectra 55 correspond to the situation after NEM reaction). B) Single-ring variants with a ring 56 installed. SA2.1, SA2.2, SA2.3, SA7.1, SA7.2, SAUW.1. 57

59

Supplementary Figure S5. LC-MS Spectra of SyncA2 engineered single-ringed 60 SyncA's. A) SA2.1 B) SA2.2, C) SA2.3, D) SA7. E) SAUW.1. 61

62

68 with NEM. LACM, M1M, and LACPINM.

71 Supplementary Figure S7 LC-MS analysis of non-prochlorosin peptides co-

expressed with SyncM A) LACTO_+S15, B) LACPIN_S16C- and C) SyncAUW.1.

73

74

Supplementary figure S8. Chemical structure of Murepavadin¹ and proposed chemical structure of M1M and M2M with the lanthionine ring. A) Murepavadin sequence and known structure; B) M1M amino acid sequence, linear chemical structure Cys (Highlighted in Red) and Ser (Highlighted in green) and macrocyclic structure after SyncM (lanthionine ring in yellow); C) M1M amino acid sequence, linear chemical structure Cys (Highlighted in Red) and Ser (Highlighted in green) and macrocyclic structure after SyncM (lanthionine ring in yellow); C) M1M amino acid sequence, linear macrocyclic structure after SyncM (lanthionine ring in yellow). Supplementary Table S1. Core peptide sequences and amino acid profiles of 79 SyncA's from *Synechococcus* MI9509. Residues
 involved in ring formation are highlighted in selected peptides (red for (C) and green for (T/S)). Blue numbers highest occurrence and
 red numbers lowest occurrence.

#	Core Peptide Sequence	AAª	Ala	lle	Val	Leu	Met	Phe	Trp	Tyr	Pro	Gly	Cys	Ser	Thr	Asn	Gln	Arg	Lys	His	Asp	Glu	CHARGE
1	TIPP <u>IV</u> NWIG EKMDKGCA GTLFAASYT SCVAMGTAN KECG	40	5	3	2	1	2	1	1	1	2	5	3	2	4	2	0	0	3	0	1	2	0
SA1	AGSANPQG GDPWCTWD FPICINHK	24	2	2	0	0	0	1	2	0	3	3	2	1	1	2	1	0	1	1	2	0	1
SA2	G <mark>C</mark> IPFPPYD KNSLLSP	16	0	1	0	2	0	1	0	1	4	1	1	2	0	1	0	0	1	0	1	0	0
4	RRCDSCGIW GWIGMAKTC KGPTQG IPGVATTPQL THVLSNLTS QNPDFFNGF DFFSSLTNPI DKPPIPGTIE	24 96	1	2	0	0	1	0	2	0	1	5	3	1	2	0	1	2	2	0	1	0	3
6	RINYLLKTLQ DIVAITVKDS QYPYQKSTS TLSCFAIDGR QQLTSRKSC GDCVLGRAL SCLLLGSYA	22	2	0	1	5	0	0	0	1	0	3	2	2	0	0	, 1	2	2	0	1	0	3
-	KQKR TNILNSAGFC	04	4	4	0	0	0	4	0	0	0	4	4	0	4	4	4	4	0	0	4	4	1
8	NDNPESKSL QP EYECLCHCT WDD <u>V</u> TSCT <u>V</u> NTWGLG	0	1 0	1 0	2	2	0	0	2	1	0	1	0	3	0	4 0	1 0	0	0	0	1 0	1 0	-1 -4

9	GACPSTFTID ACAATGCNP KDI	22	4	1	0	1	0	1	0	0	2	2	3	1	3	1	0	0	1	0	2	0	-1
10	AASA <u>IV</u> GDC QSQEGHVCF SEGE <u>VV</u> CGK R	28	3	1	4	0	0	1	0	0	0	4	3	3	0	0	2	1	1	1	1	3	-2
11	TAWSNSCY	8	1	0	0	0	0	0	1	1	0	0	1	2	1	1	0	0	0	0	0	0	0
12	CDIEL <u>V</u> SLCS	17	0	1	2	3	0	0	0	0	0	0	3	2	1	1	0	0	1	1	1	1	-1
13	GLSIWGCTE CVDGTFHCK RCDLSNLF	26	0	1	1	3	0	2	1	0	0	3	4	2	2	1	0	1	1	1	2	1	-1
14	FTGLEGCSA WCNRFCHG	29	1	0	0	1	0	2	3	0	0	5	4	2	2	2	1	4	0	1	0	1	3
15	EYTGNDTGP TNMYG <u>V</u> CHI PKCPEWAAS	29	2	1	1	0	1	0	1	2	3	4	2	1	3	2	0	0	2	1	1	2	-1
16	KG SGWAGYKP GQACLGVDT MAPPSPGEF	26	3	0	1	1	1	1	1	1	4	5	1	2	1	0	1	0	1	0	1	1	-1
SA9	YLSYDGSER TFGCGGKGC GWVEPPTKI GGGECRDN	38	0	1	1	2	0	1	1	2	2	9	3	2	2	1	0	3	3	0	2	3	1
18	KLR G <u>V</u> RGGTAAY MCPTDRNKT CKP <u>V</u> ATCPG	21	3	0	2	1	1	0	0	1	3	4	1	1	0	0	0	0	0	0	0	0	4
19	AEGGWCQL FP <u>V</u> PTACQ <u>V</u> TWN	20	2	0	2	1	0	1	2	0	2	2	2	0	2	1	2	0	0	0	0	1	-1
20	DSGGDYLSY AGCDTGRCG ACSWGCPG	26	2	0	0	1	0	0	1	2	1	7	4	3	1	0	0	1	0	0	3	0	-2
21	LDALKQCNF TGTCWDTLL	18	1	0	0	4	0	1	1	0	0	1	2	0	3	1	1	0	1	0	2	0	-1
SA18	SDTNWITE <u>V</u> SKCPWWRR	18	0	1	1	0	0	0	3	0	1	0	1	3	2	1	0	2	1	0	1	1	1
SA13	s CWMNTCWG YGPGTAAAP DWN	20	3	0	0	0	1	0	3	1	2	3	2	0	2	2	0	0	0	0	1	0	-1

SA14	PGYTKPCDN	30	2	2	1	1	0	0	0	1	3	3	3	2	4	3	0	0	2	0	2	1	-1
	ANICTGCQIA								-			_											
25	TTCIDDSQIL QYTNSG	26	2	4	0	1	0	0	0	1	0	2	3	2	4	2	3	0	0	0	2	0	-2
26	GACEVLTGP VIFSYVGDS	27	1	2	3	1	0	0	1	2	1	3	3	2	2	0	0	1	0	1	2	2	-3
	WHDYCCRIT			-	Ū		Ū	°,		-		•	Ũ	-	-	Ū	Ū		Ū		-	_	Ĵ
SA4	GPCRVRLSM	26	1	0	1	1	1	0	2	0	2	4	2	3	0	1	1	4	1	1	0	1	4
	SPQHKNCRG EQCPLNTGC																						
SA5	PLHTGWWC	40	2	1	2	3	0	0	2	0	3	3	3	2	4	2	0	0	3	0	1	2	-1
	HRSAASNI																						
SA8	GCKDYERY	17	0	0	0	1	0	1	0	2	0	1	1	1	2	0	0	1	1	0	4	2	-4
SA3	NKSHYYCEP IPAPFA	15	2	1	0	0	0	1	0	2	3	0	1	1	0	1	0	0	1	1	0	1	0
31	EPTPWDPE WYN	11	0	0	0	0	0	0	2	1	3	0	0	0	1	1	0	0	0	0	1	2	-3
32	ECGN <u>V</u> SCVN	23	0	1	з	4	0	0	0	1	0	2	2	1	1	2	0	0	2	0	1	з	-2
52	E <u>V</u> EL	20	0	1	5	7	U	0	0		U	2	2			2	0	0	2	0		5	-2
33	<u>V</u> SYCCW	16	0	1	2	0	0	1	1	1	0	0	3	3	1	0	0	0	1	0	2	0	-1
34	ASWSGPMW NTTCIGG	15	1	1	0	0	1	0	2	0	1	3	1	2	2	1	0	0	0	0	0	0	0
35	DYCT <u>V</u> ETAT VCYIREPGC	25	1	1	2	0	0	0	0	3	1	2	4	1	4	0	0	1	0	0	3	2	-4
	DTSDYGC								-			_											
36	CSE	11	1	0	0	0	0	0	2	1	0	0	1	3	0	1	0	1	0	0	0	1	0
SA12	YNHTN	15	1	1	1	0	0	0	0	3	1	0	2	0	2	2	0	1	0	1	0	0	1
38	GIGRHICGI GSCGCFCSI	24	0	1	0	0	0	1	0	1	0	5	2	1	1	2	1	0	1	1	2	0	0
39		17	2	3	0	0	0	1	1	0	1	0	2	2	0	0	1	2	1	0	0	1	2
4	VGGVCGAFT	16	2	0	2	0	0	1	0	0	1	4	1	1	2	1	0	0	0	0	0	1	-1
	GTD <u>V</u> NHCYF																						
41	ATAYGPHTC SGACAK	24	4	0	1	0	0	1	0	2	1	3	3	1	3	1	0	0	1	2	1	0	0
42	TACALR <u>V</u> GT <u>V</u> FIGSCWN	17	2	1	2	1	0	1	1	0	0	2	2	1	2	1	0	1	0	0	0	0	1

	DLHS <u>V</u> CGFS																						
43	ACGTCGLEG	26	1	1	1	3	0	1	0	0	0	4	5	2	3	0	0	0	0	1	2	2	-4
																			_			-	
44	RVPIN	13	2	1	1	1	0	0	1	0	1	3	0	1	0	1	0	1	0	0	0	0	1
	ANQSFEYGA				•							•		•			•	•					
45	IGQCLPPCP MSH	21	2	1	0	1	1	1	0	1	3	2	2	2	0	1	2	0	0	1	0	1	-1
	ANSCDILTAI																						
46	V WDSYMGT	25	2	3	1	1	1	1	1	1	0	1	3	2	2	2	0	0	1	1	2	0	-1
	KFCMVCATC	00		0	0	0			~	~			_				0				~	0	0
47	EHR <u>VV</u> YTQ <mark>C</mark>	28	1	0	3	0	1	1	0	2	1	1	5	1	4	1	2	1	1	1	0	2	0
48	AGGCTGWL	16	1	1	0	3	0	0	1	0	1	4	1	2	0	1	0	0	1	0	1	0	1
	RI																						
40	NSDNKHCYY	20	0	1	0	0	0	0	0	1	0	1	2	2	2	2	0	1	1	1	2	0	1
73	D	20	0	1	0	0	0	0	0	4	0	1	2	2	2	2	0	1	1	1	5	0	-1
	DITWDF <u>V</u> STL											•				•	•						
5	VIACADRIM	24	2	1	2	1	1	1	1	0	0	0	3	1	4	0	0	1	2	1	3	0	0
	ALQSTIQSEN																						
51	CTFRGANCQ	20	2	1	0	2	0	1	0	0	0	1	2	2	2	2	3	1	0	0	0	1	0
	L KDGTCTKCV																						
52	TECKGRYC	17	0	0	1	0	0	0	0	1	0	2	4	0	3	0	0	1	3	0	1	1	2
53	KKPKLEYSN	16	1	0	0	2	0	0	0	1	1	1	2	2	1	1	0	0	3	0	0	1	2
	VTLKYKNWC			0		0	0	•		~	•	0	0	0			0	0	~	~	~	0	0
SA15	YCTAL	14	1	0	.1	2	0	0	1	2	0	0	2	0	2	.1	0	0	2	0	0	0	2
55		17	0	0	1	2	0	1	0	2	1	2	2	1	1	0	1	1	0	0	1	1	-1
546	GCSFEYGKM	16	0	0	0	0	1	1	0	1	0	2	2	2	0	0	0	1	2	0	1	1	2
340	GKDKCSR	10	0	0	0	0	1	1	0		0	3	2	2	0	0	0	I	3	0		1	2
SA16	FIRRGKLS	18	0	2	2	2	0	2	0	0	0	2	1	3	0	0	0	3	1	0	0	0	4
SA11	CDIEL <u>V</u> SLCS	24	0	1	2	3	0	0	0	0	0	0	3	1	2	0	1	2	2	0	1	0	-1
	KTHN <u>V</u> LC		Ŭ		-	Ŭ	Ũ	Ŭ	Ŭ	Ŭ	Ŭ	Ũ	Ũ	·	_	Ũ	•	-	_	Ŭ	•	Ŭ	
59	DY	10	1	0	0	0	0	0	1	2	0	0	1	1	0	1	0	1	1	0	1	0	1
6	FECSFPCKL	15	0	1	0	1	0	2	0	0	2	3	2	2	0	0	0	0	1	0	0	1	0
	SIGGPG I GPKVSAGS	-						Ī															
61	LYCLCPG	16	1	0	1	3	0	0	0	1	2	3	2	2	0	0	0	0	1	0	0	0	1
62	TCFCFSVAC RLDTGITFR	18	1	1	1	1	0	3	0	0	0	1	3	1	3	0	0	2	0	0	1	0	1
	ILED I OITITIL																						

		1		1			I 1			I		1 1							I	I 1			
63	TNKQNWTQA LCCQKGQI	25	1	1	1	1	0	0	2	0	1	2	3	1	2	2	5	1	2	0	0	0	3
SA7	YQSWD <u>V</u> WD GVGYN <mark>C</mark>	14	0	0	2	0	0	0	2	2	0	2	1	1	0	1	1	0	0	0	2	0	-2
65	ADTLCCP <u>V</u> R CGQTFSCIA	18	2	1	1	1	0	1	0	0	1	1	4	1	2	0	1	1	0	0	1	0	0
66	GAETACLTN NTCFEAQAC CYFTI	23	4	0	0	2	0	2	0	1	0	1	4	0	4	2	1	0	0	0	0	2	-2
67		15	0	0	1	1	0	0	0	1	0	3	2	0	2	0	1	1	2	0	1	0	2
68	ACSATYVPC <u>VV</u> LTEI	96	2	1	3	1	0	0	0	1	1	0	2	10	11	5	7	3	5	1	6	1	1
69	ECIGGGRGR CSF <u>V</u> SPQSE RGGVGDEK	26	0	1	2	0	0	1	0	0	1	7	2	3	0	0	1	3	1	0	1	3	0
70	CACFKKTEI WFIR	13	1	2	0	0	0	2	1	0	0	0	2	0	1	0	0	1	2	0	0	1	2
71	FGTCFIGRNT TDGK <u>V</u> RITW YWV	22	0	2	2	0	0	2	2	1	0	3	1	0	4	1	0	2	1	0	1	0	2
72	ACIDCFTRYG TDEE <u>V</u> TLIDD	20	1	2	1	1	0	1	0	1	0	1	2	0	3	0	0	1	0	0	4	2	-5
SA1	AGSANPQGE DPWCTWDY PICINHK	24	2	2	0	0	0	0	2	1	3	2	2	1	1	2	1	0	1	1	2	1	-2
74	GHG <u>V</u> TFYNP CSTLIMTLKC CTKMLA <u>V</u> CP	29	1	1	2	3	2	1	0	1	2	2	4	1	4	1	0	0	3	1	0	0	3
75	K GQAKQSIR <u>V</u> CRRTLKS	16	1	1	1	1	0	0	0	0	0	1	1	2	1	0	2	3	2	0	0	0	5
76	ESCPT <u>V</u> PICG NMNFGCCTS TGV	22	0	1	2	0	1	1	0	0	2	3	4	2	3	2	0	0	0	0	0	1	-1
77	QFGSYCMCH HKTLCKNDS VDL	21	0	0	1	2	1	1	0	1	0	1	3	2	1	1	1	0	2	2	2	0	0
78	ACPSTFTIDA CAATGCNPK DI	22	4	1	0	1	0	1	0	0	2	1	2	2	0	0	1	2	2	0	1	0	-1
SA3	WCGNACTN WKWSNGAG TGC	19	2	0	0	0	0	0	3	0	0	4	3	1	2	3	0	0	1	0	0	0	1
	Total of AA's	178 3	102	75	80	94	18	56	57	66	86	178	178	131	149	82	55	66	87	25	89	59	Charge ^c %

Percentage %	5,9	4,3	4,6	5,4	1,0	3,2	3,3	3,8	4,9	10	10	7,6	8,6	4,7	3,2	3,8	5,0	1,5	5,1	3,4	-	43
Aminoacid presence in core peptides ^b	55	50	48	49	16	42	36	45	43	64	76	66	59	50	30	40	cor rec t or not	23	50	40	+	37
Percentage %	70	63	61	62	20	54	46	57	54	81	96	84	75	63	38	51	65	29	63	51	N ^d	20
	Α	I	V	L	Μ	F	W	Y	Р	G	С	S	Т	Ν	Q	R	ĸ	Н	D	Е		

- 87 ^a Total aminoacid per core sequence
- ⁸⁸ ^b Count of times an amino acid is observed in SyncA's core.
- ^c Summary of net charge² found in SyncA's. Percentage
- 90 ^d Neutral charge (N)

100 **Supplementary Table S2**. Summary of plasmids and strains used in this study. All the used plasmids were cloned into *L. lactis*

101 NZ9000.

Strain	Mutations	Characteristic	References
Micrococcus flavus		Sensitive strain	3
Lactococus lactis NZ9000	pepN:nisRK	Nisin inducible strain used in cloning and peptides expression	4
pNZ-nisP, pIL253		NisP soluble producer strain, Cm ^R , Ery ^R	3
pNZe-NisP8H		Ery ^{R,} Cm ^{R.} NisP producer strain	3
pTLR-SyncM		SyncM lanthipeptide synthase cloned under nisin inducible promoter (<i>P_{nis}</i> promoter), Ery ^R	6
pNZ8048		Nisin inducible expression vector, Cm ^R ,	5
pNZ8048-SyncA2		SyncA2 cloned under P _{nis} promoter in pNZ8048 Cm ^R	6
pNZ8048-SA2 -S12A	S12A	SA2 -S12A cloned under P _{nis} promoter, Cm ^R	
pNZ8048-SA2-SWAP	Ring(C2S/S12C)	SA2-SWAP cloned under P _{nis} promoter, Cm ^R	This work
pNZ8048-SA2-+1A	+1A (P4_F5insA)	under P _{nis} promoter, Cm ^R	This work

pNZ8048- SA2-+2A	+2A (P4_F5insAA)	under P _{nis} promoter, Cm ^R	This work
pNZ8048- SA2-+3A	+3A (P4_F5insAAA)	under P _{nis} promoter, Cm ^R	This work
pNZ8048- SA2-+4A	+4A (P4_F5insAAAA)	under P _{nis} promoter, Cm ^R	This work
pNZ8048-SyncA6		SyncA6 cloned under under P _{nis} promoter, Cm ^R	5
pNZ8048-SyncA6- SA6-SC	Ring1(C2S/S15C)-Ring2(S3C /C14S)	SA6-SC cloned under P _{nis} promoter, Cm ^R	This work
pNZ8048-SyncA6- SA6-AS	∆Ring1(C2A/S15A)	SA6-AS cloned under P _{nis} promoter, Cm ^R	This work
pNZ8048-SyncA6- SA6-AC	∆Ring1 (C2A/S15A)- Ring2(S2C /C14S)	SA6-AC cloned under P _{nis} promoter Cm ^R	This work
pNZ8048-SyncA6- SA6-CA	∆Ring2(S2A/C14S)	SA6-CA cloned under P _{nis} promoter Cm ^R	This work
pNZ8048-SyncA6- SA6-SA	Ring1(C2S/S15) - ∆Ring2(S2A/C14S)	SA6-SA cloned under P _{nis} promoter Cm ^R	This work
pNZ8048-SyncA2LE- SA2.1	F5K	SA2.1 cloned after SA2- LEADER -ASPR under P _{nis} promoter, Cm ^R	This work
pNZ8048-SyncA2LE- SA2.2	F5K_D9K	SA2.2 cloned after SA2- LEADER -ASPR under P _{nis} promoter, Cm ^R	This work
pNZ8048-SyncA2LE- SA-2.3	F5W_Y8W_D9R_L13R_L14R- ∆S15-∆P16	SA-2.3 cloned after SA2-LEADER-ASPR under P _{nis} promoter, Cm ^R	This work
pNZ8048-SyncA2LE- SA-2.4	Most of the structure change	SA-2.4 cloned after SA2- LEADER -ASPR pNZ8048, under P _{nis} promoter, Cm ^R	This work
pNZ8048-SyncA2LE- SA-2.5	Most of the structure change	SA-2.5 cloned after SA2-LEADER ASPR pNZ8048, under P _{nis} promoter, Cm ^R	This work
pNZ8048-SyncA2LE- SAUW.1	Q1R_N7R	SAUW.1cloned after SA2- LEADER -ASPR under P _{nis} promoter, Cm ^R	This work
pNZ8048-LACM	insS15 ⁷	LACM cloned after SA2- LEADER -ASPR pNZ8048, under P _{nis} promoter, Cm ^R Ery ^R , <i>sync</i> M cloned in pTLR under P _{nis} promoter	This work

pNZ8048- LACPINM	S16C ⁷	LACPINM cloned after SA2- LEADER -ASPR pNZ8048, under P _{nis} promoter, Cm ^R	This work
pNZ8048BACM	C3S ⁸	BACM cloned after SA2- LEADER -ASPR pNZ8048, under P _{nis} promoter, Cm ^R	This work
pNZ8048 - SUB3M	insS3_insC14 ⁹	SUB3M cloned after SA2- LEADER -ASPR pNZ8048, under P _{nis} promoter, Cm ^R	This work
pNZ8048 - M1M	Murepavadin mimic ¹	M1M cloned after SA2- LEADER -ASPR pNZ8048, under P _{nis} promoter, Cm ^R	This work
pNZ8048 - M2M	Murepavadin mimic	M2M cloned after SA2- LEADER -ASPR pNZ8048, under P _{nis} promoter, Cm ^R	This work
pNZ8048-SyncA7		under P _{nis} promoter Cm ^R	6
pNZ8048-SyncA7LE- SyncA7.1	D5K_D8K	Desired core peptide was cloned after SA7- LEADER GG pNZ8048, under P _{nis} promoter, Cm ^R Ery ^R , <i>sync</i> M cloned in pTLR under P _{nis} promoter	This work
pNZ8048-SyncA7LE- SyncA7.2	-Y1R_G2R_D5R_D8R_Y12R	Desired core peptide was cloned after SA7-LE LEADER GG pNZ8048, under P _{nis} promoter, Cm ^R Ery ^R , <i>sync</i> M cloned in pTLR under P _{nis} promoter	This work
pNZ8048-SyncA2LE- SA2.2, pTLR-SyncM	F5K_D9K	Desired core peptide was cloned after SA2- LEADER -ASPR pNZ8048, under P _{nis} promoter, Cm ^R Ery ^R , <i>sync</i> M cloned in pTLR under P _{nis} promoter	This work
pNZ8048-SyncA2LE- SA-2.3, pTLR-SyncM	F5W_Y8W_D9R_L13R_L14R- ∆S15-∆P16	Desired core peptide was cloned after SA2- LEADER-ASPR pNZ8048, under P _{nis} promoter, Cm ^R Ery ^R , <i>sync</i> M cloned in pTLR under P _{nis} promoter	This work
pNZ8048-SyncA2LE- SA-2.4, pTLR-SyncM	Most of the structure change	Desired core peptide was cloned after SA2- LEADER -ASPR pNZ8048, under P _{nis} promoter, Cm ^R Ery ^R , <i>sync</i> M cloned in pTLR under P _{nis} promoter	This work

pNZ8048-SyncA2LE- SA-2.5, pTLR-SyncM	Most of the structure change	Desired core peptide was cloned after SA2- LEADER ASPR pNZ8048, under P _{nis} promoter, Cm ^R Ery ^R , <i>sync</i> M cloned in pTLR under P _{nis} promoter	This work
pNZ8048-SyncA2LE- SAUW.1, pTLR-SyncM	-Q1R_N7R	Desired core peptide was cloned after SA2- LEADER -ASPR pNZ8048, under P _{nis} promoter, Cm ^R Ery ^R , <i>sync</i> M cloned in pTLR under P _{nis} promoter	This work
pNZ8048-LACM_, pTLR- SyncM	_+S15 ⁷	Desired core peptide was cloned after SA2- LEADER -ASPR pNZ8048, under P _{nis} promoter, Cm ^R Ery ^R , <i>sync</i> M cloned in pTLR under P _{nis} promoter	This work
pNZ8048- LACPINM, pTLR- SyncM	S16C ⁷	Desired core peptide was cloned after SA2- LEADER -ASPR pNZ8048, under P _{nis} promoter, Cm ^R Ery ^R , <i>sync</i> M cloned in pTLR under P _{nis} promoter	This work
pNZ8048BACM, pTLR- SyncM	C3S ⁸	Desired core peptide was cloned after SA2- LEADER -ASPR pNZ8048, under P _{nis} promoter, Cm ^R Ery ^R , <i>sync</i> M cloned in pTLR under P _{nis} promoter	This work
pNZ8048-SUB3M, pTLR- SyncM	+S3+C14 ⁹	Desired core peptide was cloned after SA2- LEADER -ASPR pNZ8048, under P _{nis} promoter, Cm ^R Ery ^R , <i>sync</i> M cloned in pTLR under P _{nis} promoter	This work
pNZ8048- M1M, pTLR-SyncM	Murepavadin mimic ¹	Desired core peptide was cloned after SA2- LEADER -ASPR pNZ8048, under P _{nis} promoter, Cm ^R Ery ^R , <i>sync</i> M cloned in pTLR under P _{nis} promoter	This work
pNZ8048 - M2M, pTLR- SyncM	Murepavadin mimic	Desired core peptide was cloned after SA2- LEADER -ASPR pNZ8048, under P _{nis} promoter, Cm ^R Ery ^R , <i>sync</i> M cloned in pTLR under P _{nis} promoter	This work

pNZ8048-SyncA7		under P _{nis} promoter Cm ^R	6
pNZ8048-SyncA7LE- SyncA7.1	-D5K_D8K	Desired core peptide was cloned after SA7- LEADER GG pNZ8048, under P _{nis} promoter, Cm ^R Ery ^R , <i>sync</i> M cloned in pTLR under P _{nis} promoter	This work
pNZ8048-SyncA7LE- SyncA7.2	-Y1R_G2R_D5R_D8R_Y12R	Desired core peptide was cloned after SA7-LE LEADER GG pNZ8048, under P _{nis} promoter, Cm ^R Ery ^R , <i>sync</i> M cloned in pTLR under P _{nis} promoter	This work

103 **Reference**

124

- 104 (1) McLaughlin, M. I., and van der Donk, W. A. (2020) The Fellowship of the Rings:
 105 Macrocyclic Antibiotic Peptides Reveal an Anti-Gram-Negative Target,
 106 *Biochemistry* 59, 343-345.
- 107 (2) Wang, G., Li, X., and Wang, Z. (2016) APD3: the antimicrobial peptide database
 108 as a tool for research and education, *Nucleic Acids Res* 44, D1087-1093.
- 109 (3) Montalban-Lopez, M., Deng, J., van Heel, A. J., and Kuipers, O. P. (2018)
 110 Specificity and Application of the Lantibiotic Protease NisP, *Front Microbiol 9*,
 111 160.
- (4) Kuipers, O. P., de Ruyter, P. G., Kleerebezem, M., and de Vos, W. M. (1997)
 Controlled overproduction of proteins by lactic acid bacteria, *Trends Biotechnol 15*, 135-140.
- (5) Kuipers, O. P., de Ruyter, P. G. G. A., Kleerebezem, M., and de Vos, W. M. (1998)
 Quorum sensing-controlled gene expression in lactic acid bacteria, *Journal of Biotechnology* 64, 15-21.
- (6) Arias-Orozco, P., Inklaar, M., Lanooij, J., Cebrian, R., and Kuipers, O. P. (2021)
 Functional Expression and Characterization of the Highly Promiscuous
 Lanthipeptide Synthetase SyncM, Enabling the Production of Lanthipeptides
 with a Broad Range of Ring Topologies, *ACS Synth Biol 10*, 2579-2591.
- (7) van der Kraan, M. I. A., Groenink, J., Nazmi, K., Veerman, E. C. I., Bolscher, J. G.
 M., and Nieuw Amerongen, A. V. (2004) Lactoferrampin: a novel antimicrobial

peptide in the N1-domain of bovine lactoferrin, Peptides 25, 177-183.

(8) Wu, M., and Hancock, R. E. W. (1999) Improved Derivatives of Bactenecin, a Cyclic
 Dodecameric Antimicrobial Cationic Peptide, *Antimicrobial Agents and Chemotherapy* 43, 1274-1276.

- (9) Hilpert, K., Volkmer-Engert, R., Walter, T., and Hancock, R. E. (2005) High throughput generation of small antibacterial peptides with improved activity, *Nat Biotechnol 23*, 1008-1012.
- 131
- 132