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1. Command Lines

1.1. Simulations

1.1.1. Varsim [1]

./varsim.py --vc_in_vcf tests/quickstart_test/21_5_10Mb.vcf.gz --sv_insert_seq
insert_seq.txt --sv_dgv GRCh37_hg19_supportingvariants_2013-07-23.txt
--reference $REFERENCE_GENOME --id varsimu --sv_num_del 2000
--sv_num_dup 2000 --sv_percent_novel 0.01 --sv_min_length_lim 1000
--sv_max_length_lim 10000 --total_coverage 10 --java_max_mem 50g
--simulator_executable art_bin_GreatSmokyMountains/art_illumina

1.1.2. Gargammel [2]

perl gargammel.pl -c $COVERAGE --comp 0,0,1 -damage 0.024,0.36,0.0097,0.55 -f
src/sizefreq.size.gz -s /usr/local/sw/gargammel/src/sizedist.size.gz -ss HS25 -o
$OUTPUT

1.1.3 Adapter Removal and Merge [3]



AdapterRemoval --file1 $LEFT_PAIR --file2 $RIGHT_PAIR --qualitybase 33 --gzip
--qualitymax 60 --trimns --collapse --minalignmentlength 11 --basename $FILENAME
--settings $FILENAME.settings

cat $FILENAME.collapsed.gz $FILENAME.collapsed.truncated.gz
$FILENAME.pair1.truncated.gz
$FILENAME.pair2.truncated.gz>$FILENAME.all.fastq.gz

1.2. Alignment

Alignment to the reference genome [4]:

bwa aln -l 16500 -n 0.01 -o 2 -t ${cores} ${REFERENCE_GENOME}
${mergedname} \
| $bwa samse ${REFERENCE_GENOME} - ${mergedname} \
| samtools view -F 4 -h -Su - \
| samtools sort - -o ${alndir}/mapped/${filebase}.${refbase}.bam

Filter out PCR duplicates (FilterUniqueSAMCons_rand.py) [5]:

samtools view -F 4 -h ${alndir}/mapped/${filebase}.${refbase}.bam \
| python ${scriptdir}/FilterUniqueSAMCons_rand.py | samtools view -h -Su - \
> ${alndir}/mapped/${filebase}.${refbase}.cons.bam

Filter out high mismatch and short reads (percidentity_threshold.py):

samtools calmd ${alndir}/mapped/${filebase}.${refbase}.cons.bam
${REFERENCE_GENOME} \
| python ${scriptdir}/percidentity_threshold.py 0.9 35 ${TMPDIR}/short.txt \
| samtools view -bS - > ${alndir}/${filebase}.${refbase}.cons.90perc.bam

1.3. CNV Discovery and Genotyping

CONGA:

conga -i $BAM_FILE --sonic $SONIC_FILE --ref $REFERENCE_GENOME
--dels $DELS_INPUT --dups $DUPS_INPUT --mappability
$MAPPABILITY_FILE -o $OUTPUT



CNVNator [6]:

cnvnator -root file.root -tree $BAM_FILE -chrom 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 X Y MT

cnvnator -root file.root -his 1000 -d /ref/

cnvnator -root file.root -stat 1000

cnvnator -root file.root -partition 1000

cnvnator -root file.root -call 1000 >$OUTPUT

* Note that we used window of 100 for BAM files with small variations and 1000 in all
the other BAMs.

FREEC [7]:

freec -conf data/config_WGS_human.txt

* Default configurations were used in the config file of FREEC

GenomeSTRiP [8]:

java -cp $SV_CLASSPATH ${javaMaxMemory} \
org.broadinstitute.gatk.queue.QCommandLine \
-S ${SV_DIR}/qscript/SVPreprocess.q \
-S ${SV_DIR}/qscript/SVQScript.q \
-configFile ${SV_DIR}/conf/genstrip_parameters.txt \
-tempDir tmp \
-gatk ${SV_DIR}/lib/gatk/GenomeAnalysisTK.jar \
-cp ${SV_CLASSPATH} \
-jobLogDir metadata/logs \
-R $REFERENCE_GENOME \
-md metadata \
-ploidyMapFile ${ploidy} \
-I ${bamFileList} \
-genomeMaskFile  $REFERENCE_GENOME_MASK36 \
-copyNumberMaskFile  $REFERENCE_GENOME_CN2_MASK \
-bamFilesAreDisjoint true \
-computeGCProfiles true \
-deleteIntermediateDirs true \



-jobRunner ParallelShell \
-run \

java -cp ${SV_CLASSPATH} -Xmx4g \
org.broadinstitute.gatk.queue.QCommandLine \
-S ${SV_DIR}/qscript/SVGenotyper2.q \
-S ${SV_DIR}/qscript/SVQScript.q \
-gatk ${SV_DIR}/lib/gatk/GenomeAnalysisTK.jar \
-cp ${SV_CLASSPATH} \
-configFile ${SV_DIR}/conf/genstrip_parameters.txt \
-jobLogDir ${runDir}/logs \
-tempDir ${SV_TMPDIR} \
-R ${referenceFile} \
-md ${mdPath} \
-genomeMaskFile $REFERENCE_GENOME_MASK36 \
-genderMapFile ${SV_DIR}/input/sample_gender.report.txt \
-I ${bamFileList} \
-parallelRecords 1000 \
-runDirectory ${runDir} \
-vcf ${vcfFile} \
-skipAnnotator CNQuality \
-O /${runDir}/output_file.genotypes.vcf \
-jobRunner ParallelShell \
-gatkJobRunner ParallelShell \
-run

* We used default mask files for human genome grch37 with k-mer size 36.

mrCaNaVaR

Alignment using mrsFAST [9]:

mrsfast --search $MASKED_REFERENCE_GENOME --seq $FASTQ_FILE
--seqcomp --threads 24 -o sim.sam --disable-nohits --crop 36

Variant Calling using mrCaNaVaR [10, 11]:

mrcanavar --read -conf human_g1k_v37.cnvr -samlist $SAM_FILE -depth
$DEPTH_FILE_NAME

mrcanavar --call human_g1k_v37.cnvr -depth $DEPTH_FILE_NAME -o
$OUTPUT_FILE



1.4. BEDTools [12]

TRUE_PREDICTION = ~/bedtools2/bin/intersectBed -a $TRUE_CALLS -b del.bed -f
0.5 -wa -r|grep -v X|grep -v Y|grep -v GL|grep -v MT|sort -u|wc

FALSE_PREDICTION = ~/bedtools2/bin/intersectBed -a del.bed -b $TRUE_CALLS
-f 0.5 -r -wa -v|grep -v GL|grep -v X|grep -v Y|grep -v MT|sort -u|wc

FDR = FALSE_PREDICTION / (TRUE_PREDICTION + FALSE_PREDICTION)

RECALL = TRUE_PREDICTION / (TRUE_PREDICTION + FALSE_PREDICTION)

PRECISION = TRUE_PREDICTION / TRUE_CALLS

F-SCORE = (2 * PRECISION * RECALL) / (PRECISION + RECALL)

1.5 Depth of coverage calculation [13]

samtools view -b -q 30 -F 4 XXX.bam | genomeCoverageBed -ibam - -g
human_g1k_v37.fasta >coverage.cov

grep genome coverage.cov | awk '{NUM+=$2*$3; DEN+=$3} END {print NUM/DEN}'

1.6 Down-sampling

java -jar ~/picard.jar DownsampleSam I=XXX.bam O=XXX_0004.bam P=0.004

* In our experiments, we used “P” values of 0.7, 0.3, 0.1, 0.05, 0.03, 0.01, 0.04, 0.03
for Yamnaya, 0.7, 0.3, 0.1, 0.05, 0.03, 0.01, 0.04 for Saqqaq and 0.7, 0.3, 0.1, 0.05,
0.03 for Mota genomes.



2. Supplemental Notes

Supplemental Note 1:

The vast majority of structural variant studies (>92%) available in the European Variation
Archive (EVA) are focused on humans (as of March 2022), while the NCBI dbVar has
stopped storing non-human SVs. Nevertheless, the EVA database compiles all types of
genetic variation data including CNVs from species ranging from the chimpanzee, gorilla,
orangutan, rhesus macaque, dog, cow, horse, pig, mouse, zebrafish, and sorghum [14].
Furthermore, CNVs for other organisms are also available in specific databases such as
those for Arabidopsis [15] and the Anopheles mosquito [16].

Supplemental Note 2:

Here we discuss the reasons for CONGA’s under-performance in genotyping duplications in
down-sampling experiments. CONGA’s accuracy was particularly low in trials using the
Yamnaya genome. This was despite high performance in duplication estimation with
simulated genomes. Studying the results in further detail, we noticed that only 47 (2.8%) of
the 1,661 originally called duplication events in the full Yamnaya genome were genotyped
using read-depth information (i.e. the C-score), while the rest were genotyped using
paired-end read information. In contrast, 35% (1498/4027) and 27% (172/638) of duplication
events were genotyped using read-depth information on the full Saqqaq and Mota genomes,
respectively.

This difference, in turn, can explain CONGA's under-performance at low coverage in the
Yamnaya genome: As coverage decreases, the number of paired-end reads supporting a
duplication falls rapidly, compromising recall. Meanwhile, the lack of usable read-depth
information in the full Yamnaya genome could be related to alignment quality filters applied
to the BAM file before data publication. Such filtering likely erased the read-depth signature,
leaving only paired-end information available, which is not helpful at low coverages. This
scenario is supported by the fact CONGA duplication calls are clearly more successful in the
Saqqaq and Mota genomes at low coverage. These two were retrieved as original FASTQ
files instead of processed BAM files. The results underscore the need for publishing raw
FASTQ files rather than BAM files to allow healthy reuse of the data.

Supplemental Note 3:

Here we describe how we selected the divergent, or outlier genome set. We genotyped n=71
real ancient genomes from 10 different laboratories, using all 10,002 human-derived
deletions identified in the 1000 Genomes Project African dataset. The presence of technical
effects is suggested by a marginally significant laboratory-of-origin effect on deletion
frequencies per genome in this set (Kruskal-Wallis test p=0.08). We therefore created
heatmaps, multidimensional scaling plots summarizing Euclidean distance matrices,
hierarchical clustering trees summarizing Manhattan distance matrices, and principal



component analysis plots (PCA) summarizing deletion frequencies (the latter after removing
any NAs). We intentionally used a variety of methods in order to capture different potential
sources of variability. The results suggested outlier behavior across n=11 genomes, some
that we observed to have relatively low coverage (e.g. ne4, ko2, MA1, DA379), were
produced with the capture protocol (Bon002), or originated from the same laboratory despite
having variable population origins (e.g. R1, R2, R3, R4, R7, R9; which include Mesolithic
and Neolithic genomes) (also see S2 Table). Removing these 11 genomes and repeating the
analysis with the remaining 60, we again found a significant laboratory-of-origin effect on
deletion frequencies per genome (Kruskal-Wallis test p=0.02). The PCA, MDS and
hierarchical clustering analyses on the 60 genomes again suggested the presence of a
number of divergent cases, mainly from the same laboratories (Iceman, RISE493, RISE495,
RISE496, RISE505, RISE511, SI.38, SI.41, SI.45, SI.53). The genome Chan (a European
Mesolithic individual) also showed divergent behavior in the PCA, but this genome has been
previously identified as being highly homozygous [17], and it was in fact close to other
European Mesolithic individual genomes in its deletion profile, suggesting that the outlier
behavior may be related to its excess homozygosity (indeed this genome had the highest
number of homozygous deletions among the 50). We therefore did not remove Chan from
the set. We recommend similar quality controls on genotyped deletion datasets created from
heterogeneous ancient genomes.

Supplemental Note 4:

Here we describe how we make use of split-read and paired-end signatures for duplication
genotyping

Beyond read-depth, information of paired-end reads or read fragments that do not linearly
map to the genome can be used to identify CNVs. Ancient genomes are sometimes
single-end and sometimes paired-end sequenced, but in the latter case, short overlapping
reads are typically merged into a single read before alignment. Ancient genome data is thus
practically single-read. However, the split-read method can be applied on single-read ancient
genome data, which emulates paired-end information for genotyping duplications. This
approach is visualized in S14 Fig. We therefore designed CONGA to include both
paired-end and single-end reads as input and to evaluate paired-end signature information.

First, assume a read of length L mapped to position pos_x in the reference genome, where
pos_x is assumed to be one of the breakpoints of a putative CNV. There always exists a
subsequence ≥ L/2 that will have at least one mapping in the reference genome with some
error threshold. Thus, we can split a read into two subsequences, assigning the actual
mapping to one of the pairs and remapping the other subsequence ("split segment") as a
second pair. There are two possible split strategies: an even decomposition, where both
subsequences are of equal lengths, or an uneven decomposition, where the subsequences
are of unequal lengths. Given the infeasibility of testing each split position and the fact that
ancient reads are typically already short, we follow [18] and split the read from the middle to
obtain two reads with equal lengths L/2. If a read overlaps a duplication breakpoint, and
assuming that the expected position of the breakpoint will be uniformly distributed within the
read, the split segment will map to the reference genome with insert size -the distance
between the split-read pairs- greater than zero.



With this simple observation, the need to observe all possible breakpoints can be eliminated.
Thus, given a single-end read Rsei, we define Rpei = (l(Rpei [posx : posx + RL/2]) and r(Rpei

[posy : posy + RL/2])), where posx is the initial mapping position of the single-end read, posy is
the remapping position of the split read, RL is the length of the single-end read observed
before the split, l(Rpei [posx : posx + RL/2]) is the left pair within posx and posx + RL/2 and
r(Rpei [posy : posy + RL/2]) is the right pair within posy and posy + RL/2 of the paired-end
reads.

According to our remapping strategy, we use a seed-and-extend approach similar to that
implemented in mrFAST [19], where a read is allowed to be mapped to multiple positions.
Our main concern here is that the split segment, due to its short length, can be mapped to
unrealistically high numbers of positions across the genome. To overcome this problem we
use the approach developed in TARDIS [20], allowing the split segment to be mapped only
up to 10 positions within close proximity (15 kbps by default) of the original mapping position
and applying a Hamming distance threshold for mismatches (5% of the read length by
default).

Based on the distance between the reads (insert-size) and orientation, we then evaluate the
type of putative CNV. As S15 Fig shows, if the split segment maps behind the initially
mapped segment of the same pair to generate a reverse-forward mapping orientation, this
would be an indication of a duplication.

In order to utilize this paired-read information, for each CNV locus used as input to our
algorithm, we count the number of read-pair (i.e. split segments) that map around +/- 5 kbps
of the breakpoints. Each such read-pair is treated as one observation. We use these counts
in combination with the C-score (read-depth information) to genotype duplications (see
Methods Section). We do not use this read-pair information for genotyping deletions due to
its low effectiveness in our initial trials (Table E in S1 Table).
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