
S5: Analyses with a reduced number of method com-

binations

We expected over-optimistic bias to decrease if fewer method combinations were tried. To

investigate this hypothesis, we repeated our analyses with a reduced number of method

combinations: 5 instead of 58 for the clustering of bacterial genera, 3 instead of 14 for

hub detection and differential network analysis, and 5 instead of 31 for the clustering of

samples.

The subsets of method combinations were chosen as follows:

Research task 1 (clustering of bacterial genera): The method of association estimation was

fixed and only the type of cluster algorithm was varied (hierarchical clustering, spectral

clustering [1], fast greedy modularity optimization [2], Louvain community detection [3],

and manta [4]), leading to five method combinations overall. For (dis)similarity based

clustering, association estimation was performed with the semi-parametric rank-based

correlation (latentcor) [5, 6] combined with the mclr normalization. For network-based

clustering, we used the SPRING method [7], which combines the latentcor correlation

estimation with the neighborhood selection technique [8] for sparse estimation of partial

correlations. The latentcor and SPRING methods were chosen because they are the most

recently proposed methods and can be tentatively considered as “state of the art” among

compositionally aware association estimation methods.

Research task 2 (hub detection): We chose three method combinations for network gener-

ation that represent three different classes of association estimation: Pearson correlation

with clr normalization and sparsification via t-test (as an example of a simple method

based on classical correlation estimation), the SPRING method (as a more advanced

method that can estimate partial correlations), and the proportionality measure [9, 10]

with clr normalization and sparsification via threshold (as an alternative approach that

is not based on correlations).

Research task 3 (differential network analysis): The same three method combinations

that were used in hub detection were selected.

Research task 4 (clustering of samples): Analogously to the first research task, the method

for calculating dissimilarities between the samples was fixed and only the choice of cluster

algorithm was varied, resulting in five method combinations. For DMM clustering [11],

dissimilarities are not required. For the other cluster algorithms, dissimilarities were

calculated with the Aitchison distance [12] which is a very well-known and popular method

for this purpose. The dissimilarities were then used as input for PAM [13] and spectral

clustering. Moreover, clustering with fast greedy modularity optimization and Louvain

community detection was applied to the sparsified dissimilarities, where sparsification was

performed with the K-nearest neighbor method.
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The results are displayed in Tables A and B which have the same structure as Tables 1

and 2 in the main manuscript. They show the mean, median, and standard deviation

of the difference as well as the scaled difference between the value of the evaluation

criterion on the validation data and the value on the discovery data (over the 50 samplings

of discovery/validation data). Additionally, the effect sizes (mean divided by standard

deviation) are reported.

Research task 1: clustering of bacterial genera

ARIvalid −ARIdiscov
ARIvalid−ARIdiscov

ARIdiscov

n mean median sd mean/sd mean median sd mean/sd

100 -0.024 -0.021 0.045 -0.53 -13.0% -15.7% 28.4% -0.46
250 -0.029 -0.012 0.051 -0.57 -15.9% -8.1% 29.7% -0.53
500 -0.019 -0.013 0.039 -0.49 -9.9% -8.6% 23.1% -0.43
1000 -0.030 -0.026 0.035 -0.86 -17.1% -16.3% 19.4% -0.88
4000 -0.014 -0.007 0.029 -0.48 -8.2% -4.3% 17.6% -0.47

Research task 2: hub detection

#hubsvalid −#hubsdiscov
#hubsvalid−#hubsdiscov

#hubsdiscov

n mean median sd mean/sd mean median sd mean/sd

100 -1.72 -1 2.47 -0.70 -18.2% -14.3% 27.4% -0.66
250 -0.70 -0.5 2.22 -0.32 -4.8% -4.5% 25.9% -0.19
500 -0.62 -1 1.94 -0.32 -4.8% -9.5% 20.6% -0.23
1000 -0.78 -1 1.97 -0.40 -7.3% -11.1% 23.0% -0.32
4000 -0.90 -1 1.61 -0.56 -9.4% -11.1% 18.7% -0.50

Table A. For research tasks 1 and 2: Mean, median, and standard deviation (over 50
samplings of discovery/validation data) of the difference (both unscaled and scaled)
between the value of the evaluation criterion on the validation data and the
corresponding value on the discovery data. Additionally, the effect size (mean divided
by standard deviation) is reported. ARIdiscov denotes the best ARI on the discovery
data and ARIvalid the ARI resulting from the corresponding method combination on the
validation data. The quantities #hubsdiscov,#hubsvalid (number of hubs) are defined
analogously.

As Tables A and B show, the means and medians of the differences are negative for most

research tasks and sample sizes. The only exception can be seen for the scaled GCD

differences for the third research task; here, the means are all positive, indicating better

results on the validation data on average. However, the corresponding standard deviations

are large and the effect sizes are very small, indicating that the “improved” results on

the validation data should probably not be over-interpreted. More detailed analyses show

that the positive means are largely driven by a few outliers. Indeed, the median scaled

differences are still negative, as are the mean and median unscaled differences.

Overall, the results indicate that some over-optimistic bias still exists even if fewer method

combinations are tried. However, as expected, the absolute values of the mean/median
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Research task 3: differential network analysis

GCDvalid −GCDdiscov
GCDvalid−GCDdiscov

GCDdiscov

n mean median sd mean/sd mean median sd mean/sd

100 -0.063 -0.130 0.649 -0.10 11.6% -24.9% 101.2% 0.11
250 -0.213 -0.154 0.628 -0.34 3.3% -21.2% 101.4% 0.03
500 -0.066 -0.025 0.289 -0.23 0.7% -9.1% 71.6% 0.01

Research task 4: clustering of samples

ASWvalid −ASWdiscov
ASWvalid−ASWdiscov

ASWdiscov

n mean median sd mean/sd mean median sd mean/sd

100 -0.023 -0.017 0.068 -0.34 -9.8% -12.4% 41.0% -0.24
250 -0.011 -0.014 0.025 -0.45 -12.2% -20.0% 37.8% -0.32
500 -0.006 -0.005 0.017 -0.33 -6.3% -9.6% 33.2% -0.19
1000 -0.007 -0.005 0.013 -0.58 -12.3% -10.0% 25.0% -0.49
3500 -0.001 -0.002 0.010 -0.07 0.0% -5.9% 25.4% 0.00

Table B. For research tasks 3 and 4: Mean, median, and standard deviation (over 50
samplings of discovery/validation data) of the difference (both unscaled and scaled)
between the value of the evaluation criterion on the validation data and the
corresponding value on the discovery data. Additionally, the effect size (mean divided
by standard deviation) is reported. GCDdiscov denotes the largest GCD on the discovery
data and GCDvalid the GCD resulting from the corresponding method combination on
the validation data. The quantities ASWdiscov, ASWvalid (average silhouette width) are
defined analogously.

differences as well as the effect sizes tend to be smaller compared to Tables 1 and 2. Put

differently, over-optimistic bias is less pronounced if fewer method combinations are tried.

Of course, the exact amount of over-optimistic bias depends on the chosen (subsets of)

method combinations, i.e., the results might be slightly different when choosing different

subsets of methods.

Tables C and D show additional stability analyses for the first and second research task

based on the reduced number of tried method combinations, analogously to Tables 3 and

4 in the main manuscript. Overall, the index values are similar compared to Tables 3

and 4, i.e., the extent of stability remains roughly the same when reducing the number

of tried methods. For the second research task (hub detection), the Jaccard values are

somewhat smaller for the reduced number of tried methods at sample sizes of n = 100

and n = 4000. This might be explained by the following observation: at these sample

sizes, the SPRING method is more frequently selected in the setting with the reduced

number of methods combinations compared to the setting with the full set of method

combinations; at the same time, SPRING tends to yield lower stability values. However,

based on this limited analysis, we cannot determine whether SPRING generally tends to

produce more unstable results with respect to hub detection.
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ARIstab

n mean median sd

100 0.408 0.403 0.138

250 0.491 0.415 0.175

500 0.599 0.558 0.180

1000 0.620 0.587 0.177

4000 0.807 0.886 0.164

Table C. Mean, median, and standard deviation of ARIstab, i.e., the ARI between the
clusterings on discovery and validation data, over 50 samplings of discovery/validation
data.

Jaccard Cosine similarity

n mean median sd mean median sd

100 0.127 0.083 0.106 0.834 0.878 0.130

250 0.339 0.333 0.135 0.906 0.955 0.109

500 0.465 0.458 0.144 0.950 0.964 0.047

1000 0.539 0.545 0.134 0.945 0.967 0.062

4000 0.548 0.569 0.186 0.944 0.965 0.054

Table D. Mean, median, and standard deviation (over 50 samplings of
discovery/validation data) of a) the Jaccard index which compares the set of hubs
obtained on the discovery data with the set of hubs on the validation data, and b) the
cosine similarity which compares these sets of hubs, but on the level of families.
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