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Figure S1. Overall dataset, separation glioma subgroups and comparison to CPTAC/Wang et al. dataset. 

Related to Figure 1. 

A) Number of quantified proteins and high-confidence class I (localization probability > 0.75) phosphor-sites in 

filtered dataset. Samples, n=10 (ctrl CNS), n=12 (HGG-IDHmut-A), n=9 (HGG-IDHmut-B), n=11 (IDHwt), 

n=11 (codel), n=10 (non-codel). 

B) Comparison of CPTAC/Wang et al. glioma proteome data to our glioma dataset. Specifically, comparison of 

IDHwt to ctrl CNS protein fold changes [log2] (left) and IDHmut to ctrl CNS protein fold changes [log2] 

right. Entities nmf1, nmf2, nmf3 in CPTAC dataset are IDHwt. Only proteins significantly regulated (q < 

5%) in at least one dataset included: 2732 (IDHwt vs ctrl CNS) and 1351 (IDHmut vs ctrl CNS). Consistency 

of regulation: 99% concordance and Pearson r = 0.92 (IDHwt vs ctrl CNS) and 98% concordance and Pearson 

r = 0.91 (IDHmut vs ctrl CNS). Samples, this study: n=10 (ctrl CNS), n=11 (IDHwt), Wang et al.: n=10 (ctrl 

CNS), n=91 (IDHwt). 

C) IDHwt/IDHmut proteome differences depending on 1p/19q-codeletion status of IDHmut. Samples as in A. 

D) Comparison of IDHwt/IDHmut differences between datasets of this study (y axis) and CPTAC (x axis). 

Entities nmf1, nmf2, nmf3 in CPTAC/Wang et al. dataset are IDHwt. All proteins overlapping in both datasets 

(5241) shown, Pearson r = 0.57. Filtering for proteins significantly regulated (q < 5%) in both datasets, 

increases correlation to Pearson r = 0.89 (701 proteins). Outlier proteins and proteins belonging to enriched 

annotation terms of interest as in Fig. 1E highlighted. Samples, this study: n=21 (IDHmut), n=10 (IDHwt), 

CPTAC/Wang: n=6 (IDHmut), n=91 (IDHwt). 

E) Abundances of RBP1 and AKR1C3 across sample groups of this study. Samples as in A. 

F) Separation of codeleted and non-codeleted IDH-mutant samples in the combined second and third 

components of the principal component analysis of the glioma proteome. Green IDHwt, brown ctrl CNS, red 

1p/19q-codeleted IDH-mutant, blue non-1p/19q-codeleted samples. Samples as in A. 

G) Equivalence of the HGG-IDHmut-A / HGG-IDHmut-B subgroup clustering in differently filtered datasets. 

PCA analysis of dataset comprising ANOVA-significant (q < 5%) proteins (top right, 3749 proteins), dataset 

comprising proteins quantified in all 42 samples without missing values (bottom left, 2625 proteins), and 

dataset comprising the top 25% most variable proteins with highest CVs across all 42 samples (bottom right, 

1439 proteins). Samples as in A. 

H) CNV profiles across samples. Samples as in A. 

I) CNV load plots as averages within the groups of HGG-IDHmut-A and HGG-IDHmut-B. Amplifications 

highlighted as alterations in green to the right, deletions as alterations in red to the left. Samples as in A. 
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Figure S2. Analysis of HGG-IDHmut-A/B association with patient demographics, survival and tumor 

content. Related to Figure 1. 

Upon identification of the proteome-based classification, we aimed to link this classification to patient’s 

demographic data or histological correlates. 

A) Influence of patient age (top row) and tumor content (bottom row) on HGG-IDHmut-A/B separation. 

Left: Distribution of values (top: patient age at diagnosis, bottom: area % of sample that is tumor 

according to histopathological assessment) across sample groups of this study. Samples, n=10 (ctrl 

CNS), n=12 (HGG-IDHmut-A), n=9 (HGG-IDHmut-B), n=11 (IDHwt), n=11 (codel), n=10 (non-

codel). Center: Stratification of control groups (n=6 in each group) for age (top) and tumor content 

(bottom), balanced for HGG-IDHmut-A and B composition, respectively. Right: Proteome differences 

between stratified control groups, mitochondrial respiratory chain proteins highlighted.  A 

neuropathologist did not identify discerning histomorphological features, but estimated the fractions of 

the tissue section occupied by the solid tumor, the tumor infiltration zone, and the reactive CNS tissue 

for further analysis. Moderately higher total tumor area (solid + infiltration) in HGG-IDHmut-B 

comparted to A. However, no significant proteome differences between groups of samples stratified 

into ‘high tumor area’ and a ‘low tumor area’ for total tumor area, (and likewise for solid or infiltration 

area, not shown).  

B) Linkage of differential tumor content to independent cancer drivers but not the HGG-IDHmut-A/B 

separation. Linear regression model predicting protein intensity based on variables HGG-IDHmut-A/B 

status, 1p/19q codeletion status, solid tumor content, tumor infiltration area. Regression results 

showing estimators (x axis) for HGG-IDHmut-A/B status (top left), 1p/19q codeletion status (top 

right), solid tumor content (bottom left), and their significance (y axis), respectively. Correlation of 

estimators for solid tumor area and tumor infiltration area (bottom right) for proteins significant (p < 

5%) in at least one tumor area dimension. Proteins of interest highlighted including mitochondrial 

proteins (top row) and tumor suppressor, oncoproteins, and cell type markers (bottom row). Samples, 

n=12 (HGG-IDHmut-A), n=9 (HGG-IDHmut-B), n=11 (codel), n=10 (non-codel). Main features of 

HGG-IDHmut-A/B separation (mito. resp. chain complex signature, outlier proteins) confirmed, and 

1p/19q codel-associated protein regulation preserved and statistically more significant, after correction 

for covariates by regression model.  Outlier proteins associated with solid or infiltration tumor area 

distinct to the proteins linked to either subgrouping (HGG-IDHmut-A/B or 1p/19q status) but protein 

association with the two tumor area parameters highly correlated. Many high tumor content-associated 

proteins previously implicated as oncogenes, predominantly in other cancer types, including NID1, 

SYNE2, DEK, DDX6, DES, GATAD2A, SNRPE, ALOX5, HAPLN1, LAMA5, NCOR1, and 

RBM10145-157. Conversely, low tumor content proteins comprising functional CNS proteins such as 

myelin (MBP, MAG) and neuronal proteins (NFASC, STMN2), and tumor suppressors (NRGN, 

CARNS1, GPD1158-160). 

C) Relationship of HGG-IDHmut-A/B separation and differential content of astrocyte and neuron content. 

Sample numbers as in B. Left: Distribution of values (top: GFAP intensity, bottom: NEFL intensity) 

across sample groups of this study. Center: Stratification of control groups (n=6 in each group) for GFAP 

intensity (top) and NEFL intensity (bottom) balanced for HGG-IDHmut-A and B composition, balanced 

for HGG-IDHmut-A and B composition, respectively. Right: Proteome differences between stratified 

control groups, mitochondrial respiratory chain proteins and proteins of interest highlighted. No 

significant proteome alterations or differences of mitochondrial respiratory chain proteins as in HGG-

IDHmut-A/HGG-IDHmut-B comparison in these stratifications. 

D) Apparent non-regulation of microglia-associated proteins between HGG-IDHmut-A (n=12) and B (n=9) 

proteome.  

E) Comparison of proteome differences between HGG-IDHmut-A / B sample groups and differences 

between isolated astrocytes and neurons (left), astrocytes and oligodendrocytes (center), and astrocytes 

and microglia (right) accessible for mouse144. No correlation of mitochondrial protein abundance 

differences between the HGG-IDHmut-A/B subtypes with the abundance differences between isolated 

brain cell types. Proteins with q-value of 5% or lower in at least one of the two dimensions each (cell 

types, glioma subtypes) included. Neuronal (NEFL), oligodendroglial (MOG, MBP) and microglial 

marker proteins (PTPRC/CD45) labelled in red. Outlier proteins associated with HGG-IDHmut-B 

labelled in pink. Mitochondrial respiratory chain proteins green and mitochondrial ribosomal proteins 

brown. Respiratory chain complex V refers to ATP synthase. Pearson correlation coefficients for all 
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proteins, left: r = 0.41, center: r = 0.09, right: r = -0.12 and for labelled mitochondrial proteins, left: r = -

0.04, center: r = -0.03, right: r = -0.08.  Samples, n= 12 (HGG-IDHmut-A), n=9 (HGG-IDHmut-B), n=3 

(astrocytes), n=3 (oligodendrocytes DIV4), n=3 (neurons DIV15), n=3 (adult microglia).  

F) Progression-free survival of HGG-IDHmut-A (n=12) and HGG-IDHmut-B (n=9). 
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Figure S3: CCAR1 and ATRX correlation analysis, survival association of regulated chr. 7, chr. 10, and 

1p/19q proteins. Related to Figure 2. 

A) CCAR1 correlation analysis. Top: Proteins correlating to CCAR1 across all 32 tumor samples. Bottom: 

Abundances of CCAR1 and SRSF1 across all samples of dataset. Pearson coefficient r = 0.89. Sample 

groups color-coded, brown control CNS, green IDHwt, yellow HGG-IDHmut-A, pink HGG-IDHmut-B. 

B) ATRX correlation analysis. Top: Annotations enriched in proteins with extreme (high/low) Pearson 

correlation coefficients vs ATRX according to Perseus 1D annotation enrichment. IDHmut tumors 

(n=21) included. 1p/19q affiliation of proteins treated as annotation for enrichment analysis. Bottom:  

roteins correlating to ATRX across IDHmut tumors. Proteins annotated with telomerase-related terms 

color-coded (terms of top panel). Proteins linked to more than one term assigned color code of term with 

fewest proteins.  

C) Survival association of chromosome 10 (left) and chromosome 7 (right) proteins regulated between 

IDHwt (n=11) and HGG-IDHmut-B (n=9). Select outlier proteins are colored based on the association 

of their transcripts with survival in the TCGA (The Cancer Genome Atlas) study. Top: Regulation. 

Bottom: Relationship between differential abundance and genomic position of proteins encoded on 

chromosome 10 (left) or chromosome 7 (right).  

D) Survival association of chromosome arm 1p (left) and 19q (right) proteins regulated between codel 

(n=11) and non-codel IDHmut (n=10). Select outlier proteins are colored based on the association of 

their transcripts with survival in the TCGA (The Cancer Genome Atlas) study. Top: Regulation. Bottom: 

Relationship between differential abundance and genomic position of proteins encoded on chromosome 

arm 1p (left) or chromosome arm 19q (right).  
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Figure S4. Tricarboxylic acid cycle and glycolysis. Related to Figure 3. 

A) Abundance of tricarboxylic acid cycle proteins across alternatively-defined entities of this study. Clustering 

associates the HGG-IDHmut-B sample group with IDHwt and HGG-IDHmut-A with ctrl CNS. Abundance 

as sample group mean of cross-sample Z-Scored intensity. Samples, n=10 (ctrl CNS), n=11 (IDHwt), n=11 

(codel), n=10 (non-codel). 

 

B) Regulation of tricarboxylic acid cycle proteins between IDHwt (n=11) and HGG-IDHmut-B (n=9). 

C-E) Regulation of glycolysis proteins between HGG-IDHmut-B and HGG-IDHmut-A (C), codel and non-codel 

(D), and IDHwt and HGG-IDHmut-B (E). Samples, n=12 (HGG-IDHmut-A), n=9 (HGG-IDHmut-B), n=11 

(IDHwt), n=11 (codel), n=10 (non-codel). 
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Figure S5. No separation of codel and non-codel entity in the tumor suppressor and proto-oncogene 

proteomes. Related to Figure 4. 

A-B) Principal component analysis of UniProt Keyword-annotated tumor suppressor gene (A) and proto-

oncogene (B) datasets. Samples, n=10 (ctrl CNS), n=11 (IDHwt), n=11 (codel), n=10 (non-codel). 

C) Regulation of tumor suppressors between IDHwt and HGG-IDHmut-B (left), HGG-IDHmut-B and HGG-

IDHmut-A (center), and codel and non-codel (right). Samples, n=10 (ctrl CNS), n=12 (HGG-IDHmut-A), n=9 

(HGG-IDHmut-B), n=11 (IDHwt), n=11 (codel), n=10 (non-codel). 

D) Regulation of oncoproteins between IDHwt and HGG-IDHmut-B (left), HGG-IDHmut-B and HGG-IDHmut-

A (center), and codel and non-codel (right). Samples as in C. 

E) Correlation of protein abundances of NUP214 and DEK (left), and NUP214 and SET (right) across samples. 

Pearson correlation coefficients r = 0.87 (left) and r = 0.76 (right). Samples as in C. 
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Figure S6. Phosphosite dynamics in IDHmut glioma. Related to Figure 4.  

A-B) Relationship of phosphosite abundance differences and protein abundance differences, each between HGG-

IDHmut-B and HGG-IDHmut-A (A) and codel and non-codel (B). Outliers labelled in Fig. 4C also labelled here 

with gene name and phosphorylation site. Phosphorylation sites included if abundance difference in at least one 

dimension (phosphosite, protein) significant with q-value < 5% (A) or p-value < 0.05% (less stringent) (B). 

Diagonal line marks 1:1 relationship. Samples, n=12 (HGG-IDHmut-A), n=9 (HGG-IDHmut-B), n=11 (codel), 

n=10 (non-codel). 

C-D) Abundance of CDK11B phosphorylation site pS595 (C) and ZC3H18 phosphorylation site pT851 (D) and 

protein abundances, respectively. Circles denote means and bars 95% confidence intervals of means. Samples, 

n=10 (ctrl CNS), n=12 (HGG-IDHmut-A), n=9 (HGG-IDHmut-B), n=11 (IDHwt), n=11 (codel), n=10 (non-

codel). 
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Figure S7. Integration of other proteomic glioma datasets. Related to Figure 5. 

A) Identification of IDHmut-A and IDHmut-B in the Wong et al. dataset by Pearson coefficient-based 

hierarchical clustering of samples and ANOVA-significant (s0 = 2, q < 5%) proteins regulated by WHO-

defined glioma subtype (IDHwt, IDHmut 1p/19 codel, IDHmut 1p/19q non-codel). Samples, n=6 (ctrl 

CNS), n=10 (IDHmut-A), n=28 (IDHmut-B), n=10 (IDHwt) and according to WHO classification n=21 

(IDHmut 1p/19q-codeleted), n=17 (IDHmut non-codeleted, n=10 (IDHwt). 

B) Comparison of fold changes between IDHmut-A and IDHmut-B in glioma samples in the Wong et al. 

dataset with WHO grade 2 (x axis, 6 IDHmut-A glioma, 9 IDHmut-B glioma) to those fold changes in 

glioma samples of WHO grade 3 (y axis, 3 IDHmut-A glioma, 13 IDHmut-B glioma) for all proteins 

(upper panel, 5897 proteins) and significantly regulated proteins (p < 5% in both comparisons, lower 

panel, 703 proteins). When filtering for significantly regulated proteins (p < 5%) in at least 1 of the two 

comparisons (within WHO 2, within WHO 3), 2050 proteins included and Pearson r = 0.81 (scatter plot 

not shown).  

C) Comparison of fold changes between nmf2 (“mesenchymal-like”, n=37) and nmf1 (“proneural-like, 

n=29) of the Wang et al./CPTAC dataset (x axis) and HGG-IDHmut-B (n=9) and HGG-IDHmut-A 

(n=12) in the dataset of this study (y axis) for all overlapping proteins (upper panel) and proteins 

significantly regulated (q < 5%) in both datasets. 

D-F) Comparison of metabolic proteins across studies. Fold changes HGG-IDHmut-B (n=9) / HGG-IDHmut-

A (n=12) (this study) compared to those of corresponding glioma subgroups GPC1 (n=26) / GPC2 

(n=13) (Oh et al. dataset), nmf3 (n=25) / nmf1 (n=29) (Wang et al./CPTAC dataset), and IDHmut-B 

(n=28) / IDHmut-A (n=10) (Wong et al. dataset) for tricarboxylic acid cycle proteins (D), glycolysis 

proteins (E), and mitochondrial respiratory chain proteins (F).  

G) Regulated proteins across four datasets in pseudo-Volcano plot. Proteins included were either consistenly 

enriched in HGG-IDHmut-B, nmf3, GPC1, IDHmut-B compared to HGG-IDHmut-A, nmf1, GPC2, 

IDHmut-A (dataset of this study, Wang/CPTAC et al., Oh et al., Wong et al.), respectively, or 

consistently inversely regulated. Sample numbers as in D-F. Protein fold changes normalized within each 

dataset after consistency filtering by division of mean (across proteins) absolute fold change separately 

for positive and negative fold changes. Subsequently, combined protein fold change (x axis) and q-value 

(y axis) calculated as median across the four studies.  

H) Enrichment of functional protein annotation terms in the combined normalized fold change dimension of 

(G) by Perseus 1D Enrichment analysis. Terms displayed filtered for at least five member proteins and 

enrichment q-value of 1%.  

 

 

 

 




