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SUMMARY
High-grade adult-type diffuse gliomas are malignant neuroepithelial tumors with poor survival rates in com-
bined chemoradiotherapy. The current WHO classification is based on IDH1/2 mutational and 1p/19q code-
letion status. Glioma proteome alterations remain undercharacterized despite their promise for a better mo-
lecular patient stratification and therapeutic target identification. Here, we use mass spectrometry to
characterize 42 formalin-fixed, paraffin-embedded (FFPE) samples from IDH-wild-type (IDHwt) gliomas,
IDH-mutant (IDHmut) gliomas with and without 1p/19q codeletion, and non-neoplastic controls. Based on
more than 5,500 quantified proteins and 5,000 phosphosites, gliomas separate by IDH1/2 mutational status
but not by 1p/19q status. Instead, IDHmut gliomas split into two proteomic subtypes with widespread per-
turbations, including aerobic/anaerobic energy metabolism. Validations with three independent glioma pro-
teome datasets confirm these subgroups and link the IDHmut subtypes to the established proneural and
classic/mesenchymal subtypes in IDHwt glioma. This demonstrates common phenotypic subtypes across
the IDH status with potential therapeutic implications for patients with IDHmut gliomas.
INTRODUCTION

Gliomas in adulthood account for about 80%ofmalignant primary

brain tumors with an incidence of about 5 per 100,000 people.1 In

general, adult diffuse gliomas are classified according to histo-

morphological and molecular characteristics, including isocitrate

dehydrogenase (IDH) mutations and 1p/19q codeletions, and

graded (WHO grades 2 to 4) for predicting clinical-biological

behavior (WHO Classification of Central Nervous System

Tumours, fifth edition2). The category of adult diffuse gliomas

comprises astrocytoma, IDH-mutant (IDHmut), oligodendro-

glioma, IDHmut and 1p/19q codeleted, and glioblastoma, IDH-

wild-type (IDHwt). Most IDHwt glioblastoma patients die within

15–18 months after diagnosis and the 5-year survival rate does

not exceed 10% despite therapy,3,4 while astrocytoma, IDH-

mutant, have a significantly better prognosis. Unfortunately, the

overall survival has not been improved markedly in recent years.
Cell Rep
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Several genetic alterations in the development and progres-

sion of diffuse gliomas have been known for years.5 Key genetic

events include hotspot mutations in IDH genes 1 and 2 and

codeletion of the 1p/19q chromosome arms. The molecular

genetics are routinely assessed in clinical practice for diagnostic

purposes as both are associated with prognostic and predictive

relevance.6,7 Mechanistically, missense mutations alter

IDH enzymatic activity such that the oncometabolite D-2-

hydroxyglutarate is formed, which leads to epigenetic remodel-

ing via demethylase inhibition and HIF1-dependent survival

and angiogenesis.8 Codeletion of 1p/19q occurs in IDHmut

oligodendrogliomas but not in astrocytomas; however, its path-

ological mechanism is less well understood.9,10

Omics technologieshaveemergedaspowerfulmethods to clas-

sify gliomas. Genomic and transcriptomic analyses revealed

subtypes of high-grade gliomas with decreasing survival, which

are referred to as proneural, classical, and mesenchymal.11,12
orts Medicine 4, 100877, January 17, 2023 ª 2022 The Authors. 1
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Further integrative genomic, transcriptomic, and epigenomic ana-

lysesof gliomasWHOgrades 2 to 4 indicated at least sevenglioma

subtypes, with the most prominent classifier being IDHmutational

status.13 IDHmut gliomas further separated into a 1p/19q codele-

tion entity and two non-codeletion entities, namely high and low

gliomaCpG islandmethylation phenotype. Notably, the classifica-

tion of IDHwt gliomas was largely orthogonal to the previous GBM

classification, suggesting greater complexity. In addition, methyl-

ation-based classification of CNS tumors revealed 82 distinct

tumor methylation classes.14

Genome-wide epigenetics and next-generation sequencing of

tumor genomeshave lately found theirway into routine neuropath-

ological diagnostics. Nevertheless, the scientific community has

continued to improve the classification of IDHmut gliomas

focusing on non-1p/19q codeleted astrocytomas and recently

identified CDKN2A/B status as a biomarker.15 Despite these ad-

vances in the biological subclassification of CNS tumor entities,

there have been no significant breakthroughs in tumor therapy

for high-grade gliomas in recent years. Thus, it remains an unmet

need to refine the classification of gliomas and to identify cellular

targets for future therapies.

In contrast to the advances in the epigenetic, genetic, and

transcriptomic characterization of gliomas, an equivalent under-

standing at the proteome level has not yet been achieved. Mass

spectrometry (MS) has emerged as the method of choice for

large-scale proteome investigations with many applications in

biology and medicine.16 However, previous studies utilizing MS

toanalyze thehumangliomaproteomeoftencovered fewproteins,

were limited to available fresh tumor tissue, or were conducted

with immortalized cell lines. We have demonstrated previously

that several thousand proteins can be robustly quantified from

formalin-fixed, paraffin-embedded (FFPE) tissue, making a

plethora of biobank samples amenable to proteomic analysis.17,18

Moreover, the analysis of thephosphoproteomecan reveal altered

signaling checkpoints of cancerous transformation across all

areas of cell biology. Phosphotyrosine signaling has been shown

to be preserved in FFPE samples, and the phosphoproteome of

FFPE samples, including cancer tissues, has been investigated

before.19–21 Inspired by recent proteomic and phosphoproteomic

studiesproving itspotential tostratifybreastcancersubtypes,22–24

we set out to characterize the proteomes of adult-type diffuse

high-grade gliomas.

RESULTS

Sample characteristics and proteomic workflow
We collected 10 to 11 FFPE samples of glioblastoma, IDHwt; oli-

godendroglioma IDH-mutant and 1p/19q-codeleted (codel); as-

trocytoma IDH-mutant (non-codel); and 10 control samples of

non-neoplastic CNS tissue (CNS ctrl) (Figure 1A; Table 1). All

tumors were classified histomorphologically and immunohisto-

chemically according to the criteria of the WHO classification

for CNS tumors (fifth edition). In addition, we characterized all tu-

mors (epi)genetically using genome-wide methylation profiling

and copy number variation (CNV) profiling.

We applied an FFPE proteomics workflow that we established

previously and used to analyze ovarian cancer subtypes.17 FFPE

slices were deparaffinized, homogenized, and protein extracts
2 Cell Reports Medicine 4, 100877, January 17, 2023
were digested by trypsin and LysC. Peptides were subjected

to liquid chromatography-tandem mass spectrometry (LC-MS/

MS) analysis or used for phosphopeptide enrichment and subse-

quent LC-MS/MS analysis (Figure 1A). Our dataset comprised a

total of 5,724 proteins and 5,212 high-confidence phosphosites,

corresponding to about 5,000 quantified proteins and 3,000

phosphosites per sample (Figure S1A).

Global dataset structure and IDHwt/IDHmut glioma
proteome differences
We assessed the molecular relationship of tumor proteomes by

unbiased hierarchical clustering and principal-component anal-

ysis and linked main proteome differences to biological path-

ways (Figures 1B–1D).

TheCNSctrls clusteredmost closely andclearly separated from

the gliomas (Figures 1B and 1C). Compared with both IDHwt and

IDHmut glioma, the CNS ctrls were enriched in synaptic and

myelin-related proteins, reflective of functional brain tissue in

good quantitative concordance with CPTAC glioma proteome

data (Figures 1D and S1B).25

The IDHwt gliomas in our studyweremost distinct fromCNS ctrl

andalsosegregated fromIDHmutgliomas (Figures1Band1C).The

IDHwtproteomewasenrichedwithproteins linked to inflammation,

MCMcomplexDNApolymerases, an integrin-, collagen-, and lam-

inin-rich ‘‘basement membrane-like’’ extracellular matrix (ECM)

profile, low in hyaluronic acid, which is associated with increased

malignancy in gliomas (Figures 1C–1E).26 IDHwt/IDHmut differ-

ences aligned well with the CPTAC data and were largely unaf-

fected by 1p/19q codeletion status in our data (Figures 1E, S1C,

and S1D). In linewith amore ‘‘aggressive’’ phenotype of IDHwt gli-

omas, many outlier proteins with high abundance in IDHwt are

cancer drivers, several of them linked to invasion. Outlier proteins

associated with IDHmut included tumor suppressors downregu-

lated in IDHwt (Figures 1E and S1D; Table 2). Notably, these tumor

suppressors include thehistoneproteinsH1F0andH2AFY2,which

bothmaintain anepigeneticprofile of differentiationand inhibit a re-

turn to a proliferative stem cell state through distinct mecha-

nisms.27,28 Known proteome alterations driving progression of

the IDHmut were apparent, such as the strong epigenetic downre-

gulation of RBP1, as well as novel ones, such as AKR1C3 overex-

pression selectively in IDHmut (Figures 1E and S1E; Table 2).

Intriguingly, the IDHmut gliomas did not separate according to

the codeletion status in a hierarchical cluster and in the first two

principal components, indicating a minor effect of the codeletion

statuson theproteome (Figures1B–1CandS1F). Instead, the IDH-

mut gliomas reproducibly fall into twodistinct clusters, whichwere

balanced for the codeletion statusandpatient gender (Figures 1A–

1C and S1G). We refer to them as HGG-IDHmut-A and HGG-

IDHmut-B. HGG-IDHmut-A formed a cluster, which was more

similar to CNS ctrls than to other gliomas (Figures 1B and 1C).

HGG-IDHmut-B formed a more diffuse cluster which was most

related to IDHwt glioma.

HGG-IDHmut-A/B sub-stratification is independent of
epigenetic profile, CNV alterations, or clinical
parameters
We carefully examined potential sources of systematic biases

in our study groups. First, we compared the proteome-based



Figure 1. Study and global proteome overview
(A) Cohort overview and schematic proteomicworkflow. Sample numbers in circles. Dark colors represent males and light colors females. The icons at the bottom

of the proteome-based classification of IDHmut gliomas represents high (arrow up) and low (arrow down) expression levels of mitochondrial respiratory chain

proteins.

(B) Unbiased hierarchical clustering of all 42 samples (columns) and proteins (rows), Z-scored protein intensity shown in a heatmap; 3,749 significant proteins

included, significance (q < 5% at s0 = 2) according to one-way ANOVA analysis using the WHO-defined entities. Sample clustering based on Euclidian distance

and protein clustering based on Pearson correlation.

(C) Principal-component analysis of proteomesof all 42 samples for protein abundance (upper panel) and phosphosite abundance (lower panel). Components 1 and 2

shown, respectively. Sample color code as in (A and B). Colored ellipses highlight the IDHmut HGG-IDHmut-A and HGG-IDHmut-B clusters as defined in (B).

(D) Two-dimensional analysis of protein annotation term enrichment in components 1 and 2 of the principal-component analysis of the proteome dataset linking

the components to biological features.

(E) Comparison of IDHwt and IDHmut glioma proteomes. Samples, n = 11 IDHwt and 21 IDHmut.
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sub-stratification with the epigenetic and CNV profile of IDH-

mutated gliomas.Both IDHmut-proteomesubgroups includedgli-

omas, with astrocytoma and 1p/19q codeleted oligodendro-

glioma methylation subclasses at a comparable ratio (p > 0.9,

Fisher’s exact test; Table 1). Our analysis shows that CNVs did

not bias these proteome groups (Figures S1H and S1I). Specif-

ically, an evenly distributed CNV load and comparable chromo-

some gains or losses were found in both groups. The sub-stratifi-
cation was also not imbalanced with respect to WHO grade

(p > 0.9, Fisher’s exact test; Table 1) and was statistically insignif-

icantly imbalanced in CDKN2A/B status (p = 0.17, Fisher’s exact

test; Table 1). Furthermore, there was no imbalance in EGFR am-

plifications, which were only detected in IDHwt gliomas (5/11).

Next, we examined whether the origin of the proteome-based

sub-stratification of HGG-IDHmut-A and -B correlated with

demographic patient data and histology. HGG-IDHmut-B and
Cell Reports Medicine 4, 100877, January 17, 2023 3



Table 1. Cohort composition

Non-neoplastic

controls

Oligodendroglioma

IDHmut and 1p/19q

codeleted (codel)

Astrocytoma

IDHmut

(non-codel) HGG-IDHmut-A HGG-IDHmut-B

Glioblastoma

(IDHwt)

N 10 11 10 12 9 11

Age at diagnosis

(mean ± SD)

39 ± 12 48 ± 10 36 ± 12 38 ± 12 47 ± 12 73 ± 7

Male:female 3:7 6:5 5:5 6:6 5:4 8:3

Histopathology parahippocampal

tissue of patients

with hippocampal

sclerosis

11 oligodendroglioma,

IDHmut and 1p/19q

codeleted

(CNS: WHO: 3)

10 astrocytoma, I

DHmut (CNS:

WHO 3/4)

6 oligodendroglioma,

IDHmut and 1p/19q

codeleted (CNS:

WHO: 3),

6 astrocytoma,

IDHmut (CNS:

WHO 3/4)

5 oligodendroglioma,

IDHmut and 1p/19q

codeleted (CNS:

WHO: 3),

4 astrocytoma,

IDHmut (CNS:

WHO 3/4)

11 glioblastoma,

IDHwt (CNS:

WHO 4)

WHO grade 3:4 Na 11:0 8:2 11:1 8:1 0:11

IDH status Na 11 IDH1 R132H 10 IDH1 R132H 12 IDH1 R132H 9 IDH1 R132H 11 wt

1p/19q status

(LOH microsatellite)

Na 11 codeletion 10 intact 6 codeletion,

6 intact

5 codeletion,

4 intact

11 intact

CDKN2A/B

deletion

Na 1/11 1/10 0/12 2/9 8/11

EGFR

amplification

Na 0/11 0/10 0/12 0/9 5/11

Methylation

class

Na 11 methylation

class family

glioma, IDHmut

9 methylation

class family

glioma, IDHmut,

1x non-classifiable

11 methylation

class family glioma,

IDHmut,

1 non-classifiable

9 methylation

class family

glioma, IDHmut

11 methylation

class family glioma,

IDHwt,

1 non-classifiable

Methylation

subclass

Na 10 1p/19q-codeleted

oligodendroglioma,

1 oligosarcoma

8 astrocytoma,

1 high-grade

astrocytoma,

1 non-classifiable

6 1p/19q codeleted

oligodendroglioma,

5 astrocytoma,

1 non-classifiable

4 1p/19q codeleted

oligodendroglioma,

1 oligosarcoma,

3 astrocytoma,

1 high-grade

astrocytoma

4 RTK II,

3 RTK I,

3 mesenchymal,

1 non-classifiable

4
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Table 2. Proteins of interest with differential abundance in various glioma subtypes in the proteomic data of this study

Sample group Gene, protein Role Tumor entity Cellular function Reference

Selected outlier proteins

regulated between

IDHwt and IDHmut

IDHwt CHI3L1, chitinase-3-like

protein 1

OG glioma,

breast cancer

inflammation,

angiogenesis

Libreros et al.29;

Steponaitis et al.30

FKBP5/FKBP9/FKBP10,

peptidyl-prolyl cis-trans

isomerase FKBP5/9/10

OG glioma,

renal cell

carcinoma

FKBP5: NF-kB signaling

FKBP9: MAPK signaling

FKBP10: proliferation,

invasion

Jiang et al.31;

Xu et al.32;

Ge et al.33

CALU, calumenin OG glioma EMT Yang et al.34

TAGLN2, transgelin-2 OG glioma cell motility Han et al.35

PLOD3* OG glioma proliferation, invasion,

hypoxia

Tsai et al.36

S100A10, protein

S100-A10*

OG glioma,

various

ECM remodeling,

invasion

Tantyo et al.37

ANXA2, annexin A2* prevents S100A10

degradation

OCIAD2, OCIA domain-

containing protein 2

OG glioma, various migration, invasion Nikas 201638;

Sinha et al.39

MRC2, C-type mannose

receptor 2

OG hepatocellular

carcinoma

migration, invasion,

TGF-b signaling

Gai et al.40

METTL7B, methyltransferase-

like protein 7B

OG lung cancer cell-cycle

progression

Liu et al.41

CLIC1, chloride intracellular

channel protein 1

OG glioblastoma proliferation Setti et al.42

PTX3, pentraxin-related

protein PTX3

OG glioblastoma autophagy Wang et al.43

RBP1, retinol-

binding protein 1

TSG IDHmut glioma retinoic acid

metabolism

Chou et al.44

CSDE1, cold-shock

domain-containing

protein E1

OG colorectal cancer differentiation,

EMT

Lee et al., 201745;

Martinez-

Useros et al.46

NNMT, nicotinamide

N-methyltransferase

OG ovarian cancer ECM Eckert et al.47

(Continued on next page)
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Table 2. Continued

Sample group Gene, protein Role Tumor entity Cellular function Reference

IDHmut H1F0, histone H1.0 TSG various, including

glioblastoma

differentiation,

epigenome

Torres et al.27

H2AFY2, core histone

macro-H2A.2

TSG melanoma differentiation,

epigenome

Gaspar-Maia et al.28;

Kapoor et al.48

ARL3, ADP-ribosylation

factor-like protein 3

TSG glioma not clear yet Wang et al.49

GRID1, glutamate

receptor ionotropic,

delta-1

NA glioma not clear yet Wang et al.50

PHYHIPL, phytanoyl-CoA

hydroxylase interacting

protein-like

TSG glioblastoma TNF signaling Fu et al.51

AKR1C3, aldo-keto

reductase family1

member C3

OG liver cancer,

prostate cancer

metabolism

EMT, ERK signaling

Zhao et al. 52;

Wang et al.53

PTBP2, polypyrimidine

tract-binding protein 2

OG glioma proliferation,

migration

Cheung et al.54

SMOC1, SPARC-related

modular

calcium-binding protein 1

NA oligodendroglioma ECM Brellier et al.55

Selected outlier proteins

regulated between I

DHmut glioma subgroups

HGG-IDHmut-B CCAR1/2, cell division

cycle and apoptosis

regulator protein ½

OG, (TSG) various Wnt/b-catenin, DNA

damage, cell-cycle,

cell growth, apoptosis

Johnson et al.56

YBX1, Y-box-binding

protein 1

OG various, including

glioblastoma

proliferation,

survival, invasion

Maurya et al. 57;

Kuwano et al.58;

Gupta et al.59

PRDX4, periredoxin-4 OG various, including

glioblastoma

oxidative stress,

apoptosis

Jia et al. 60;

Kim et al.61

SUPT5H, transcription

elongation factor SPT5

OG colorectal carcinoma telomerase

expression

Chen et al.62

LAMB1, laminin

subunit beta-1

OG hepatocellular

carcinoma

invasion Govaere et al.63

LUM, lumican OG lung cancer metastasis Hsiao et al.64

ERH, enhancer of

rudimentary homolog

OG breast, ovarian,

liver, and

bladder urothelial

cancer

splicing, cell cycle,

DNA replication and

repair, EMT

and invasion

Graille and

Rougemaille65;

Pang et al.66;

Zhang et al.67

(Continued on next page)
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Table 2. Continued

Sample group Gene, protein Role Tumor entity Cellular function Reference

1p/19q codel RPS6K/MSK1, ribosomal

protein S6 kinase alpha-5

OG breast cancer,

glioblastoma

differentiation, metastasis,

drug resistance

Gawrzak et al. 68;

Wu et al.69

LRP4, low-density

lipoprotein receptor-

related protein 4

OG papillary thyroid

cancer

proliferation, invasion Zhou et al.70

TRIM67, tripartite motif-

containing protein 67

OG

TSG

lung cancer,

colorectal cancer

proliferation, invasion,

p53 activation

Jiang et al.71;

Wang et al.72

Non-1p/19q codel FBLN1, fibulin-1 TSG various apoptosis, cell motility Kanda et al. 73;

Xiao et al.74

TNC, tenascin-C OG glioblastoma, various

others

invasion, proliferation,

EMT

Xia et al.75;

Yoshida et al.76

UniProt annotated

tumor suppressors

and oncoproteins—

analysis across glioma

groups

Reduced in IDHwt

and HGG-IDHmut-B

DMTN, dematin TSG colorectal cancer metastasis Ye et al.77

CYLD, ubiquitin

carboxyl-terminal

hydrolase CYLD

TSG skin cancer, myeloma NF-kB signaling Sun78

BIN1, Myc box-

dependent-interacting

protein 1

TSG lung cancer c-Myc signaling Zhang et al.79

Reduced in IDHwt NDRG2, protein NDRG2 TSG lymphoma AKT signaling Nakahata et al.80

CDKN1B/p27Kip1,

cyclin-dependent

kinase inhibitor 1B

TSG various cell cycle Bencivenga et al.81

NF1, neurofibromin TSG glioma, various Ras signaling Lobbous et al.82

Reduced in HGG-IDHmut-B PRKCD, protein kinase

C delta type

TSG/(OG) lymphoma,

breast cancer

apoptosis, p53 signaling,

ErbB2 signaling

Dashzeveg and

Yoshida 83;

Baumann et al.84;

Allen-Petersen et al.85

RPS6KA2 TSG ovarian cancer proliferation, apoptosis Bignone et al.86

High in IDHwt PYCARD, apoptosis-

associated speck-like

protein a CARD

TSG/OG glioblastoma inflammasome Stone et al.87;

Sharma et al.88;

Martinon et al.89

DAB2, disabled

homolog 2

TSG/other mesenchymal

glioblastoma

tumor microenvironment,

inflammation

Behnan et al. 90;

Figliuolo da

Paz et al.91

NFKB2, NF-kB

p100 subunit

(OG) glioblastoma mesenchymal

differentiation, EMT

Yamini92

(Continued on next page)
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Table 2. Continued

Sample group Gene, protein Role Tumor entity Cellular function Reference

High in IDHwt and

HGG-IDHmut-B

EGFR, epidermal growth

factor receptor

OG glioma survival, proliferation,

invasion

Oprita et al.93

AKT2, protein kinase Akt-2 OG glioma metabolism,

proliferation, survival

Pu et al.94;

Kim et al.95

NUP214, nuclear pore

complex protein Nup214

DEK, protein DEK

SET, protein SET

OG leukemia fusion proteins

DEK-NUP214 and

SET-NUP214*: NF-kB

signaling

Saito et al.96

TPM3, tropomyosin

alpha-3 chain

OG glioma EMT Tao et al.97

RBM15, RNA-binding

protein 15

OG glioma RNA methylation Su et al.98

OG, oncogene; TSG, tumor suppressor gene. Sample group denotes the samples with high protein abundance. PLOD3, multifunctional procollagen lysine hydroxylase and glycosyltransferase

LH3. ANXA2 and S100A10 strongly correlated (Pearson r = 0.93) in abundance across samples (all glioma and ctrl CNS of this study). Similarly, NUP214, DEK, and SET correlated well (Pearson r =

0.87 NUP214 vs. DEK, r = 0.76 NUP214 vs. SET) across samples (see Figure S5E).
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HGG-IDHmut-A sample groups, however, were undistinguish-

able. The sample groups correlated neither with age nor gender

of patients, nor was the separation attributable to a different total

tumor cell content (Table 1; Figures S2A–S2E; see supplemental

information). We did not detect statistically significant differences

in progression-free survival between HGG-IDHmut-A and -B in

our cohort comprising 21 IDHmut glioma (Figure S2F).

HGG-IDHmut-A/B differences reflect chromosomal and
mitochondrial aberrations
After excluding systematic biases in our study groups, we next

assessed whether previously described cancer-associated

chromosomal aberrations can be detected in the proteomes of

tumor samples. Detected proteins were evenly distributed

across almost the entire genome (Figure 2A). Hierarchical clus-

tering across tissue samples revealed a pattern recapitulating

the global proteome clustering (Figure 2B). In accordance with

the 1p/19q status, codel samples exhibited a significantly

reduced abundance of 1p/19q-encoded proteins (Figure 2C).

However, the HGG-IDHmut-A/B groups showed distinct chro-

mosome arm-encoded proteomes, with a strikingly reduced

abundance of proteins encoded by the mtDNA in HGG-

IDHmut-B (Figures 2C and 2D). This trend was also evident for

nuclear genome-encoded mitochondrial respiratory chain com-

plex proteins; however, not for mitochondrial ribosomal proteins

(Figure 2E). The 1p/19q codeletion status did not exhibit these

mitochondrial aberrations (Figures 2D and 2F).

HGG-IDHmut-A/B stratification is linked to differential
expression of cancer driver genes
Several known cancer drivers were enriched in HGG-IDHmut-B

over HGG-IDHmut-A (Figure 2E; Table 2). The most significant

outlier enriched in HGG-IDHmut-B was CCAR1, the related

CCAR2 was less significantly enriched. Both proteins play com-

plex roles in cancer, including gliomas.56,99–101 Intriguingly, the

best correlating protein to CCAR1 in our dataset was the splicing

factor SRSF1 (Figure S3A). Its related protein SRSF5 promotes

lung cancer via alternative splicing of CCAR1 upon high availabil-

ity of glucose.102 In our dataset, SRSF5was stochastically quan-

tified while SRSF1, 2, 3, 4, 6, 7, 10, and 11 were significantly en-

riched in HGG-IDHmut-B over HGG-IDHmut-A.

1p/19q codeletion status affects cancer-related
proteins
Around 1,900 proteins differed significantly between the HGG-

IDHmut-B and HGG-IDHmut-A sample groups in our dataset,

whereas only about 100 proteins differed significantly between

1p/19q codel and non-codeleted IDHmut (Figures 2E and 2F).

Nevertheless, several of the regulated proteins between codel

and non-codel IDHmut have been linked to cancer in various

contexts (Figure 2F; Table 2).

ATRX was among these differently expressed proteins and

had a lower abundance in the non-codel sample group. This is

in line with the frequent loss of ATRX in 1p/19q intact but not in

1p/19q codeleted gliomas as ATRX loss activates the ‘‘alterna-

tive lengthening of telomere’’pathway.103–105 In contrast, TERT

promoter mutations are associated with IDHwt and ATRX

expression.106–108 TERT, the catalytic subunit of telomerase,
was not covered in our dataset, but telomerase-accessory pro-

teins were among the most highly enriched proteins among

ATRX-correlating proteins (Figure S3B).

Next, we compared the regulation of proteins affected by

common chromosomal alterations in gliomas (1p/19q codele-

tion, gain of chr. 7, loss of chr. 10; Figure 2C).108,109 In our

data, many proteins encoded on chromosome 10 and 7 were

significantly regulated (10 reduced, 7 elevated) in IDHwt

gliomas, and transcripts of these regulated proteins were

expectedly associated with survival according to The Cancer

GenomeAtlas transcriptomics data (Figure S3C).110 By contrast,

proteins encoded on the 1p and particularly the 19q arm ex-

hibited smaller and less statistically significant regulation and

their transcripts did not show a clear association with survival

(Figure S3D).

In summary, proteins encoded on 1p/19q were less drastically

regulated compared with proteins affected by other common

chromosomal alterations in glioma. Taken together, the overall

glioma proteome showed only minor alterations correlating

with the 1p/19q codeletion but reflected known cancer-related

proteins, in particular in telomere maintenance pathways.

HGG-IDHmut-A/B stratification correlates with distinct
metabolic profiles
The differential abundance of mitochondrial respiratory chain

proteins between HGG-IDHmut-A and -B prompted us to inves-

tigate metabolic alterations in greater detail. Respiratory chain

complex and tricarboxylic acid (TCA) cycle proteins exhibited a

low abundance in IDHwt and HGG-IDHmut-B (Figures 3A, 3B,

S4A, and S4B). Intriguingly, mild dysfunction of respiratory chain

complex I—the lowest in HGG-IDHmut-B—can promote cancer

via the generation of reactive oxygen species (ROS).111 Notably,

IDH1was the only TCA protein withmildly elevated abundance in

HGG-IDHmut-B. Conversely, the TCA protein oxoglutarate de-

hydrogenase L was strongly reduced, which may be linked to

its tumor suppressor function.112

Regarding glycolysis, HGG-IDHmut-B again exhibited a pro-

tein and phosphosite profile similar to IDHwt (Figures 3C and

S4C–S4E). In particular, hexokinase 1 was low abundant in

HGG-IDHmut-B and IDHwt. Downregulation of hexokinase 1

promotes glycolysis and induces EMT in several human cancer

cell lines and increased malignancy in a xenograft model.113

Likewise, the abundance of the pS39 site on the mitochondrial

ATPase inhibitor ATPIF1 was low in both IDHwt and HGG-

IDHmut-B compared with HGG-IDHmut-A (Figure 3D). ATPIF1

overexpression promotes a metabolic shift from oxidative phos-

phorylation to glycolysis in colon cancer,114 while ATPIF1 is in-

hibited by S39 phosphorylation.115

In summary, HGG-IDHmut-B showed molecular hallmarks of

increased glycolytic activity and HGG-IDHmut-A of increased

oxidative phosphorylation, independent of 1p/19q codeletion.

Proteome-based sub-stratification correlates better
with profiles of annotated tumor suppressors and
drivers than 1p/19q codeletion
Next, we examined the profiles of annotated tumor suppressors

and oncoproteins across the gliomaentities. Principal-component

analysis separated IDHwt, HGG-IDHmut-A, and HGG-IDHmut-B
Cell Reports Medicine 4, 100877, January 17, 2023 9



Figure 2. Chromosomal alterations point at mitochondrial perturbations in the alternatively stratified groups of IDHmut gliomas

(A) Proteome coverage across the human genome in the entire dataset (42 samples). Points indicate quantified proteins, black horizontal bars as boundaries

between chromosomal p and q arms; p arms below and q arms above the bar. Uncovered areas included the p arms of chromosomes 13, 14, 15, 21, and 22, and

the centromere-proximal quarter of the 9p arm.

(B) Relative abundance of chromosome arm-specific proteomes across samples shown as a heatmap. Abundance as mean intensity of all proteins assigned to a

given chromosome arm. Protein intensities normalized by subtraction ofmedian across samples beforemean averaging. Samples, n = 10 (ctrl CNS), n = 12 (HGG-

IDHmut-A), n = 9 (HGG-IDHmut-B), n = 11 (IDHwt), n = 11 (codel), n = 10 (non-codel).

(C) Abundance difference of chromosome arm-specific proteomes between IDHmut glioma entities. Comparison of codel (n = 11) versus non-codel entity (n = 10)

(left), (center), IDHwt (n = 11) versus HGG-IDHmut-B (n = 9) (right).

(D) Abundance of proteins encoded by mitochondrial DNA across the conventional and alternatively defined tumor and control entities of this study. Circles

denote means and error bars 95% confidence intervals of the mean. Color code and sample numbers as in (B).

(E and F) Global proteome and abundance differences in mitochondrial proteins between the alternative proteome-defined entities HGG-IDHmut-A (n = 12) and

HGG-IDHmut-B (n = 9) (E) and the 1p/19q-codeleted (n = 11) and non-codeleted (n = 10) entities (F) of IDHmut glioma. Mitochondrial respiratory chain complex V

refers to ATP synthase.
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samples but not the 1p/19q codeletion status (Figures 4A, S5A,

and S5B). The HGG-IDHmut-B signature was largely similar to

IDHwt, while 1p/19q codeletion status was associated with few

statistically significant differences (Figures 4B, S5C, and S5D).

Some tumor suppressors were specifically downregulated in

IDHwt, others only in HGG-IDHmut-B, and some in both (Fig-

ure 4B; Table 2). IDHwt and HGG-IDHmut-B sample groups ex-

hibited a downregulation of RAS pathway proteins in line with

previous reports for glioblastoma (Figure 4B).116 Conversely,

several proto-oncogenes were elevated in IDHwt and HGG-

IDHmut-B (Figures 4B and S5E; Table 2). For some regulated

proteins, the function in the context of tumorigenesis is unclear

or context dependent (Table 2).

HGG-IDHmut-B and HGG-IDHmut-A exhibited strong alter-

ations of tumor suppressors and oncoprotein phosphosite abun-

dances, not associated with 1p/19q codeletion status

(Figures 4C and S6A–S6D). For instance, the pT595 site on the cy-

clin-dependent kinase CDK11B was abundant in both HGG-

IDHmut-B and IDHwt compared with HGG-IDHmut-A indepen-

dent of total protein levels (Figures 4C and S6C). This suggests

elevated CDK11B activity due to homology with the activating

pT161 site inCDK1,117 linked to cell-cycle progression and altered

in various cancers.118 This highlights HGG-IDHmut-A and HGG-

IDHmut-B signaling differences vital to cancer.

HGG-IDHmut-A/B differences are evident across
studies
To validate major molecular hallmarks supporting a metabolic

stratification of IDHmut gliomas independent of 1p/19q status,

we reanalyzed three recent proteomics datasets. In one study

dataset comprising predominantly IDHmut glioma we identified

equivalent IDHmut-A and IDHmut-B subtypes using unbiased hi-

erarchical clustering as in our dataset (Figures S7A and S7B).119

Notably, a small number of samples in that dataset indicate that

IDHmut-A/B are also present in WHO grade 2 gliomas and that

proteome differences between these are equivalent to those of

WHO grade 3 gliomas (Figure S7B). A second study described

a similar metabolism-linked proteomic stratification of IDHwt

gliomas into a glycolysis and an oxidative phosphorylation sub-

group.120 To further validate such a stratification in a larger and

multi-omics glioma dataset we integrated a third study, which

also comprised predominantly IDHwt gliomas.25

Highly consistent with our study, metabolic proteins involved in

glycolysis, TCA cycle, oxidative phosphorylation, and even the

global proteome were regulated in great quantitative agreement

in the three other studies (Figures 5A–5D and S7C–S7F). Among

the metabolic classes, TCA cycle proteins showed the most

consistent and quantitatively concordant regulation across

studies.
Figure 3. Metabolism-related proteome differences associated with th

(A) Abundance of mitochondrial respiratory chain complex proteins across the s

(lower panel). Samples, n = 10 (ctrl CNS), n = 12 (HGG-IDHmut-A), n = 9 (HGG-I

(B) Regulation of tricarboxylic acid protein abundances between HGG-IDHmut-B

entities (lower panel). Sample numbers as in (A).

(C) Glycolysis-related protein profiles (left panel) and protein abundance-normalize

dances as sample group means of cross-sample Z scores of protein intensities and

(D) Abundance of the ATPIF1 pS39 phosphosite (left panel) and the protein abun
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In the multi-omics dataset, our HGG-IDHmut-A (oxidative

phosphorylation high) glioma subgroup corresponded to the

proneural-like (nmf1) subgroup (Figure 5A). Our HGG-IDHmut-

B (oxidative phosphorylation low) subgroup correlated most

strongly with the classical-like (nmf3) glioma subgroup, but

also considerably with the mesenchymal-like (nmf2) subgroup

(Figures 5A and S7C).

In addition to metabolic changes, similarities across studies

extended to other biological pathways, such as mRNA splicing,

RNA metabolism, translation, chromatin dynamics, DNA repli-

cation, and a collagen-rich ECM, which were enriched in

HGG-IDHmut-B and corresponding subgroups across studies

(Figures S7G and S7H). Conversely, neural phenotype and

mitochondrial proteins were enriched in HGG-IDHmut-A/pro-

neural-like subgroups. Moreover, top outliers and likely cancer

drivers CCAR1, YBX1, and ERH enriched in HGG-IDHmut-B

were likewise regulated in other datasets (Figures 5A and

S7G; Table 2).

Altogether, we show that IDHmut gliomas can be stratified into

two proteomic subtypes with diverging energy metabolism and

overall stronger differences than those caused by 1p/19q codele-

tion. Intriguingly, this separation emerges in four independent

studies, not only independent of 1p/19q but also across IDHmut

status.

DISCUSSION

Classification of CNS tumors has long been based on histology

only. In recent years, new molecular methods have significantly

improved the diagnosis of diffuse glioma and risk stratification of

certain glioma subgroups. At the genetic and epigenetic level,

we now know numerous driver mutations and epigenetic profiles

that provide information about the emergence of thesemalignant

tumors.

Unfortunately, these successes are not significantly reflected

in the treatment of diffuse high-grade adult gliomas. As a rule,

adult malignant gliomas have been treated the same way for

more than 15 years, mostly independent of the molecular profile,

according to the generally applicable STUPP and CATNON

regimen with concomitant radiochemotherapy with 6 or 12 cy-

cles of the alkylating agent temozolomide.121,122 A major break-

through in improving survival, as in other malignancies, such as

breast cancer, lung cancer, or colorectal carcinomas, could not

be achieved by these therapies. A targeted therapy tailored to

the molecular profile, e.g., IDHmut or IDHmut and 1p/19q code-

leted gliomas could not be established so far.

Therefore, we hypothesized that, in addition to the known his-

tological-molecular tumor classification (according to the current

WHO classification), a proteome-based approach could reveal
e novel classification of IDHmut tumors

ample entities of this study, split by complex I (upper panel) and complex II-V

DHmut-B), n = 11 (IDHwt), n = 11 (codel), n = 10 (non-codel).

and HGG-IDHmut-A entities (upper panel) but not between codeletion-defined

d phosphosite profiles (right panel) across the proteome-defined entities. Abun-

relative protein-normalized phosphosite intensities. Sample numbers as in (A).

dance (right panel) across the entities of this study. Sample numbers as in (A).
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signaling pathways and metabolic states which pave the way for

novel therapeutic strategies.

For this purpose, we characterized the proteome and phos-

pho-proteome of adult-type diffuse high-grade (WHO grades

3 and 4) gliomas from FFPE samples with MS. The genetic sub-

typing of IDHmut tumors into astrocytoma, IDHmut and oligo-

dendroglioma, IDHmut and 1p/19q codeleted according to

the current WHO classification correlated with minor differ-

ences in the tumor proteome (WHO Classification of Central

Nervous System Tumours, fifth edition). The selective loss of

proteins encoded on chromosomal locations 1p and 19q was

reflected in the proteomes, albeit to a lower extent than loss

of chromosome 10 proteins in IDHwt gliomas. Likewise, the

proteomic data showed the expected relationship of 1p/19q

codeletion and molecular signatures of telomere maintenance

via either the alternative lengthening of telomeres pathway or

the telomerase-dependent pathway. These signatures include

loss of ATRX in 1p/19q intact gliomas and conversely high

abundance of telomerase-associated proteins in ATRX intact

(1p/19q codeleted) gliomas. Overall, the proteomics approach

discovered expected features associated with the 1p/19q

codeletion.

However, the proteomes suggested an alternative sub-strati-

fication of IDHmut gliomas independent of 1p/19q codeletion.

This sub-stratification correlated with the loss of mitochondrial

DNA-encoded proteins, a loss of mitochondrial respiratory chain

proteins, an overall distinct metabolic profile, a basement mem-

brane-like ECM signature, distinct proto-oncogene and tumor

suppressor protein signatures, differences in translation, RNA

metabolism, DNA replication, and chromatin dynamics, as well

as site-specific differences in the phospho-proteomes. In this

study cohort, the alternative sub-stratification was not associ-

ated with patient gender, age, clinical course, discerning histo-

pathological features, or CNV alterations.

Occurrence of an early 1p/19q codeletion can be a crucial

point in cancer development, while both codeleted and non-co-

deleted gliomas can progress by similar mechanisms. Accord-

ingly, our proteome-based classification does not question the

general relevance of the 1p/19q codeletion as an early-event

determinant of glioma development. However, in contrast to

the more dynamic proteome, 1p/19q status may not be the

most appropriatemarker for the current state in subsequent can-

cer progression.

The tumor proteomes in this study showed perturbations of

various biological processes, in particular the aerobic/anaerobic

energy metabolism. The downregulation of the mitochondrial

respiratory chain proteins in the proteomically defined HGG-

IDHmut-B subgroup could reflect the Warburg effect, which
Figure 4. The alternative sub-stratification of IDHmut gliomas correla

levels

(A) Principal-component analysis of UniProt keyword-annotated proto-oncogenes

CNS), n = 12 (HGG-IDHmut-A), n = 9 (HGG-IDHmut-B), n = 11 (IDHwt).

(B) Abundance profiles of oncoprotein (left) and tumor suppressor (right) proteins a

by subtraction of cross-sample median and then averaged by mean sample group

(codel), n = 10 (non-codel).

(C) Phosphosite abundance differences between the proteomic entities of this

Sample numbers as in (A).
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favors the anaerobic over aerobic metabolism in cancer cells.

Notably, complex I was particularly affected. A mild dysfunction

of complex I can promote tumor progression via ROS-depen-

dent activation of AKT signaling.111 Moreover, loss of respiratory

chain proteins in our dataset was accompanied by a synergistic

loss of pS39 phosphorylation on ATPIF1, a rewiring of the TCA

cycle and glycolysis enzyme profile, including the loss of HK1,

which promotes glycolysis and malignancy in mouse xenograft

models.113 Loss of S39 phosphorylation on ATPIF1 promotes a

metabolic shift from oxidative phosphorylation to glycolysis

and further proliferation and cell death resistance via mitochon-

drial ROS production in hypoxia and cancer.114,115 Intriguingly,

there could also be a link between the metabolic rewiring and

CCAR1 dysregulation. In lung cancer, elevated glucose concen-

trations induce the splicing factor SRSF5 to promote cancer pro-

gression via alternative splicing of CCAR1.102 In our dataset,

CCAR1 was the top outlier in gliomas with respiratory chain

loss and CCAR1’s best correlating protein was the related

SRSF1. Overall, our study provides a rich protein and phospho-

site resource supporting future mechanism of action and target

discovery investigations.

There is increasing evidence in the literature that high-grade

gliomas show distinct metabolic subtypes, using glycolysis

(Warburg effect) or oxidative phosphorylation as primary energy

source.120,123 The proteome differences between HGG-IDHmut-

A and -B of our study were strikingly similar to differences of cor-

responding subtypes we likewise identified in another dataset of

IDHmut glioma using unbiased hierarchical clustering.119

Notably, these similarities extended to independently defined

IDHwt subtypes in two more studies, both in terms of the global

proteome and metabolic classes of proteins, including glycol-

ysis, TCA cycle, and oxidative phosphorylation.25,120

The IDHwt dataset originating from the CPTAC multi-omic

glioma study revealed that HGG-IDHmut-A (high oxidative

phosphorylation) of our study corresponded to a proneural-like

glioma subtype and HGG-IDHmut-B (low oxidative phosphory-

lation) corresponded best to a classical but also relatively well

to a mesenchymal-like glioma subtype.25 Thus, the HGG-

IDHmut-B group in our cohort potentially comprises both

mesenchymal and classic phenotype-like IDHmut glioma, which

have common strong proteome differences to proneural-like

IDHmut glioma.

The strong similarity of the proteome differences between IDH-

mut subtypes in our study, compared with the differences be-

tween IDHwt subtypes in the two other studies emerging from

our analysis, suggests a shared—but yet to be determined—

molecular mechanism for this phenotypic, including metabolic

divergence across IDH status. Single-cell transcriptome analysis
tes with altered tumor suppressor, onco-proteins, and phosphosite

(upper panel) and tumor suppressor genes (lower panel). Samples, n = 10 (ctrl

cross the proteomic entities of this study. Protein intensities are first normalized

abundance. Samples, n = 12 (HGG-IDHmut-A), n = 9 (HGG-IDHmut-B), n = 11

study (upper panel) and the 1p/19q codeletion-defined entities (lower panel).
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of gliomas has revealed that tumors comprise cells of four pheno-

typic subtypes with distinct metabolism in varying overall compo-

sitions.123 Intrinsic (e.g., genetic/epigenetic) factors may cause

such diversity and extrinsic factors (e.g., tumormicroenvironment)

could select for a certain cellular or overall tumor type. Further

studies based on single-cell characterization, such as by

emerging proteomics approaches, will be valuable in addressing

these questions by defining themetabolic and neurodevelopmen-

tal tumor cell states and their microenvironment.124

Metabolic stratification of gliomas is an emerging approach

with broad implications for survival and therapy. Re-analysis

of The Cancer Genome Atlas cohort comprising over 300 hu-

man IDHwt glioblastoma samples using a pathway-based clas-

sification of the transcriptome showed a better survival of

oxidative phosphorylation-driven gliomas.123 Patient-derived

cells originating from tumors relying on oxidative phosphoryla-

tion were uniquely susceptible to compounds targeting mito-

chondria, including inhibition of respiratory chain complex I

(metformin), inhibition of mitochondrial translation (tigecycline),

and induction of mitochondrial oxidative stress and apoptosis

(menadione). Likewise, these cells also exhibited increased

sensitivity to ionizing radiation, which primarily causes mito-

chondrial rather than nuclear stress.123,125 Similarly, another

study screened anticancer agents for efficacy in patient-

derived cells originating from IDHwt gliomas with proteomically

characterized metabolic state.120 Several agents were

selectively cytotoxic in either glycolysis-reliant glioma cells

(tandutinib, crizotinib, olaparib, and AZD2014) or in oxidative

phosphorylation-reliant cells (erismodegib and canertinib).

Moreover, the proteomic/metabolic stratification of IDHmut gli-

omas may be relevant for treatment with other established

drugs. For instance, IDH1 was selectively more abundant in

HGG-IDHmut-B than in HGG-IDHmut-A despite the opposite

trend for all other regulated TCA cycle proteins, which may

correspond to differential sensitivity toward IDH inhibitors,

such as ivosidenib, and a benefit in clinical trials.126,127

Similarly, metformin is under discussion as a glioma drug,

potentially in synergistic use with temozolomide, and has

shown differential efficacy in cellular models of patient-derived

cells derived from proteomic-metabolically stratified gli-

omas.123,128,129 In summary, past studies highlight the promise

that metabolic stratification holds for glioma precisionmedicine

and as well as the power of proteomics in discovering such

stratification exemplified for IDHwt glioma. By further impli-

cating IDHmut gliomas, our study creates a bigger picture of

common phenotypic subtypes independent of the IDH status,

which we believe will also benefit patients with IDHmut gliomas

by making future proteome/metabolism-directed therapies

available to them as well.
Figure 5. Comparison of HGG-IDHmut-B/HGG-IDHmut-A to the proteo

HGG-IDHmut-A (n = 12) and HGG-IDHmut-B (n = 9) correlate with the high and lo

GPC1 (n = 26),120 nmf1/proneural-like (n = 29) and nmf3/classical-like (n = 25),25

(A) Pairwise comparison of fold changes across all proteins overlapping in both d

both datasets.

(B) Regulation of mitochondrial respiratory chain proteins across datasets.

(C) Regulation of tricarboxylic acid cycle proteins across datasets.

(D) Regulation of glycolysis proteins across datasets.
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Limitations of the study
A limitation of this study is the low number of IDHmut samples (21

IDHmut tissue samples in total). Validation in the three literature

datasets provided additional support. Samples in two of the

three studies were predominantly IDHwt, but in the third pre-

dominantly IDHmut. We conclude that IDHmut gliomas can be

classified into metabolic and proteomic subgroups similar to

those of IDHwt. However, this study does not ascertain whether

proteomic/metabolic status and IDH mutational status are inde-

pendent and orthogonal classifiers of a continuum of glioma

phenotypes. Alternatively, similar metabolic glioma subgroups

could exist within both IDHwt and IDHmut. Furthermore, the

mechanistic root cause driving subtype divergence and its inter-

play with the (epi-)genome and tumormicroenvironment remains

to be elucidated.

On the clinical side, larger and clinically better-characterized

study collectives are required to integrate the novel proteomic/

metabolic subgroups and the established IDH mutation and

1p/19q codeletion status into a new overall classification

scheme and assess the predictive power of these features for

survival and treatment response. Moreover, prospective studies

are required to assess whether patients with high-grade gliomas

benefit from a combination of metabolic/proteomic stratification

and precision anticancer agents and radiotherapy.
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Q Exactive HF-X Thermo Fisher Scientific Cat# 0726042

Fused silica capillaries Optronis GmbH TSP 075 375

C18 beads for in-house packed

chromatography columns

Dr.Maisch ReproSil-Pur

120C18-AQ, 1.9 mm
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Felix

Meissner (felix.meissner@uni-bonn.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner re-

pository and are publicly available as of the date of publication. Accession numbers are listed in the key resources table.

d The raw methylation data and the CNV profiles calculated from them have been deposited to the Gene Expression Omnibus –

NCBI repository and are publicly available as of the date of publication. Accession numbers are listed in the key resources table.

d The paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
Formalin fixed paraffin embedded (FFPE) tumor samples were collected from patients who underwent surgery at the Department of

Neurosurgery of the Charité, Universitätsmedizin Berlin, and diagnosed at the Department of Neuropathology Charité - Universitätsme-

dizin Berlin. The diagnoses weremade according to the validWHO classification for tumors of the CNS at the time of diagnosis (revised

fourth edition, 2016) and re-evaluatedwhen theWHOclassificationwas updated (fifth edition 2021). Patients’ ages at the timeof surgery

were 73 ± 7 years (mean ± SD) for IDHwt, 48 ± 10 years for codel, 36 ± 12 years for non-codel, and 39 ± 12 years for the CNS ctrl. The

non-neoplastic CNS tissue samples originate from epilepsy patients whose temporal lobe has been resected because of mesial

hippocampal sclerosis. Subsequently, the parahippocampal cortical and subcortical tissue was separated from the hippocampus

and the white matter tissue in particular was used as controls. Further information can be found in Table S1. All IDH-mutant gliomas

included in the study had IDH1 R132H mutations. This study was conducted according to the ethical principles of medical research

involving human subjects according to the Declaration of Helsinki. The clinical data were assessed and anonymized for patients’ confi-

dentiality. Ethical approval (EA2/101/08) was granted by the institutional ethics board of the Charité Ethics Committee.

METHOD DETAILS

Clinical diagnostic procedures and sampling
IDH mutation status was determined by IDH1 R132H immunohistochemistry (IHC). In cases with unclear IDH immunohistochemistry

results and in patients with glioblastomas under 55 years of age, an IDH1 and IDH2 pyrosequencing analysis was also per-

formed.138,139 The 1p/19q-codeletion status was determined using the EPIC methylation analysis – described below. As current

diagnostic criteria for glioma include homozygous deletion of CDKN2A/B, this was inferred from the EPIC analysis later in the study.15

IDHwt glioma exhibited frequent (8/11) loss of CDKN2A/B while only few (2/21) IDHmut glioma showed this. Similarly, EGFR ampli-

fication was common in IDHwt (5/11) but absent in IDHmut glioma. The tumor area was marked on an H&E section by a neuropathol-

ogist and the corresponding tissue was removed from the paraffin block for the proteome and molecular analyzes. Areas with high

tumor cell content (R50%) were preferably chosen and adjacent sections from the tissue blockmacro-dissected for experiments. As

gliomas are diffusely infiltrating tumors, three pronounced diffuse glioma samples with a tumor cell content of 35-50% were also

included. For IDH-mutant samples, tumor content estimation was refined by categorization into solid tumor and infiltration zone.

DNA methylation and copy number variation analysis
For all tumors, DNA methylation and copy number analyses were performed using the EPIC (850k) Bead-Chip array platform (Illu-

mina, USA).133 All analyses were carried out according to themanufacturer’s instructions. DNAwas extracted from FFPE tumor sam-

ples using the Maxwell RSC FFPE Plus DNA Purification Kit (Promega, USA). After bisulfite conversion with the Zymo EZMethylation

Kit (Zymo Research Irvine, USA), the Infinium HD FFPE DNA Restore Kit was used for DNA restoration. The beadchips were scanned

on the iScan system (Illumina USA).

Sample preparation for mass spectrometry
FFPE tumor samples were prepared for proteomic analysis as reported previously.17 FFPE biobank specimens with an approximate

1.53 1 cm area were cut in 10mm slices with a microtome. Three slices were twice deparaffinized by 1mL of xylene at 50�C for 5min,

washed twice with ethanol at RT for 5min and air-dried for 15min. Samples were homogenized in 300mL lysis solution (0.1M Tris/HCl,

pH7.5, 10mM dithiothreitol) with an T10 basic Ultra-Turrax blender (IKA, Staufen, Germany). SDS was added to a final concentration

of 4%w/v and sample homogenates were incubated at 99�C for 60 min at 600rpm on a Thermomixer (Eppendorf, Germany), cooled

to RT, and sonicated on a Bioruptor Plus device for 15 cycles of 15s high power setting and 15s incubation (Diagenode SA, Belgium).

After centrifugation for 10 min at 16 000 g at 4�C, proteins in the supernatant were alkylated with 55mM iodoacetamide for 30min in

the dark and precipitated with 4-fold excess v/v of�20�C acetone overnight. The pellet was isolated by centrifugation at 16 000 g at

4�C for 10min, washed with 80%–20�C acetone, and resuspended in 100mL 8M urea aided by sonication as before.

The protein concentration was determined by BCA assay and proteins were digested with LysC for 3 hrs and subsequently diluted

3-fold with 50mMammonium bicarbonate and digested with trypsin overnight. Digestions were performed at an enzyme:protein ratio

of 1:50 w/w. Digestion was stopped by addition of trifluoroacetic (TFA) to 1% v/v and peptides were cleaned up according to the iST

protocol using styroldivinylbenzol-reversed phase sulfonate material (SDB-RPS; Empore 3M, Germany) on in house-packed spin

cartridges.140 In brief, acidified peptides were loaded by centrifugation at 400g, washed twice with 200mL 1% v/v TFA in isopropanol,

washed twice with 200mL 0.2% v/v TFA in water, eluted with 150mL 1% ammonia in 80% acetonitrile, and dried in a vacuum concen-

trator (Concentrator plus, Eppendorf, Germany). Peptides were then resuspended in 150 mL A* buffer (2% v/v acetonitrile, 0.1% v/v

formic acid) aided by sonication and concentration was measured spectroscopically at 280nm (Nanodrop 2000, Thermo Scientific).

One aliquot was kept for protein abundance ‘total’ proteomics while the bulk was used for phosphorylation site proteomics. For that

purpose, 80mg of purified peptide were subjected to phosphopeptide enrichment using Fe(III)-NTA cartridges on the AssayMAP

Bravo platform (Agilent, USA) according to the manufacturer’s instructions. The eluate was dried and resuspended in 5 mL A* buffer.
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Ultra-high pressure liquid chromatography and mass spectrometry
Samples were measured using an EASY-nLC 1200 (Thermo Fisher Scientific) coupled to a Q Exactive HF and a Q Exactive HF-X

Orbitrap mass spectrometer (Thermo Fisher Scientific) in case of the proteome and phospho proteome samples, respectively. Pu-

rified peptides were separated on 50cmUHPLC columnswith an inner diameter of 75mmpacked in-housewith ReproSil-Pur C18-AQ

1.9mm resin (Dr.Maisch GmbH) and ions were generated by a nano-electrospray ion source (Thermo Fisher Scientific). About 500ng

of purified un-enriched peptides and the entire phosphopeptide enrichment eluate per sample corresponding to less than 500ng

were loaded on the liquid chromatography column. Un-enriched peptides were eluted at a flow rate of 250 nL/min and a temperature

of 60�C over a 160min gradient with decreasing concentration of buffer A (0.1% v/v formic acid in water) and concomitantly

increasing concentration of buffer B (0.1% v/v formic acid, 80% v/v acetonitrile). The gradient used for separation of un-enriched

peptides started at 2% v/v B, followed by several phases of linear increases to 5% at minute 3, to 25% at minute 109, to 35% at

minute 136, to 60% at minute 148, to 95% at minute 151, a plateau at 95% up to minute 154, a decrease to 5% reached at minute

157 and further plateau at 5% until minute 160. Phosphopeptide-enriched samples were separated by a gradient starting at 3% B,

followed by linear increases to 19%atminute 60, to 41%atminute 90, to 90%atminute 95, and a plateau at 90%until minute 100 at a

flow of 300 nL/min at 60�C.
Generally, the mass spectrometers were operated by the Xcalibur software (Thermo Fisher) andMS/MS data were recorded in the

data-dependent acquisition (DDA) mode. Survey scan (MS1) settings included an ion target value of 33 106 charges in the 300–1650

m/z range with a maximum injection time of 25 ms and a resolution of 60,000 atm/z 200. For non-enriched peptides, up to 15MS/MS

spectra with an ion target value of 105 charges, a maximum injection time of 25 ms, a resolution of 15,000 atm/z 200, a 1.4m/z pre-

cursor isolation window, and a 20s dynamic exclusion list were recorded per DDA cycle. For phospho-enriched peptides, up to 10

MS/MS spectra were acquired per cycle with identical parameters but amaximum injection time of 50ms, a 1.6m/z isolation window,

and a dynamic exclusion window of 30 s. Precursors ions with charges other than 2-5 were not selected for MS/MS events. Frag-

mentation was performed by higher-energy C-trap dissociation (HCD) with a normalized collision energy of 27eV.

QUANTIFICATION AND STATISTICAL ANALYSIS

DNA methylation and copy number variation data analysis
DNA based classification was performed for 850k data using the publicly available ‘‘brain tumor classifier’’, version v11b4, ref. 14. One

oligodendroglioma sample with 1p/19q codeletion confirmed by EPIC analyses was surprisingly assigned ‘high grade astrocytoma’

by this algorithm.We thus reanalyzed this sample with the recently improved classifier version v12.5133 which assigned the new class

‘oligosarcoma’ to this sample in line with its oligodendroglial origin.

Copy number variations were calculated from IDAT files using the R/Bioconductor conumee package, and were visualized using

ComplexHeatmaps v2.10.0. The Integrative Genomics Viewer (IGV) was used to assess chromosomal gains and losses considering

the tumor cell content.134,135,141 In general, changes were considered potentially relevant if the intensity ratio of a segment deviation

from the baseline by more than 0.1, ref. 14. In addition, we made summary copy number profiles for both IDH mutated groups (A and

B). This analysis was done using an adaption of the conumee script (provided by Dr. Damian Stichel, Neuropathology Heidelberg).

This algorithm allowed determining CNV load (CNV-L) for each tumor, resulting in a split for a value of 349.695.798 base pairs.15 This

CNV load refers to the sum of all gains and deletions as determined by analysis of the 850k raw data by our performed algorithm.

Progression-free survival analysis
Outcome data were available in 20 of 21 IDHmut A/B patients. Progression free survival analysis was performed using the R v4.1.1

packages survival v3.1-8 and survminer v0.9.9, ref. 136 and 137. We used Kaplan-Meier estimates to investigate differences in pro-

gression free survival. The starting point for the analysis of the results was the date of the first histological diagnosis of a glioma.

As an ‘‘event’’ for progression analysis, we defined either the performance of another surgical intervention (using the date of surgery

as event date) or if available tumor progression on MRI (using the date of the MRI as event date). No patients died during follow up

period. Median follow up time was 6.5 years (range 1 year–14 years).

Mass spectrometry data processing
To process MS raw files, we employed the MaxQuant software versions 1.5.8.4 and 1.6.0.15 for the un-enriched peptides and

phospho-enriched peptides, respectively.131 Spectra were searched against the UniProtKB human FASTA database of canonical

and isoform protein sequences downloaded in March 2018 and comprising 93,786 entries. Default search parameters were utilized

unless stated differently. In brief, tryptic peptides with a minimum length of 7 amino acids, a maximum mass of 4600 Da, and two

miscleavages at maximumwere searched. Carbamidomethlyation was set as a fixedmodification andmethionine oxidation and pro-

tein N-terminal acetylation as variable modifications, for the search of phospho-enriched peptides phosphorylation of serine, thre-

onine and tyrosine was additionally included. A maximum of five modifications per peptide was permitted. A false discovery rate

(FDR) cutoff of 1%was applied at the peptide and protein level. The search feature ‘‘Match between runs,’’ which allows the transfer

of peptide identifications in the absence of MS/MS-based identification after nonlinear retention time alignment was enabled with a

maximum retention time window of 0.7 min. Protein abundances were normalized with the MaxLFQ label-free normalization

algorithm incorporated in MaxQuant.
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Data preprocessing and bioinformatic analysis
Data analysis was mainly performed in the Perseus environment version 1.6.1.3 and in version 1.6.0.9 for correlation analysis.132

Potential contaminants, proteins only identified by site, and search decoys were excluded from further analysis. Protein abundance

was log2-transformed and proteins that were not quantified in at least seven samples of at least one of the threeWHOentities and one

ctrl (IDHwt, IDHmut, 1p/19q-codel, ctrl CNS) were removed. Missing values for protein abundances were imputed according to

Perseus default settings from normal distributions around the detection limit with a SD of 0.3 times that of the observed protein dis-

tribution of that sample and a downshift of 1.8 standard deviations. Volcano plots were generated in Perseus and FDR-controlled by

q-value calculation using a permutation strategy in conjunction with a SAM-statistic with an s0-parameter of 0.1.142 Proteins above

the cutoff line are significant according to q-value <5%. Bar plots and boxplots with boxes and whiskers depicting the inter-quartile

and minimum to maximum range, respectively, were created in GraphPad Prism 9. T-tests with Welch’s correction were used for

group comparisons in these plots. Significance levels were p < 0.05, <0.01, <0.001, and <0.0001 indicated by one to four stars.

Heat maps and hierarchical clusters were generated in Perseus. Protein intensities were Z-Scored or normalized by subtraction

of the median intensity across samples as stated in the figure legends. In case of sample groups, mean group intensities were

used. Principal component analysis, Pearson correlation analysis, and one-way ANOVA with s0 parameter-modified test statistic

were performed using Perseus tools. Analysis of ATRX-correlating proteins was limited to IDHmut tumor samples as ATRX loss is

mostly restricted to IDHmut gliomas.143

Phosphoproteome-specific analysis
For phosphosite analysis, the phospho (STY) site table generated byMaxQuant containing multiplicity-level quantification was trans-

formed to phosphosite-level quantification by the Perseus expand site table feature. Like protein data, phosphosite abundances

were log2-transformed and filtered for seven quantifications. Moreover, phosphosites were filtered for high localization confidence

(p > 0.75), termed class I sites, and themedian phosphosite intensity of each sample was subtracted from all phosphosites within that

sample. Subsequently, missing values were imputed as above.

For the analysis of the glycolysis enzyme phosphorylation signature, phosphosite abundances were normalized to their matching

protein abundance for each sample. To avoid amplification of error due to missing values and imputation on both protein and phos-

phopeptide level, unimputed protein intensities were subtracted from unimputed phosphosite intensities in log2-space, equivalent to

division in linear space. Subsequently, themedianwas subtracted within samples, normalized phosphosites filtered for at least seven

quantifications in at least one of the WHO sample groups and imputation performed as above.

Proteome annotations, chromosomal analysis, and survival associations
Proteins were annotated via the in-built Perseus function with gene ontology terms for biological processes (GOBP), cellular com-

partments (GOCC), molecular function (GOMF), UniProt Keywords, UniProt protein families, UniProt protein-protein interactions (‘in-

teracts with’), and genomic information including chromosomal and base pair position.

Chromosome arm area abundanceswere calculated asmean abundance of all proteins with corresponding chromosomal position

and normalized by subtracting the median abundance within samples. For heatmap visualization, the median abundance within pro-

teins across samples was subtracted. Genome assembly issues and the Y chromosome for which only one protein was quantified

were excluded.

Annotation term enrichment on the PCA loadings, i.e. protein contributions, to the two main principal components was performed

with the 2D enrichment tool in Perseus.144 Annotations with a Benjamini-Hochberg-adjusted q-value higher than 0.5% and or less

than 5 proteins were excluded. Remaining annotations were manually assigned to the meta-categories such as ‘chromatin’.

For analysis of functional metabolic groups of proteins, proteins were selected according to the terms ‘glycolysis’ (UniProt Key-

words) and ‘tricarboxylic acid cycle’ (UniProt Keywords), and the terms for ‘mitochondrial respirator chain complex’ I-IV (GOCC),

respectively, and ‘mitochondrial proton-transporting ATP synthase complex’ as complex V (GOCC). Tumor suppressors and

oncoproteins were filtered according to UniProt Keywords annotation for ‘tumor suppressor genes’ and ‘proto-oncogenes’.

Survival associations mapped onto outlier proteins regulated on chr. 10, chr. 7, and arms 1p and 19q derived from TCGA glioma

Affymetrix human exon 1.0 ST transcriptomics data accessed via betastasis (http://www.betastasis.com). High and low expression

were separated by the median expression value. Significance of association calculated by the log -rank test were taken from

betastasis.

Tumor content analyses
Various controls were performed to check for potential associations of the proteome-based sub-stratification of IDHmut tumors with

clinical parameters or tumor content (see supplemental information). For stratifications into ‘high’ and ‘low’ groups for parameters,

e.g. solid tumor content, sample assignment was made in the way entailing maximum parameter separation while maintaining

balanced composition of the two groups regarding HGG-IDHmut-B and HGG-IDHmut-A. Regression analysis was performed using

the lm() linear model in R version 3.6.3, fitting protein abundances based on HGG-IDHmut-A/B status, 1p/19q codeletion status, and

two tumor content variables (i: solid tumor area, and ii: infiltration zone area) among IDHmut samples.

Further, proteome differences were compared to cell type differences between isolated astrocytes and neurons using available

murine proteomics data.130 Proteins were matched based on identical gene names. Mouse cell data were filtered for astrocytes
Cell Reports Medicine 4, 100877, January 17, 2023 e5
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(n = 3), oligodendrocytes at DIV4 (n = 3), neurons at DIV15, and adult microglia (n = 3). Similar to our proteome data, proteins without

at least two out of three quantifications in at least one cell type were removed and subsequently missing values were imputed as

above.

Integration with other glioma proteome datasets
Proteome differences between HGG-IDHmut-A and B were compared to published glioma proteome data.25,119,120 The CPTAC/

Wang dataset stratified glioma samples by a multi-omics-defined phenotype: 29 nmf1/proneural-like, 37 nmf2/mesenchymal-like,

26 nmf3/classical-like, 6 IDH mutant (IDH1 R132H), and 10 non-neoplastic ctrl CNS. One sample with a non-hotspot IDH-mutation

(R222C) in the CPTAC dataset, assigned to nmf3/classical-like, was excluded. The dataset was further filtered for proteins with at

least 70% observations in at least 1 ‘multi-omic’ group reducing the dataset from 10,998 to 10,206 proteins. Remaining missing

values were imputed analogously as in our dataset. A list of the human proteome with RefSeq and UniProt IDs for each protein

was downloaded from UniProt to match proteins identified by RefSeq ID in the CPTAC dataset to proteins specified by UniProt

IDs in our dataset, 5195 proteins overlapped. The Oh et al. study comprised 26 GPC1 (GBM proteomic cluster 1, high glycolysis)

subtype and 13 GPC2 (high oxidative phosphorylation) subtype IDHwt glioblastoma samples, which were used in their main

GPC1/GPC2 clustering and the re-analysis in our study. The proteome dataset contained 3909 proteins without missing values.

Proteins were specified by UniProt IDs which we used to match proteins to our data, 3715 proteins overlapped. The Wong dataset

comprised 6 control CNS samples, 21 IDH-mutant 1p/19q-codeleted (Wong et al.: ‘type I’), 17 IDH-mutant 1p/19q non-codeleted

(‘type II’), 10 IDH-wt (‘type III’) glioma samples and additional reference sampleswhichwe removed from further analysis. The dataset

comprising 7988 protein groups was filtered for proteins present in all samples reducing the number to 5897 proteins. Proteins were

matched to our dataset based on UniProt IDs. Our hierarchical clustering classified the IDHmut glioma into 10 IDHmut-A (comprising

6 ‘type I’ and 4 ‘type II’) and 28 IDHmut-B (comprising 15 ‘type I’ and 13 ‘type II’).
e6 Cell Reports Medicine 4, 100877, January 17, 2023
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Figure S1. Overall dataset, separation glioma subgroups and comparison to CPTAC/Wang et al. dataset. 

Related to Figure 1. 

A) Number of quantified proteins and high-confidence class I (localization probability > 0.75) phosphor-sites in 

filtered dataset. Samples, n=10 (ctrl CNS), n=12 (HGG-IDHmut-A), n=9 (HGG-IDHmut-B), n=11 (IDHwt), 

n=11 (codel), n=10 (non-codel). 

B) Comparison of CPTAC/Wang et al. glioma proteome data to our glioma dataset. Specifically, comparison of 

IDHwt to ctrl CNS protein fold changes [log2] (left) and IDHmut to ctrl CNS protein fold changes [log2] 

right. Entities nmf1, nmf2, nmf3 in CPTAC dataset are IDHwt. Only proteins significantly regulated (q < 

5%) in at least one dataset included: 2732 (IDHwt vs ctrl CNS) and 1351 (IDHmut vs ctrl CNS). Consistency 

of regulation: 99% concordance and Pearson r = 0.92 (IDHwt vs ctrl CNS) and 98% concordance and Pearson 

r = 0.91 (IDHmut vs ctrl CNS). Samples, this study: n=10 (ctrl CNS), n=11 (IDHwt), Wang et al.: n=10 (ctrl 

CNS), n=91 (IDHwt). 

C) IDHwt/IDHmut proteome differences depending on 1p/19q-codeletion status of IDHmut. Samples as in A. 

D) Comparison of IDHwt/IDHmut differences between datasets of this study (y axis) and CPTAC (x axis). 

Entities nmf1, nmf2, nmf3 in CPTAC/Wang et al. dataset are IDHwt. All proteins overlapping in both datasets 

(5241) shown, Pearson r = 0.57. Filtering for proteins significantly regulated (q < 5%) in both datasets, 

increases correlation to Pearson r = 0.89 (701 proteins). Outlier proteins and proteins belonging to enriched 

annotation terms of interest as in Fig. 1E highlighted. Samples, this study: n=21 (IDHmut), n=10 (IDHwt), 

CPTAC/Wang: n=6 (IDHmut), n=91 (IDHwt). 

E) Abundances of RBP1 and AKR1C3 across sample groups of this study. Samples as in A. 

F) Separation of codeleted and non-codeleted IDH-mutant samples in the combined second and third 

components of the principal component analysis of the glioma proteome. Green IDHwt, brown ctrl CNS, red 

1p/19q-codeleted IDH-mutant, blue non-1p/19q-codeleted samples. Samples as in A. 

G) Equivalence of the HGG-IDHmut-A / HGG-IDHmut-B subgroup clustering in differently filtered datasets. 

PCA analysis of dataset comprising ANOVA-significant (q < 5%) proteins (top right, 3749 proteins), dataset 

comprising proteins quantified in all 42 samples without missing values (bottom left, 2625 proteins), and 

dataset comprising the top 25% most variable proteins with highest CVs across all 42 samples (bottom right, 

1439 proteins). Samples as in A. 

H) CNV profiles across samples. Samples as in A. 

I) CNV load plots as averages within the groups of HGG-IDHmut-A and HGG-IDHmut-B. Amplifications 

highlighted as alterations in green to the right, deletions as alterations in red to the left. Samples as in A. 
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Figure S2. Analysis of HGG-IDHmut-A/B association with patient demographics, survival and tumor 

content. Related to Figure 1. 

Upon identification of the proteome-based classification, we aimed to link this classification to patient’s 

demographic data or histological correlates. 

A) Influence of patient age (top row) and tumor content (bottom row) on HGG-IDHmut-A/B separation. 

Left: Distribution of values (top: patient age at diagnosis, bottom: area % of sample that is tumor 

according to histopathological assessment) across sample groups of this study. Samples, n=10 (ctrl 

CNS), n=12 (HGG-IDHmut-A), n=9 (HGG-IDHmut-B), n=11 (IDHwt), n=11 (codel), n=10 (non-

codel). Center: Stratification of control groups (n=6 in each group) for age (top) and tumor content 

(bottom), balanced for HGG-IDHmut-A and B composition, respectively. Right: Proteome differences 

between stratified control groups, mitochondrial respiratory chain proteins highlighted.  A 

neuropathologist did not identify discerning histomorphological features, but estimated the fractions of 

the tissue section occupied by the solid tumor, the tumor infiltration zone, and the reactive CNS tissue 

for further analysis. Moderately higher total tumor area (solid + infiltration) in HGG-IDHmut-B 

comparted to A. However, no significant proteome differences between groups of samples stratified 

into ‘high tumor area’ and a ‘low tumor area’ for total tumor area, (and likewise for solid or infiltration 

area, not shown).  

B) Linkage of differential tumor content to independent cancer drivers but not the HGG-IDHmut-A/B 

separation. Linear regression model predicting protein intensity based on variables HGG-IDHmut-A/B 

status, 1p/19q codeletion status, solid tumor content, tumor infiltration area. Regression results 

showing estimators (x axis) for HGG-IDHmut-A/B status (top left), 1p/19q codeletion status (top 

right), solid tumor content (bottom left), and their significance (y axis), respectively. Correlation of 

estimators for solid tumor area and tumor infiltration area (bottom right) for proteins significant (p < 

5%) in at least one tumor area dimension. Proteins of interest highlighted including mitochondrial 

proteins (top row) and tumor suppressor, oncoproteins, and cell type markers (bottom row). Samples, 

n=12 (HGG-IDHmut-A), n=9 (HGG-IDHmut-B), n=11 (codel), n=10 (non-codel). Main features of 

HGG-IDHmut-A/B separation (mito. resp. chain complex signature, outlier proteins) confirmed, and 

1p/19q codel-associated protein regulation preserved and statistically more significant, after correction 

for covariates by regression model.  Outlier proteins associated with solid or infiltration tumor area 

distinct to the proteins linked to either subgrouping (HGG-IDHmut-A/B or 1p/19q status) but protein 

association with the two tumor area parameters highly correlated. Many high tumor content-associated 

proteins previously implicated as oncogenes, predominantly in other cancer types, including NID1, 

SYNE2, DEK, DDX6, DES, GATAD2A, SNRPE, ALOX5, HAPLN1, LAMA5, NCOR1, and 

RBM10145-157. Conversely, low tumor content proteins comprising functional CNS proteins such as 

myelin (MBP, MAG) and neuronal proteins (NFASC, STMN2), and tumor suppressors (NRGN, 

CARNS1, GPD1158-160). 

C) Relationship of HGG-IDHmut-A/B separation and differential content of astrocyte and neuron content. 

Sample numbers as in B. Left: Distribution of values (top: GFAP intensity, bottom: NEFL intensity) 

across sample groups of this study. Center: Stratification of control groups (n=6 in each group) for GFAP 

intensity (top) and NEFL intensity (bottom) balanced for HGG-IDHmut-A and B composition, balanced 

for HGG-IDHmut-A and B composition, respectively. Right: Proteome differences between stratified 

control groups, mitochondrial respiratory chain proteins and proteins of interest highlighted. No 

significant proteome alterations or differences of mitochondrial respiratory chain proteins as in HGG-

IDHmut-A/HGG-IDHmut-B comparison in these stratifications. 

D) Apparent non-regulation of microglia-associated proteins between HGG-IDHmut-A (n=12) and B (n=9) 

proteome.  

E) Comparison of proteome differences between HGG-IDHmut-A / B sample groups and differences 

between isolated astrocytes and neurons (left), astrocytes and oligodendrocytes (center), and astrocytes 

and microglia (right) accessible for mouse144. No correlation of mitochondrial protein abundance 

differences between the HGG-IDHmut-A/B subtypes with the abundance differences between isolated 

brain cell types. Proteins with q-value of 5% or lower in at least one of the two dimensions each (cell 

types, glioma subtypes) included. Neuronal (NEFL), oligodendroglial (MOG, MBP) and microglial 

marker proteins (PTPRC/CD45) labelled in red. Outlier proteins associated with HGG-IDHmut-B 

labelled in pink. Mitochondrial respiratory chain proteins green and mitochondrial ribosomal proteins 

brown. Respiratory chain complex V refers to ATP synthase. Pearson correlation coefficients for all 
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proteins, left: r = 0.41, center: r = 0.09, right: r = -0.12 and for labelled mitochondrial proteins, left: r = -

0.04, center: r = -0.03, right: r = -0.08.  Samples, n= 12 (HGG-IDHmut-A), n=9 (HGG-IDHmut-B), n=3 

(astrocytes), n=3 (oligodendrocytes DIV4), n=3 (neurons DIV15), n=3 (adult microglia).  

F) Progression-free survival of HGG-IDHmut-A (n=12) and HGG-IDHmut-B (n=9). 
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Figure S3: CCAR1 and ATRX correlation analysis, survival association of regulated chr. 7, chr. 10, and 

1p/19q proteins. Related to Figure 2. 

A) CCAR1 correlation analysis. Top: Proteins correlating to CCAR1 across all 32 tumor samples. Bottom: 

Abundances of CCAR1 and SRSF1 across all samples of dataset. Pearson coefficient r = 0.89. Sample 

groups color-coded, brown control CNS, green IDHwt, yellow HGG-IDHmut-A, pink HGG-IDHmut-B. 

B) ATRX correlation analysis. Top: Annotations enriched in proteins with extreme (high/low) Pearson 

correlation coefficients vs ATRX according to Perseus 1D annotation enrichment. IDHmut tumors 

(n=21) included. 1p/19q affiliation of proteins treated as annotation for enrichment analysis. Bottom:  

roteins correlating to ATRX across IDHmut tumors. Proteins annotated with telomerase-related terms 

color-coded (terms of top panel). Proteins linked to more than one term assigned color code of term with 

fewest proteins.  

C) Survival association of chromosome 10 (left) and chromosome 7 (right) proteins regulated between 

IDHwt (n=11) and HGG-IDHmut-B (n=9). Select outlier proteins are colored based on the association 

of their transcripts with survival in the TCGA (The Cancer Genome Atlas) study. Top: Regulation. 

Bottom: Relationship between differential abundance and genomic position of proteins encoded on 

chromosome 10 (left) or chromosome 7 (right).  

D) Survival association of chromosome arm 1p (left) and 19q (right) proteins regulated between codel 

(n=11) and non-codel IDHmut (n=10). Select outlier proteins are colored based on the association of 

their transcripts with survival in the TCGA (The Cancer Genome Atlas) study. Top: Regulation. Bottom: 

Relationship between differential abundance and genomic position of proteins encoded on chromosome 

arm 1p (left) or chromosome arm 19q (right).  
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Figure S4. Tricarboxylic acid cycle and glycolysis. Related to Figure 3. 

A) Abundance of tricarboxylic acid cycle proteins across alternatively-defined entities of this study. Clustering 

associates the HGG-IDHmut-B sample group with IDHwt and HGG-IDHmut-A with ctrl CNS. Abundance 

as sample group mean of cross-sample Z-Scored intensity. Samples, n=10 (ctrl CNS), n=11 (IDHwt), n=11 

(codel), n=10 (non-codel). 

 

B) Regulation of tricarboxylic acid cycle proteins between IDHwt (n=11) and HGG-IDHmut-B (n=9). 

C-E) Regulation of glycolysis proteins between HGG-IDHmut-B and HGG-IDHmut-A (C), codel and non-codel 

(D), and IDHwt and HGG-IDHmut-B (E). Samples, n=12 (HGG-IDHmut-A), n=9 (HGG-IDHmut-B), n=11 

(IDHwt), n=11 (codel), n=10 (non-codel). 
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Figure S5. No separation of codel and non-codel entity in the tumor suppressor and proto-oncogene 

proteomes. Related to Figure 4. 

A-B) Principal component analysis of UniProt Keyword-annotated tumor suppressor gene (A) and proto-

oncogene (B) datasets. Samples, n=10 (ctrl CNS), n=11 (IDHwt), n=11 (codel), n=10 (non-codel). 

C) Regulation of tumor suppressors between IDHwt and HGG-IDHmut-B (left), HGG-IDHmut-B and HGG-

IDHmut-A (center), and codel and non-codel (right). Samples, n=10 (ctrl CNS), n=12 (HGG-IDHmut-A), n=9 

(HGG-IDHmut-B), n=11 (IDHwt), n=11 (codel), n=10 (non-codel). 

D) Regulation of oncoproteins between IDHwt and HGG-IDHmut-B (left), HGG-IDHmut-B and HGG-IDHmut-

A (center), and codel and non-codel (right). Samples as in C. 

E) Correlation of protein abundances of NUP214 and DEK (left), and NUP214 and SET (right) across samples. 

Pearson correlation coefficients r = 0.87 (left) and r = 0.76 (right). Samples as in C. 
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Figure S6. Phosphosite dynamics in IDHmut glioma. Related to Figure 4.  

A-B) Relationship of phosphosite abundance differences and protein abundance differences, each between HGG-

IDHmut-B and HGG-IDHmut-A (A) and codel and non-codel (B). Outliers labelled in Fig. 4C also labelled here 

with gene name and phosphorylation site. Phosphorylation sites included if abundance difference in at least one 

dimension (phosphosite, protein) significant with q-value < 5% (A) or p-value < 0.05% (less stringent) (B). 

Diagonal line marks 1:1 relationship. Samples, n=12 (HGG-IDHmut-A), n=9 (HGG-IDHmut-B), n=11 (codel), 

n=10 (non-codel). 

C-D) Abundance of CDK11B phosphorylation site pS595 (C) and ZC3H18 phosphorylation site pT851 (D) and 

protein abundances, respectively. Circles denote means and bars 95% confidence intervals of means. Samples, 

n=10 (ctrl CNS), n=12 (HGG-IDHmut-A), n=9 (HGG-IDHmut-B), n=11 (IDHwt), n=11 (codel), n=10 (non-

codel). 
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Figure S7. Integration of other proteomic glioma datasets. Related to Figure 5. 

A) Identification of IDHmut-A and IDHmut-B in the Wong et al. dataset by Pearson coefficient-based 

hierarchical clustering of samples and ANOVA-significant (s0 = 2, q < 5%) proteins regulated by WHO-

defined glioma subtype (IDHwt, IDHmut 1p/19 codel, IDHmut 1p/19q non-codel). Samples, n=6 (ctrl 

CNS), n=10 (IDHmut-A), n=28 (IDHmut-B), n=10 (IDHwt) and according to WHO classification n=21 

(IDHmut 1p/19q-codeleted), n=17 (IDHmut non-codeleted, n=10 (IDHwt). 

B) Comparison of fold changes between IDHmut-A and IDHmut-B in glioma samples in the Wong et al. 

dataset with WHO grade 2 (x axis, 6 IDHmut-A glioma, 9 IDHmut-B glioma) to those fold changes in 

glioma samples of WHO grade 3 (y axis, 3 IDHmut-A glioma, 13 IDHmut-B glioma) for all proteins 

(upper panel, 5897 proteins) and significantly regulated proteins (p < 5% in both comparisons, lower 

panel, 703 proteins). When filtering for significantly regulated proteins (p < 5%) in at least 1 of the two 

comparisons (within WHO 2, within WHO 3), 2050 proteins included and Pearson r = 0.81 (scatter plot 

not shown).  

C) Comparison of fold changes between nmf2 (“mesenchymal-like”, n=37) and nmf1 (“proneural-like, 

n=29) of the Wang et al./CPTAC dataset (x axis) and HGG-IDHmut-B (n=9) and HGG-IDHmut-A 

(n=12) in the dataset of this study (y axis) for all overlapping proteins (upper panel) and proteins 

significantly regulated (q < 5%) in both datasets. 

D-F) Comparison of metabolic proteins across studies. Fold changes HGG-IDHmut-B (n=9) / HGG-IDHmut-

A (n=12) (this study) compared to those of corresponding glioma subgroups GPC1 (n=26) / GPC2 

(n=13) (Oh et al. dataset), nmf3 (n=25) / nmf1 (n=29) (Wang et al./CPTAC dataset), and IDHmut-B 

(n=28) / IDHmut-A (n=10) (Wong et al. dataset) for tricarboxylic acid cycle proteins (D), glycolysis 

proteins (E), and mitochondrial respiratory chain proteins (F).  

G) Regulated proteins across four datasets in pseudo-Volcano plot. Proteins included were either consistenly 

enriched in HGG-IDHmut-B, nmf3, GPC1, IDHmut-B compared to HGG-IDHmut-A, nmf1, GPC2, 

IDHmut-A (dataset of this study, Wang/CPTAC et al., Oh et al., Wong et al.), respectively, or 

consistently inversely regulated. Sample numbers as in D-F. Protein fold changes normalized within each 

dataset after consistency filtering by division of mean (across proteins) absolute fold change separately 

for positive and negative fold changes. Subsequently, combined protein fold change (x axis) and q-value 

(y axis) calculated as median across the four studies.  

H) Enrichment of functional protein annotation terms in the combined normalized fold change dimension of 

(G) by Perseus 1D Enrichment analysis. Terms displayed filtered for at least five member proteins and 

enrichment q-value of 1%.  
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