
Article
Conserved angio-immune
 subtypes of the tumor
microenvironment predict response to immune
checkpoint blockade therapy
Graphical abstract
Highlights
d Angiogenesis and T cell immunity are inversely correlated in

the tumor microenvironment

d Angiogenesis and T cell activity are used to stratify the tumor

microenvironment

d Angio-immune subtypes are prognostic of survival post-anti-

PD1/L1 treatment

d Patients with low angiogenic and high T cell subtypes most

likely to benefit from ICB treatment
Subramanian et al., 2023, Cell Reports Medicine 4, 100896
January 17, 2023 ª 2022 The Authors.
https://doi.org/10.1016/j.xcrm.2022.100896
Authors

Madhav Subramanian, Ashraf Ul Kabir,

Derek Barisas, Karen Krchma,

Kyunghee Choi

Correspondence
kchoi@wustl.edu

In brief

There is a large proportion of patients

who do not mount responses to immune

checkpoint blockade. Subramanian et al.

show through a computational analysis

that, across solid tumor types, baseline

characteristics of tumor angiogenesis

and T cell immunity can predict

therapeutic outcomes to immune

checkpoint blockade treatment.
ll

mailto:kchoi@wustl.edu
https://doi.org/10.1016/j.xcrm.2022.100896
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xcrm.2022.100896&domain=pdf


OPEN ACCESS

ll
Article

Conserved angio-immune subtypes of the tumor
microenvironment predict response to immune
checkpoint blockade therapy
Madhav Subramanian,1 Ashraf Ul Kabir,1 Derek Barisas,1,2 Karen Krchma,1 and Kyunghee Choi1,2,3,*
1Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
2Immunology Program, Washington University School of Medicine, St. Louis, MO, USA
3Lead contact

*Correspondence: kchoi@wustl.edu
https://doi.org/10.1016/j.xcrm.2022.100896
SUMMARY
Immune checkpoint blockade (ICB) therapy has revolutionized cancer treatment. However, only a fraction of
patients respond to ICB therapy. Accurate prediction of patients to likely respond to ICB would maximize the
efficacy of ICB therapy. The tumor microenvironment (TME) dictates tumor progression and therapy
outcome. Here, we classify the TME by analyzing the transcriptome from 11,069 cancer patients based on
angiogenesis and T cell activity. We find three distinct angio-immune TME subtypes conserved across 30
non-hematological cancers. There is a clear inverse relationship between angiogenesis and anti-tumor im-
munity in TME. Remarkably, patients displaying TME with low angiogenesis with strong anti-tumor immunity
show the most significant responses to ICB therapy in four cancer types. Re-evaluation of the renal cell car-
cinoma clinical trials provides compelling evidence that the baseline angio-immune state is robustly predic-
tive of ICB responses. This study offers a rationale for incorporating baseline angio-immune scores for future
ICB treatment strategies.
INTRODUCTION

Heterogeneity in tumor cells and the surrounding microenviron-

ment drive treatment resistance among patients.1 As such, there

have been efforts to identify hierarchical classifications of tumor

subtypes on a pan-cancer level.2–6 Unlike the genetically unsta-

ble tumor cells, microenvironmental features are more stable

and can be conserved across tumor types. As such, delineating

tumor microenvironment (TME) subtypes may enable the identi-

fication of common resistance mechanisms across tumor types

and guide treatment decision-making, particularly for treatments

targeting microenvironmental features such as immune check-

point inhibitors and anti-angiogenic agents.

Abnormal tumor vasculature contributes to tumor growth and

escape by remodeling the local TME. Recent evidence from pre-

clinical studies suggests that vascular dysfunction in tumors pro-

vides physical and chemical barriers to the infiltration of immune

cells. Hyperpermeable, immature blood vessels result in improper

circulation and hypoxia in the TME and cannot adequately provide

a conduit for cytotoxic T cell trafficking to the TME.7 Under inade-

quate perfusion, glycolytic co-option produces a highly acidic

environment that suppressesT cell effector functions.8 In addition,

angiogenic tumor endothelial cells express death signals like FAS

ligand (FASLG) that induce apoptosis in infiltrating cytotoxic

T cells.9 Importantly, recent pre-clinical evidence suggests that

normalization of vasculature can reverse the immunosuppressive

phenotypes, promote anti-tumor T cell immunity, and synergize
Cell Rep
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with immune checkpoint blockade (ICB), suggesting an intimate

interaction between angiogenesis and tumor immunity that is

beyond correlative.10–12

While ICB has revolutionized the treatment of metastatic and

solid tumors byproviding lasting regression to subsets of patients,

a sizablemajorityof patients fail tomount responses to ICB.13High

interdependence of endothelial and T cell infiltration and activation

in the TME raises the question of whether baseline angiogenic

state can be a determinant of tumor immune microenvironment

characteristics and can be prognostic of ICB response in patients.

Elucidating heterogeneity in baseline angiogenic state and corre-

sponding immune activation might help inform treatment deci-

sion-making, allowing us to reduce toxicities faced by patients

and design more efficient therapeutic regimens.

Here, we show that baseline angiogenic state is a determinant

of cytotoxic T cell function and infiltration in the TME. We devel-

oped a transcriptional profile analysis pipeline to stratify patients

based onbaseline angiogenic and immuneactivity using endothe-

lial cell and T cell functional gene sets. This highly interpretable

tool provides insight into the intimate interaction between angio-

genic and immune processes and enables us to identify pan-can-

cer molecular subtypes of tumor TME. Importantly, pan-cancer

angio-immune TME subtypes are prognostic of response and sur-

vival of patients treated with ICB and outperform other reported

prognostic features. Retrospective analysis of pretreatment

datasets reveals that patients showing low angiogenic TME

and high T cell activity significantly benefit from Food and Drug
orts Medicine 4, 100896, January 17, 2023 ª 2022 The Authors. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Three pan-cancer angio-immune subtype identification

(A) Heatmap of Pearson correlation of patients with non-hematological tumor types across 91 gene sets corresponding T cell and angiogenesis activity. Distance

based clustering revealed three distinct clusters across patients. The clusters were labeled C1 (red outline), C2 (black outline), and C3 (green outline).

(B) Bar graphs depicting the average enrichment of angiogenesis signatures in the three angio-immune subtypes. Enrichment of pathways was conducted using

gene set variation analysis (GSVA). The enrichment of representative gene sets is plotted. One-way ANOVA was used to determine statistical significance.

(legend continued on next page)
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Administration-approved first-line ICB strategies. We present a

reformed understanding of how angiogenesis and T cell immunity

are linked across tumor types, laying the foundation for more effi-

cient treatment decision-making approaches.

RESULTS

Angiogenesis and T cell-mediated immunity are
inversely correlated across cancer types
Tocharacterize the interplay of angiogenesis andTcell-mediated

immunity in tumors, 91 functional gene sets corresponding to

endothelial cell and T cell activity were compiled from theMolec-

ular Signatures Database (MSigDB, Table S1). Transcriptomic

data fromall solid tumor samples fromTheCancer GenomeAtlas

(TCGA) representing 30 non-hematological tumor types were

scored for the 91 functional gene sets using gene set variation

analysis (GSVA, Figure S1A) to deconvolute the TME’s angio-

genic and T cell functional landscape. We first investigated the

distributions of gene sets across patients harboring non-hemato-

logical tumor types.Acorrelationmatrix generatedusingPearson

correlation coefficients was built and revealed two functional

gene set modules bound by positive correlation (Figure S1B).

We found that T cell gene set scores inversely correlated with

angiogenic gene set scores (Figure S1B). Gene sets correspond-

ing to angiogenic function, including endothelial cell migration,

proliferation, sprouting, and angiogenesis, were characteristic

of one module. The second module was characterized by gene

sets corresponding to T cell effector function, antigen processing

and presentation, and trans-endothelial migration of leukocytes.

The inverse relationship betweenangiogenesis and immunity has

also been observed in mice in previous studies.11

Identification of angio-immune subtypes
A distinct inverse relationship between angiogenic and immune

gene sets suggests that we may be able to stratify patients

based on baseline angiogenic and T cell activity. To identify an-

gio-immune subtypes of TME based on the distinct distribution

of signatures associated with angiogenic and T cell function,

we generated a correlation matrix of patients using the distinct

distribution of gene signature enrichment across samples. Hier-

archical clustering of the correlation matrix, depicting individual

patients’ similarity to others in the cohort, was conducted using

Euclidian distance. As a result, distinct subtypes of the TME

based on distinct distribution of gene sets characterized by the

angio-immune scores were uncovered and termed C1, C2, and

C3 (Figure 1A). On one hand, C1 contained strong positive

enrichment for angiogenic gene sets, including endothelial cell

(EC) migration, EC proliferation, and EC sprouting. In contrast,

C3 was characterized by the downregulation of functional angio-

genesis signatures. C2 had no significant enrichment for func-

tional angiogenesis signatures (Figure 1B). On the other hand,
(C) Bar graphs depicting the average enrichment of T cell signatures in the three a

The enrichment of representative gene sets is plotted. One-way ANOVA was use

(D) Stacked barplots depicting relative proportion of each angio-immune subtype

belonging to individual angio-immune subtypes was calculated.

(E) Overall survival of patients belonging to three angio-immune subtypes among

publicly available clinical records of TCGA patients. Log ranked test was used fo
C1 had marked downregulation of T cell functional signatures,

including T cell chemotaxis, T cell-mediated cytotoxicity, T cell

extravasation, and antigen presentation to T cells. Conversely,

C3 presentedwith strong positive enrichment for T cell functions.

Again, C2 had no significant enrichment for T cell-related gene

sets (Figure 1C). These TME subtypes were conserved across

several tumor types; however, the proportion of the microenvi-

ronment subtypes varied across tumor types (Figure 1D).

To ensure pan-cancer clustering is fair to individual tumor types,

wealsohavecompared themembership inangio-immuneclusters

and previously established RNA-based subtypes of different can-

cer types.Wefocusedoncancers thatcontainedpreviouslyestab-

lished RNA-based subtypes that directly relate to immune func-

tion. mRNA-based characterization of skin cutaneous melanoma

(SKCM) previously yielded three subtypes: MITF low, immune,

and keratin high.14 We noticed that C3 SKCM tumors were en-

riched in the immune subtype. Conversely C1 SKCM tumors had

the smallest proportion of the immune subtype andwere enriched

in the keratin-high and MITF-low subtypes (Figure S2A). Similarly,

mRNA-based characterization of ovarian cancer (OV) previously

yielded four subtypes: differentiated, immunoreactive, mesen-

chymal, and proliferative.15 Tumors classified as immunoreactive

were abundant among C3 OV tumors. C1 OV tumors were en-

riched for mesenchymal and proliferative tumor subtypes (Fig-

ure S2B). Moreover, previous mRNA-based characterization of

adrenocortical carcinoma (ACC) previously yielded four subtypes:

steroid-phenotype-high, steroid-phenotype-high + proliferation,

steroid-phenotype-low, and steroid-phenotype-low + prolifera-

tion.16 Interestingly, C1 ACC tumors contained an abundance of

the steroid-high tumors that contain dampened immune response

(Figure S2C). The observed agreement between previously identi-

fied molecular clusters in individual cancer types and the angio-

immune clusters suggest that the pan-cancer clustering is fair to

individual tumor types. Analysis of survival revealed that C3

conferred a marked survival benefit among SKCM patients who

routinely received ICB (Figure 1E). Under challenge with stan-

dard-of-care therapies, survival differences between clusters

were observed in bladder adenocarcinoma (BLCA), lung adeno-

carcinoma (LUAD), head and neck squamous cell carcinoma

(HNSC), clear cell renal carcinoma (KIRC), low-grade glioma

(LGG), pancreatic adenocarcinoma (PAAD), stomach adenocarci-

noma (STAD), and renal adenocarcinoma (READ) (Figure S3).

Together, this analysis provides an easily interpretable framework

toclassifyTMEs independentof theanatomic locationof the tumor

that may confer survival difference when challenged with treat-

ments like ICB.

Immune and somatic mutation characteristics of angio-
immune subtypes
A signature-dependent method to estimate enrichment of cell

types in the TME, xCell,17 was first used to identify the
ngio-immune subtypes. Enrichment of pathways was conducted using GSVA.

d to determine statistical significance.

in all cancers queried. The proportion of all tumors of a particular cancer type

skin cutaneous melanoma (SKCM) patients. Survival data were derived from

r survival analysis.
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enrichment of 30 different immune and stromal cell types across

TME subtypes. Notably, there was amore significant enrichment

of dendritic cells, CD8+ T cells, B cells, Th1 and Th2 cells, andM1

macrophages in C3 (Figure 2A). Again, to ensure a pan-cancer

analysis is fair to individual tumor types, we confirmed that

pan-cancer trends in immune cell infiltration were consistent in

representative tumors like SKCM (Figure S4A), bladder cancer

(Figure S4B), gastric cancer (Figure S4C), and renal cancer (Fig-

ure S4D). Infiltrating CD8+ T cells in C3 have more significant

effector function characteristics as evidenced by increased

expression of co-stimulatory molecules in C3 compared with

C1 and C2 (Figure 2B). Infiltrating CD8+ T cells also display acti-

vation as evidenced by the upregulation of exhaustion markers

(Figure 2C). Conversely, C1 was characterized by a distinct in-

crease in enrichment of endothelial cells (Figure 2D). Fibroblast

score was also higher in C1 compared with C2 and C3. C1

may contain a denser stroma, evidenced by a higher stromal

score (Figure 2D). To identify if C3 tumors contained more

normalized vasculature, we normalized and transformed endo-

thelial and pericyte enrichment from xCell and calculated the ra-

tio of pericytes to endothelial cells. Since normalized vasculature

contains a greater coverage of pericytes, we termed the ratio as

‘‘vessel normalization score’’ and assessed it across angio-im-

mune clusters. Interestingly, C3 tumors displayed a higher ratio

of pericyte to endothelial cells, suggesting a more normalized

vasculature phenotype (Figure 2E).

Somatic variation in tumor cells can dictate the robustness of

immune responses in the TME. A high tumor mutational burden

in tumors is suspected of promoting the formation of antigenic

peptides that can trigger immune responses. We analyzed a

publicly available MC3 repository for somatic variants derived

fromwhole-exome sequencing data to characterize somatic var-

iations of tumors. The silent and non-silent mutational burden

was higher in C3 than in C2 and C1 (Figure 2F). In line with this

finding, the mean neoantigen load was greater in C3 than C2

and C1 (Figure 2G). Infiltrating T cells also contained greater

clonality in TCR in C3 when compared with C2 and C1 (Fig-

ure 2H). Distinct actionable mutations also characterized

different angio-immune subtypes in specific tumor types where

ICB is considered for first-line treatment. Among patients with

SKCM, MGAM and CSMD2 mutations were enriched among

C2 and C3 patients (Figure S5A). Among bladder adenocarci-

noma patients, MUC16 and RB1 mutations were enriched

among C3 patients, whereas PCLO mutations were enriched

among C1 patients (Figure S5B). In patients with STAD, FAT3

and FAT4mutations were enriched in C2 andC3 patients. C3 pa-

tients also had higher rates of TTN mutations (Figure S5C). Last,

among clear cell renal carcinoma patients, VHL and BAP1 muta-

tions were enriched in C1 and C3 patients, respectively (Fig-

ure S5D). The distinct immune environment of C3 showing higher

CD8 T cell infiltration, increased expression of exhaustion

markers, and increased mutational burden suggests that this

group of patients may benefit from ICB.

Response and survival post ICB
Several clinical and pre-clinical studies suggest that angiogenic

control heightens response to ICB.10–12 In addition, there have

been numerous studies suggesting that the immune profile
4 Cell Reports Medicine 4, 100896, January 17, 2023
observed in C3 (high TMB, enriched neoantigen count, improved

infiltration of CD8+ T cells, higher PD-L1 expression) correspond

to improved response to ICB.18,19 As such, to evaluate if the an-

gio-immune molecular subtypes are prognostic of survival and

response upon treatment with ICB, RNA sequencing data from

pretreatment biopsies were queried. Four cohorts of patients

were assembled consisting of three different tumor types chal-

lenged with ICB: anti-PD1-treated metastatic melanoma, meta-

static gastric cancer, and metastatic bladder cancer and anti-

CTLA4 treated metastatic melanoma.20–24

Angio-immunemolecular TME subtypeswere largely conserved

in the anti-PD1-treatedmetastaticmelanoma (Figure3A),metasta-

tic gastric cancer (Figure 3B), metastatic bladder cancer (Fig-

ure 3C), and the anti-CTLA-4-treatedmetastaticmelanoma cohort

(Figure S6A). The distribution of enrichment scores was largely

consistent with pan-cancer analysis for anti-PD1-treatedmetasta-

tic melanoma (Figure 3D), metastatic gastric cancer (Figure 3E),

metastatic bladder cancer (Figure 3F), and anti-CTLA-4-treated

metastatic melanoma (Figure S6B). C3 displayed a marked in-

crease in response rate toanti-PD1 therapyamongmetastaticmel-

anoma tumors. Improved response rate translated to improved

progression-free survival (PFS; p < 0.0093) and overall survival

(OS; p < 0.0027) for patients in C3 (Figure 3G). Melanoma patients

inC3hadnot reachedmedianPFS. Incomparison, themedianPFS

for C1 was 4.1 months, and the median PFS for C2 was

15.7 months. Similarly, metastatic gastric cancer patients treated

with anti-PD1 belonging to C3 displayed a drastic improvement

in response rate in comparison with C1 and C2 (Figure 3H). Like-

wise, bladder cancer patients belonging to C3 displayed more

improvedPFS thanC2andC1 (p =0.0055; Figure 3I). Next, to eval-

uate the relativecontributionofeachprocess to theability of thean-

gio-immuneclusters topredict survivalof patients treatedwith ICB,

we split patients based on enrichment of an angiogenic signature

(Hallmark angiogenesis) and T cell cytotoxicity signature. Among

patients with melanoma and bladder cancer, the two signatures

individually failed to be prognostic of survival upon treatment with

anti-PD1/PDL1 (Figure3Gversus3J;Figure3I versus3K).Thissug-

gests that robust T cell activity or poor angiogenic activity alone

does not predict response to anti-PD1/PDL1 efficiently, and the

synergistic impact of the two is required for a robust prediction.

Intriguingly, T cell scores, rather than angiogenic scores, appear

to better predict anti-CTLA response. As such,melanoma patients

receiving anti-CTLA4 therapy displayed improved survival in C2

and C3 in comparison with C1 (Figure S6C). The results above

demonstrate that angio-immunemolecular subtypes can be prog-

nostic of response and survival for patients treated with ICB.

Re-evaluation of Javelin Renal 101, Checkmate 010, and
Checkmate 025 clinical trials
The approval of the combination of avelumab, an anti-PDL1, and

axitinib, a small molecule tyrosine kinase inhibitor, for the first-

line treatment of metastatic renal cancer was provided in 2020.

The approval was granted on the back of median PFS improve-

ment from 8.4 months with the previous standard of care,

sunitinib, a tyrosine kinase inhibitor, to 13.8 months for the com-

bination.25 Checkmate 010, phase II study, and Checkmate 025,

a randomized phase III study, demonstrated the benefit of

nivolumab, an anti-PD1, over everolimus, an mTOR inhibitor,
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Figure 2. Immune characteristics of angio-immune subtypes

(A) Bar plots showing xCell enrichment results for major tumor hematopoietic cells across angio-immune subtypes. The enrichment of classical dendritic cells

(cDC), plasmacytoid dendritic cells (pDC), activated dendritic cells (aDC), B cells, plasma cells, CD4+ andCD8+ T cells, Tregs, Th1 cells, Th2 cells, andM1 andM2

macrophages as derived from xCell were compared across angio-immune subtypes. One-way ANOVA was used to determine statistical significance.

(B) Heatmap of the Z-scored expression co-stimulatory molecules across angio-immune subtypes.

(C) Heatmap of the Z-scored expression T cell inhibitory molecules across angio-immune subtypes.

(D) Bar plots showing xCell enrichment results for endothelial cells, fibroblasts, and pericytes across angio-immune subtypes. One-way ANOVA was used to

determine statistical significance.

(E) Vessel normalization scores across angio-immune subtypes. xCell enrichment for pericytes and endothelial cells was normalized, and the ratio of pericytes to

endothelial cells was evaluated and termed the vessel normalization score and is plotted in a bar graph. One-way ANOVA was used to determine statistical

significance.

(F) Violin plots depicting silent and non-silent mutational burden across three angio-immune clusters. Data were obtained from the GDC pan-cancer atlas. One-

way ANOVA was used to determine statistical significance.

(G) Violin plot of neoantigen counts across three angio-immune clusters. Neoantigen counts were log transformed for visualization purposes. One-way ANOVA

was used to determine statistical significance.

(H) Violin plot of TCR richness across three angio-immune clusters. TCR richness data were obtained from the GDC pan-cancer atlas. One-way ANOVAwas used

to determine statistical significance.

* = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001.

Cell Reports Medicine 4, 100896, January 17, 2023 5

Article
ll

OPEN ACCESS



C1 C3 C2 C3 C1 C2

0 10 20 30
0

50

100

Bladder Cancer Anti-PDL1: PFS

Months

P
ro

ba
bi

lit
y 

of
 S

ur
vi

va
l

C1

C3
C2p = 0.0055

C1 C2 C3
-0.2

-0.1

0.0

0.1

0.2

0.3

EC Chemotaxis

E
nr

ic
hm

en
t

ns

C1 C2 C3
-0.4

-0.2

0.0

0.2

0.4

T Cell Immunity

E
n

ri
c
h

m
e
n

t

C1 C2 C3
-0.3

-0.2

-0.1

0.0

0.1

0.2

Hallmark Angiogenesis

E
n

ri
ch

m
en

t

ns

C1 C2 C3
-0.4

-0.2

0.0

0.2

0.4

T Cell Immunity

E
nr

ic
hm

en
t

D F

C1 C2 C3
-0.4

-0.2

0.0

0.2

0.4

T Cell Cytotoxicity

E
n

ri
ch

m
en

t
ns

C1 C2 C3
-0.4

-0.2

0.0

0.2

0.4

Hallmark Angiogenesis

E
n

ri
ch

m
en

t

E

C1 C2 C3

0 500 1000 1500 2000
0

50

100

Melanoma anti-PD1: PFS

Days elapsed

P
ro

ba
bi

lit
y 

of
 S

ur
vi

va
l

C2
C1

C3

p<0.0093

0 500 1000 1500 2000
0

50

100

Melanoma Anti-PD1: OS

Days elapsed

P
ro

ba
bi

lit
y 

of
 S

ur
vi

va
l

C1
C2
C3

p <0.0027

C1 C2 C3
0.0

0.2

0.4

0.6

R
es

po
ns

e 
R

at
e

Gastric Cancer: 
      Anti-PD1

BA C

G H I

0 500 1000 1500 2000
0

50

100

Melanoma: Seperated By Angiogenesis

Days elapsed

P
ro

ba
bi

lit
y 

of
 S

ur
vi

va
l

Low Angiogenesis
High Angiogenesis

P value 0.4846

0 500 1000 1500 2000
0

50

100

Melanoma: Seperated By T Cell Cytotoxicity

Days elapsed

P
ro

ba
bi

lit
y 

of
 S

ur
vi

va
l Low T Cell Cytotoxicity

High T Cell Cytotoxicity

P value 0.5567

0 10 20 30
0

50

100

Bladder Cancer: Seperated by Angiogenesis

Months

P
ro

ba
bi

lit
y 

of
 S

ur
vi

va
l Low Angiogenesis

High Angiogenesis

P value 0.1740

0 10 20 30
0

50

100

Bladder Cancer: Seperated by T Cell Cytotoxicity

Months

P
ro

ba
bi

lit
y 

of
 S

ur
vi

va
l Low T Cell Cytotoxicity

High T Cell Cytotoxicity

P value 0.2035

J K

Melanoma

Melanoma

Gastric Cancer

Gastric Cancer

Bladder Cancer

Bladder Cancer

Figure 3. Angio-immune subtypes are prognostic of response to anti-PD1/PDL1

(A) Heatmap of Pearson Correlation of 145 patients with melanoma across 91 gene sets corresponding T cell and angiogenesis activity. Angio-immune subtypes

are preserved in the melanoma cohort. Response status is depicted for each patient on top of the heatmap. Green depicts responders to treatment and red

depicts non-responders.

(B) Heatmap of Pearson correlation of 45 patients with gastric cancer across 91 gene sets corresponding T cell and angiogenesis activity. Response status is

depicted for each patient on the top of the heatmap. Angio-immune subtypes are preserved in the gastric cancer cohort. Response status is depicted for each

patient on top of the heatmap. Green depicts responders to treatment and red depicts non-responders.

(C) Heatmap of Pearson correlation of 348 patients with bladder cancer across 91 gene sets corresponding T cell and angiogenesis activity. Angio-immune

subtypes are preserved in the gastric cancer cohort.

(legend continued on next page)
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among clear cell renal carcinoma patients previously treated

with anti-angiogenic agents.26 We sought to identify if stratifica-

tion by angio-immune subtypes can confer more significant dif-

ferences in responses and survival.

The enrichment of the 91 angio-immune signatures was scored

usingRNAsequencingdata frompretreatmentbiopsies. Threean-

gio-immune molecular subtypes were conserved in the Javelin

Renal 101 dataset (Figure 4A) and the Braun dataset (Checkmate

025 and Checkmate 010) (Figure S7A). Angiogenic and immune

gene sets’ enrichment distribution was consistent with TCGA

data in the Javelin Renal 101 dataset (Figure 4B) and theBraun da-

taset (Figure S7B). As such, C1 presented with an upregulation of

angiogenesis functions and a downregulation of T cell functions.

C3 presented with an upregulation of T cell functions and a down-

regulation of angiogenesis functions. C2 displayed no significant

enrichment in either functional module.

Median PFS improvement for patients with pretreatment RNA

sequencing data in the Javelin Renal 101 dataset was from

8.4 months in the sunitinib arm to 12.5 months in the combination

arm, consistentwith the previous report (Figure 4C).25We tracked

survival across clusters to identify if angio-immune molecular

subtypes can inform treatment choice in this setting. When

treated with sunitinib, a tyrosine kinase inhibitor, angio-immune

molecular subtypes presented no significant differences in

median PFS (Figure 4D). However, when treated with the combi-

nation of avelumab, an anti-PDL1 therapy, and axitinib, a tyrosine

kinase inhibitor, significant improvement in survival was

observed: the median PFS of C3 had not matured, C2 had a me-

dianPFS of 12.2months, andC1 had amedian PFS of 9.7months

(Figure 4E). To determine if patients belonging to C1, C2, and C3

derive clinical benefit from the combination of avelumab and ax-

itinib, PFS was tracked among angio-immune molecular sub-

types across treatment arms. Remarkably, patients belonging

to C1 derived no clinical benefit from the combination of avelu-

mab and axitinib compared with sunitinib (median PFS = 9.7

versus 9.7; p = 0.668; Figure 4F). Patients belonging in C2 also

derived no clinical benefit from the combination (median PFS =

12.2 versus 8.3 months; p = 0.1469; Figure 4G). However, among

C3, patients treated with avelumab and axitinib displayed signif-

icantly improved median PFS than the sunitinib arm (not matured

versus 8.2 months; p < 0.001; Figure 4H).
(D) Bar graphs depicting the average enrichment of angiogenesis signature and

Enrichment of pathways was conducted using gene set variation analysis (GSVA

used to determine statistical significance.

(E) Bar graphs depicting the average enrichment of angiogenesis signature and T

Enrichment of pathways was conducted using GSVA. The enrichment of represen

significance.

(F) Bar graphs depicting the average enrichment of angiogenesis signature and T c

Enrichment of pathways was conducted using GSVA. The enrichment of represen

significance.

(G) Overall survival and progression-free survival for patients in different angio-im

(H) Response rate for patients in different angio-immune clusters upon treatmen

(I) Progression-free survival for patients in different angio-immune clusters upon

(J) Progression-free survival of patients with melanoma treated with anti-PD1 sp

cytotoxicity.

(K) Progression-free survival of patients with bladder cancer treated with anti-PD

T cell cytotoxicity. Log-ranked tests were used for survival analysis.

* = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001.
Median OS improvement for patients with pretreatment RNA

sequencing data in the Braun dataset was from 19.7454 months

in the everolimus, an mTOR inhibitor, arm to 25.9877 months in

the nivolumab, an anti-PD1 therapy (Figure S7C). We tracked

survival across clusters to identify if angio-immune molecular

subtypes can inform treatment choice in this setting. When

treated with everolimus, angio-immune molecular subtypes pre-

sented no significant differences in median OS (Figure S7D).

However, when treated with the nivolumab, significant improve-

ment in median OSwas observed (p = 0.0033): the median OS of

C3 was 29.8645months, C2 had amedian OS of 36.961months,

and C1 had a median OS of 16.9528 months (Figure S7E). C3

displayed a better survival than C2 in the long run (Figure S7E).

To determine if patients belonging to C1, C2, and C3 derive clin-

ical benefit from nivolumab over everolimus, OS was tracked

among angio-immune molecular subtypes across treatment

arms. Remarkably, patients belonging to C1 derived no clinical

benefit from nivolumab compared with everolimus (median

OS = 24.6735 months in the everolimus arm versus

16.9528 months in the nivolumab arm; p = 0.6347; Figure S7F).

Patients belonging in C2 also derived no statistically significant

clinical benefit from the combination (median OS = 36.96months

in the nivolumab arm versus 21.13months in the everolimus arm;

p = 0.0581; Figure S3G). However, among C3, patients treated

with nivolumab displayed significantly improved median OS

than the everolimus arm (median OS = 29.86 months in the nivo-

lumab arm versus 13.27 months in the everolimus arm;

p < 0.0043; Figure S7H). Collectively, this analysis suggests

that only patients with low angiogenic status and high T cell ac-

tivity (cluster C3) mount responses to ICB. As such, angio-im-

mune molecular subtypes can be used to exclude patients

from treatment that would not derive clinical benefit but are

faced with adverse toxicities from therapy.

Angio-immune clusters better predict ICB survival in
comparison with previous methods
Poor response rate upon ICB treatment has sparked a range of

studies seeking to identify predictors of response among treated

patients. The angio-immunesubtypesare basedon the interaction

of the vascular and immunebiological systems that is independent

of tumor type. As such, to display the universality of the predictive
T cell signature in the three angio-immune subtypes in the melanoma cohort.

). The enrichment of representative gene sets is plotted. One-way ANOVA was

cell signature in the three angio-immune subtypes in the gastric cancer cohort.

tative gene sets is plotted. One-way ANOVA was used to determine statistical

ell signature in the three angio-immune subtypes in the bladder cancer cohort.

tative gene sets is plotted. One-way ANOVA was used to determine statistical

mune clusters upon treatment with anti-PD1 in melanoma patients.

t with anti-PD1 in gastric cancer patients.

treatment with anti-PDL1 in bladder cancer patients.

lit by high (>50th percentile) and low (<50th percentile) angiogenesis and T cell

L1 split by high (>50th percentile) and low (<50th percentile) angiogenesis and
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Figure 4. Re-evaluation of Javelin 101 reveals differing propensity for response by angio-immune subtypes

(A) Heatmap of Pearson correlation of 726 patients with renal cell carcinoma across 91 gene sets corresponding T cell and angiogenesis activity. Angio-immune

subtypes are preserved in the renal cancer cohort.

(legend continued on next page)
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power of the angio-immune subtypes, we comparatively

evaluated the predictive power of CXCL9 expression,27 inter-

feron-gamma (IFNg) signature,28 IMPRES (an immune-predictive

score),29 PD-L1 expression,30 MHCI expression,31 and MHCII

expression31 across anti-PD1-treated melanoma patients, anti-

PD1/PD-L1-treated renal cancer patients, and anti-PD-L1-treated

bladder cancer patients. Remarkably, none of these tools dis-

played a universal ability to predict survival upon ICB treatment

(Figure5).HighCXCL9expressionwaspredictiveof improvedsur-

vival inmelanomaand bladder cancer patients (IMVIGOR210), but

failed to predict improved survival in renal cancer (Javelin and

Braun, Figure 5A). High IFNg signature enrichment was predictive

of improvedsurvival inmelanomaandbladder cancerpatients, but

failed to predict improved survival in renal cancer (Figure 5B).

Intriguingly, high IMPRES scores were predictive of survival only

in one cohort of renal cancer patients and failed to predict re-

sponses in the melanoma and bladder cancer patient cohort (Fig-

ure 5C). High PD-L1 expression predicts response in anti-PD1

treated melanoma and anti-PD-L1-treated bladder cancer pa-

tients but fails to do so among renal cancer patients (Figure 5D).

Similarly, baseline MHCI expression was predictive of survival

only inonecohortof renal cancerpatientsandmelanomabut failed

to predict responses in the bladder cancer cohort (Figure 5E).

Baseline MHCII expression was predictive of improved survival

only in the melanoma cohort (Figure 5F).

The IMVIGOR210bladder cancerclinical trial reported the tumor

mutational burden (TMB) was predictive of improved survival in

bladder cancer patients treatedwith anti-PDL1.22 Indeed, patients

with high TMB displayed drastically improved survival in compar-

ison with patients with low TMB (Figure S8A). Intriguingly, the sur-

vival benefit conferred by high TMB dissipates in patients

belonging to clusters C1 and C2 (Figure S8A). Only C3 patients

with low angiogenic activity and high T cell activity derive clinical

benefit when stratified by TMB. This dependence is absent in tu-

mors where TMB does not predict response like renal cell carci-

noma (Figure S8B). This observation suggests that the biology un-

derpinning angio-immune clusters is indispensable for the use of

TMB as a predictive biomarker for ICB response. Together, we

showthatangio-immunesubtypesdisplaya remarkableuniversal-

ity and can effectively predict responses to ICBacrossdifferent tu-

mor types superior to other prognostic features.

DISCUSSION

ICB has revolutionized cancer treatment outcomes for a subset

of patients. However, a large subset of patients fails to show re-

sponses. It is imperative to (1) identify strategies to improve

response rates for patients upon ICB treatment and (2) identify
(B) Bar graphs depicting the average enrichment of angiogenesis signatures and

cohort. Enrichment of pathways was conducted using gene set variation analysis (

was used to determine statistical significance.

(C) Progression-free survival of patients treated with sunitinib versus the combin

(D) Progression-free survival of patients treated with sunitinib belonging to differ

(E) Progression-free survival of patients treated with combination of axitinib + av

(F) Progression-free survival of patients belonging in C1 treated with sunitinib ve

(G) Progression-free survival of patients belonging in C2 treated with sunitinib ve

(H) Progression-free survival of patients belonging in C3 treated with sunitinib ve

* = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001.
pretreatment characteristics of patients that can provide an a pri-

ori prediction to patients’ response to treatment. Such efforts

can minimize toxicity profiles faced by patients while maximizing

clinical benefits derived from ICB. Recent pre-clinical and clinical

studies suggest that the status of tumor blood vessels can

dictate immune responses in the TME. The vessel normalization

hypothesis provides a framework for the interaction of blood

vessels and infiltrating immune cells in the TME.32 Tumor vessel

networks exhibiting low angiogenesis improve the infiltration of

immune cells as they promote high endothelial venule (HEV) for-

mation and as they upregulate expression of critical selectins

and adhesion molecules imperative for the trafficking of leuko-

cytes to the tumor parenchyma.11,33 Abnormal tumor blood ves-

sels can also inhibit T cell effector activity by expressing FAS

ligand and various inhibitory ligands.34

Herein, we examined whether baseline angiogenic state and

corresponding T cell immune activity can provide us with tools

to better inform treatment decision-making processes and

delineate resistance mechanisms to ICB. We demonstrate that

angiogenic activity and T cell-mediated immunity are inversely

correlated across patients with 30 non-hematological solid tumor

types. Distinct distribution of angiogenic and T cell activity enrich-

ment across tumor types enabled the stratification of patients into

three conserved tumor angio-immune subtypes, high angiogen-

esis, and low anti-tumor immunity (C1), low angiogenesis and

high anti-tumor immunity (C3), and the one in-between (C2). The

vasculature in C3 tumors is more normalized as evidenced by

the higher pericyte to EC ratio.While tumor heterogeneity plagues

efforts to develop overarching rules to define tumors independent

of tissue of origin, the remarkable conservation of the distinct rela-

tionship between angiogenesis and T cell-mediated immunity

across solid tumors allowed us to develop highly interpretable

rules to predict ICB response across all tumor types.

The importance of baseline angiogenic state provides a strong

foundation for a temporal treatment strategy characterized by

vascular normalization followed by ICB. As such, patients with

low angiogenesis levels and corresponding high T cell activity

belonging to C3 consistently respond better to local-acting ICB

in melanoma, gastric cancer, bladder cancer, and renal cell can-

cer. Notably, the immune features alone of the C3 fail to effec-

tively predict responses in ICB patients with renal, gastric, and

bladder cancer,35 suggesting the essential role angiogenesis

may play in dictating the kind of immune response required to

confer responses.

Re-evaluation of the Javelin 101, Checkmate 025, and Check-

mate 010 renal cancer clinical trials provide therapeutic relevance

of the identified TME subtypes. Patients categorized in the C3 an-

gio-immune subtype demonstrated remarkable responses to the
T cell signatures in the three angio-immune subtypes in renal cell carcinoma

GSVA). The enrichment of representative gene sets is plotted. One-way ANOVA

ation of axitinib + avelumab.

ent angio-immune clusters.

elumab belonging to different angio-immune clusters.

rsus the combination of axitinib + avelumab.

rsus the combination of axitinib + avelumab.

rsus the combination of axitinib + avelumab.
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combination of axitinib, a small molecule tyrosine kinase inhibitor,

and avelumab, ananti-PDL1, and receivedclinically significant im-

provements in survival compared with the previous standard of

care sunitinib, a tyrosine kinase inhibitor, among the patients in

the Javelin Renal 101 clinical trial. Conversely, patients in C2 and

C1 did not benefit from axitinib combined with avelumab

compared with the previous standard of care sunitinib. Patients

harboring C3 angio-immune subtype were the only population to

display thebenefitofnivolumab,ananti-PD1therapy,over thepre-

vious standard of care everolimus, an mTOR inhibitor, in the

Checkmate 025 and Checkmate 010 clinical trials. This analysis

suggests that the angio-immune subtypes can reliably identify a

subset of patients that would derive clinical benefit from the ICB

treatment in renal cell carcinoma.

ICB treatment allows the silencing of inhibitory signals on T cells

to enable reactivity against tumor cells. The current clinical land-

scapeof treatmentwith ICB targets twokeycheckpointmolecules:

CTLA4 and PD1. CTLA4 is an inhibitory receptor that competes

with co-stimulatory receptor CD28 for B7 (CD80/CD86) binding.36

B7 expression is primarily restricted to antigen-presenting cells in

the tumor-draining lymph nodes.37 As such, the anti-CTLA4 is

thought toaffect theprimingphaseofCD8+Tcell activationprimar-

ily acting in lymph nodes. Our data that anti-CTLA4 response was

better predicted predominantly by the immune scores alone prob-

ably reflects the mode of anti-CTLA4 action. In comparison, anti-

PD1/PDL1 treatments affect during the effector phase in the tumor

microenvironment. Tumor or tumor-associatedmacrophage upre-

gulation of PD-L1 engages with inhibitory PD1 receptors on

T cells.38 TME characteristics may have a more direct impact on

anti-PD1/PDL1 efficacy. Immune features inC3microenvironment

include improved infiltration of anti-tumor immune cells, higher

cytotoxicity activity of CD8+ T cells, higher expression of co-stimu-

latory molecules, and higher expression of markers of T cell

exhaustion. The highly inflamed profile of C3 is partly due to the

highmutational burden and neoantigen load in this category of pa-

tients. Importantly, we identified distinct differences in mutational

profiles of patients belonging to different angio-immune subtypes.

The distinct mutations are actionable and may present distinct

treatmentmodalities forpatientsharboringdifferingTMEsubtypes.

Local immunecharacteristics of patientsbelonging toC3providea

compelling rationale for exploring treatmentwith locally actinganti-

PD1/PDL1 ICB.

In summary, leveraging the biological relationship between

angiogenesis and T cell immunity in the tumor microenvironment
Figure 5. Ability of previous techniques to predict ICB response

(A) Overall survival (OS) tracked for anti-PD1-treated melanoma, anti-PDL1-treate

free survival (PFS) tracked for anti-PDL1-treated renal cancer (Javelin) based on C

expressers.

(B) OS tracked for anti-PD1-treated melanoma, anti-PDL1-treated bladder canc

treated renal cancer (Javelin) based on IFNG signature enrichment. Median enric

(C) OS tracked for anti-PD1-treated melanoma, anti-PDL1-treated bladder canc

treated renal cancer (Javelin) based on IMPRES scores. Median scores were us

(D) OS tracked for anti-PD1-treated melanoma, anti-PDL1-treated bladder canc

treated renal cancer (Javelin) based on PD-L1 expression. Median expression w

(E) OS tracked for anti-PD1-treated melanoma, anti-PDL1-treated bladder canc

treated renal cancer (Javelin) based on MHCI expression. Median expression wa

(F) OS tracked for anti-PD1-treated melanoma, anti-PDL1-treated bladder canc

treated renal cancer (Javelin) based on MHCII expression. Median expression w
has allowed us to develop a framework with universal predictive

power for identifying patients who will derive benefit from ICB

treatment. Importantly, angio-immunesubtypesoutperformprevi-

ous predictive methods and are remarkably conserved across tu-

mor types.Future investigationsare required toexplore accessible

surrogates for local angiogenic and immune activity. Serum levels

of vascular endothelial growth factor (VEGF) have been shown to

predict the angiogenic capacity of non-small cell lung cancer.39

Whether this finding is consistent with other tumor types remains

to be seen. Similarly, circulating CD8+ T cells can be probed for

their cytolytic activity against tumors. Using surrogate markers

for local angiogenesis and T cell activity would allow us to classify

patients into angio-immune subtypes. In addition, the newly

evolved vascular normalization hypothesis calls for a revisiting of

dosage and combination schemes to optimize the use of anti-an-

giogenics in theclinic.High toxicityprofileof thecurrentanti-angio-

genics mainly targeting the VEGF pathway remains an obstacle.

Recently uncovered anti-angiogenic targets that are dispensable

for normal vessel maintenance likeMYCT1 provide early pre-clin-

ical promise toward a tolerable anti-angiogenic therapeutic.11

Such efforts will help to make more informed treatment decisions

and enable us to maximize clinical benefit.

Limitations of the study
While this study provides insights into the importance of the asso-

ciation between tumor vessels and anti-tumor immune responses

in the microenvironment, the nature of the study is correlative and

retrospective. As such, we require robust validation with an

adequately powered sample collection study to further validate

the phenotypes studied. In addition, we primarily deconvoluted

features of the microenvironment from heterogeneous bulk RNA

sequencing data. Further validation using techniques with higher

resolution, such as single-cell RNA sequencing, is required to

avoid confounding variables from a heterogeneous tumor micro-

environment. For the ultimate translation of the findings, appro-

priate surrogates for intratumoral angiogenesis and T cell activity

that can be easily measured by clinicians are required.
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tegrated genomic characterization of adrenocortical carcinoma. Nat.

Genet. 46, 607–612. https://doi.org/10.1038/ng.2953.

17. Aran, D., Hu, Z., and Butte, A.J. (2017). xCell: digitally portraying the tissue

cellular heterogeneity landscape. Genome Biol. 18, 220. https://doi.org/

10.1186/s13059-017-1349-1.

18. Chan, T.A., Yarchoan, M., Jaffee, E., Swanton, C., Quezada, S.A., Sten-

zinger, A., and Peters, S. (2019). Development of tumor mutation burden

as an immunotherapy biomarker: utility for the oncology clinic. Ann. Oncol.

30, 44–56. https://doi.org/10.1093/annonc/mdy495.

19. Bruni, D., Angell, H.K., and Galon, J. (2020). The immune contexture and

Immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev.

Cancer 20, 662–680. https://doi.org/10.1038/s41568-020-0285-7.

20. Gide, T.N., Quek, C., Menzies, A.M., Tasker, A.T., Shang, P., Holst, J., Ma-

dore, J., Lim, S.Y., Velickovic, R., Wongchenko, M., et al. (2019). Distinct

immune cell populations define response to anti-PD-1 monotherapy and

anti-PD-1/anti-CTLA-4 combined therapy. Cancer Cell 35, 238–255.e6.

https://doi.org/10.1016/j.ccell.2019.01.003.

21. Hugo, W., Zaretsky, J.M., Sun, L., Song, C., Moreno, B.H., Hu-Lieskovan,

S., Berent-Maoz, B., Pang, J., Chmielowski, B., Cherry, G., et al. (2016).

Genomic and transcriptomic features of response to anti-PD-1 therapy

https://doi.org/10.1016/j.xcrm.2022.100896
https://doi.org/10.1016/j.xcrm.2022.100896
https://doi.org/10.1038/nrclinonc.2017.166
https://doi.org/10.1038/nrclinonc.2017.166
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1016/j.cell.2018.03.027
https://doi.org/10.1016/j.celrep.2018.03.077
https://doi.org/10.1016/j.ccell.2021.06.016
https://doi.org/10.1016/j.ccell.2021.06.016
https://doi.org/10.1016/j.ccell.2021.04.014
https://doi.org/10.1016/j.ccell.2021.04.014
https://doi.org/10.3389/fimmu.2020.613114
https://doi.org/10.3389/fonc.2020.589434
https://doi.org/10.3389/fonc.2020.589434
https://doi.org/10.1038/nm.3541
https://doi.org/10.1038/nm.3541
https://doi.org/10.1126/scitranslmed.aak9670
https://doi.org/10.1126/scitranslmed.abb6731
https://doi.org/10.1126/scitranslmed.aak9679
https://doi.org/10.1126/scitranslmed.aak9679
https://doi.org/10.1016/j.cytogfr.2017.06.011
https://doi.org/10.1016/j.cell.2015.05.044
https://doi.org/10.1016/j.cell.2015.05.044
https://doi.org/10.1038/nature10166
https://doi.org/10.1038/nature10166
https://doi.org/10.1038/ng.2953
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1093/annonc/mdy495
https://doi.org/10.1038/s41568-020-0285-7
https://doi.org/10.1016/j.ccell.2019.01.003


Article
ll

OPEN ACCESS
in metastatic melanoma. Cell 165, 35–44. https://doi.org/10.1016/j.cell.

2016.02.065.

22. Mariathasan, S., Turley, S.J., Nickles, D., Castiglioni, A., Yuen, K., Wang,

Y., Kadel, E.E., III, Koeppen, H., Astarita, J.L., Cubas, R., et al. (2018).

TGFbeta attenuates tumour response to PD-L1 blockade by contributing

to exclusion of T cells. Nature 554, 544–548. https://doi.org/10.1038/

nature25501.

23. Liu, D., Schilling, B., Liu, D., Sucker, A., Livingstone, E., Jerby-Arnon, L.,

Zimmer, L., Gutzmer, R., Satzger, I., Loquai, C., et al. (2019). Integrative

molecular and clinical modeling of clinical outcomes to PD1 blockade in

patients with metastatic melanoma. Nat. Med. 25, 1916–1927. https://

doi.org/10.1038/s41591-019-0654-5.

24. Kim, S.T., Cristescu, R., Bass, A.J., Kim, K.M., Odegaard, J.I., Kim, K., Liu,

X.Q., Sher, X., Jung, H., Lee, M., et al. (2018). Comprehensive molecular

characterization of clinical responses to PD-1 inhibition in metastatic

gastric cancer. Nat. Med. 24, 1449–1458. https://doi.org/10.1038/

s41591-018-0101-z.

25. Motzer, R.J., Penkov, K., Haanen, J., Rini, B., Albiges, L., Campbell, M.T.,

Venugopal, B., Kollmannsberger, C., Negrier, S., Uemura, M., et al. (2019).

Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma.

N. Engl. J.Med. 380, 1103–1115. https://doi.org/10.1056/NEJMoa1816047.

26. Braun, D.A., Hou, Y., Bakouny, Z., Ficial, M., Sant’ Angelo, M., Forman, J.,

Ross-Macdonald, P., Berger, A.C., Jegede, O.A., Elagina, L., et al. (2020).

Interplay of somatic alterations and immune infiltration modulates

response to PD-1 blockade in advanced clear cell renal cell carcinoma.

Nat. Med. 26, 909–918. https://doi.org/10.1038/s41591-020-0839-y.

27. Qu, Y., Wen, J., Thomas, G., Yang, W., Prior, W., He, W., Sundar, P.,

Wang, X., Potluri, S., and Salek-Ardakani, S. (2020). Baseline frequency

of inflammatory Cxcl9-expressing tumor-associated macrophages pre-

dicts response to avelumab treatment. Cell Rep. 32, 107873. https://doi.

org/10.1016/j.celrep.2020.107873.

28. Ayers, M., Lunceford, J., Nebozhyn, M., Murphy, E., Loboda, A., Kaufman,

D.R., Albright, A., Cheng, J.D., Kang, S.P., Shankaran, V., et al. (2017). IFN-

gamma-related mRNA profile predicts clinical response to PD-1 blockade.

J. Clin. Invest. 127, 2930–2940. https://doi.org/10.1172/JCI91190.

29. Auslander, N., Zhang, G., Lee, J.S., Frederick, D.T., Miao, B., Moll, T., Tian,

T., Wei, Z., Madan, S., Sullivan, R.J., et al. (2018). Robust prediction of

response to immune checkpoint blockade therapy in metastatic melanoma.

Nat. Med. 24, 1545–1549. https://doi.org/10.1038/s41591-018-0157-9.

30. Doroshow, D.B., Bhalla, S., Beasley, M.B., Sholl, L.M., Kerr, K.M., Gnjatic,

S., Wistuba, I.I., Rimm, D.L., Tsao, M.S., and Hirsch, F.R. (2021). PD-L1 as

a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin.

Oncol. 18, 345–362. https://doi.org/10.1038/s41571-021-00473-5.

31. Rodig, S.J., Gusenleitner, D., Jackson, D.G., Gjini, E., Giobbie-Hurder, A.,

Jin, C., Chang, H., Lovitch, S.B., Horak, C., Weber, J.S., et al. (2018). MHC

proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in un-

treated metastatic melanoma. Sci. Transl. Med. 10, eaar3342. https://doi.

org/10.1126/scitranslmed.aar3342.

32. Viallard, C., and Larrivée, B. (2017). Tumor angiogenesis and vascular

normalization: alternative therapeutic targets. Angiogenesis 20,

409–426. https://doi.org/10.1007/s10456-017-9562-9.

33. Asrir, A., Tardiveau, C., Coudert, J., Laffont, R., Blanchard, L., Bellard, E.,

Veerman, K., Bettini, S., Lafouresse, F., Vina, E., et al. (2022). Tumor-asso-
ciated high endothelial venules mediate lymphocyte entry into tumors and

predict response to PD-1 plus CTLA-4 combination immunotherapy. Can-

cer Cell 40, 318–334.e9. https://doi.org/10.1016/j.ccell.2022.01.002.

34. Schaaf, M.B., Garg, A.D., and Agostinis, P. (2018). Defining the role of the

tumor vasculature in antitumor immunity and immunotherapy. Cell Death

Dis. 9, 115. https://doi.org/10.1038/s41419-017-0061-0.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Javelin Renal 101: Pretreatment RNA-seq Motzer et al., 202046 https://doi.org/10.1038/

s41591-020-1044-8

Hugo: Melanoma Pretreatment RNA-seq Hugo et al., 201621 GSE78220

Gide: Melanoma Pretreatment RNA-seq Gide et al., 201920 ERP105482

Liu: Melanoma Pretreatment RNA-seq Liu et al., 201923 phs000452

Mariathasan: Bladder Cancer

Pretreatment RNA-seq

Mariathasan et al., 201822 EGAS00001002556

Kim: Gastric cancer Pretreatment RNA-seq Kim et al., 201824 ERP107734

TCGA Pancancer RNA Sequencing,

Mutations, and clinical Data

Grossman et al., 201640 https://gdc.cancer.gov/

about-data/publications/

pancanatlas

Braun: Renal Cancer Pretreatment

RNA sequencing

Braun et al., 202026 10.1038/s41591-020-0839-year

Van Allen: Anti-CTLA4 Melanoma

pretreatment RNA sequencing

Van Allen et al., 201544 phs000452.v2.p1

Nathonson: Anti-CTLA4 Melanoma

pretreatment RNA sequencing

Nathanson et al., 201745 https://doi.org/10.1158/

2326-6066.CIR-16-0019

Software and algorithms

GSVA Hanzelmann et al., 2013 https://www.bioconductor.org/

packages/release/bioc/html/GSVA.html

pheatmap Kolde, 201242 https://cran.r-project.org/web/

packages/pheatmap/index.html

msigdbr N/A https://cran.r-project.org/web/

packages/msigdbr/

maftools Mayakonda et al., 2018 https://bioconductor.org/packages/

release/bioc/html/maftools.html

xCell Aran et al., 201717 https://github.com/dviraran/xCell

CIBERSORT Chen et al., 2018 https://cibersort.stanford.edu
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Kyunghee

Choi (kchoi@wustl.edu).

Materials availability
This study did not generate any new reagents.

Data and code availability
All datasets used can be accessed using the references listed. All analysis data, gene sets, and code has been deposited in Dryad

(https://doi.org/10.5061/dryad.v41ns1s11). All datasets used for analysis are indicated in the key resources table. Any further re-

quests can be made to the lead contact.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subject details
Data from all subjects analyzed has been previously published. Accession IDs and source for data can be found in the key resources

table.
e1 Cell Reports Medicine 4, 100896, January 17, 2023

mailto:kchoi@wustl.edu
https://doi.org/10.5061/dryad.v41ns1s11
https://doi.org/10.1038/s41591-020-1044-8
https://doi.org/10.1038/s41591-020-1044-8
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://doi.org/10.1158/2326-6066.CIR-16-0019
https://doi.org/10.1158/2326-6066.CIR-16-0019
https://www.bioconductor.org/packages/release/bioc/html/GSVA.html
https://www.bioconductor.org/packages/release/bioc/html/GSVA.html
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/msigdbr/
https://cran.r-project.org/web/packages/msigdbr/
https://bioconductor.org/packages/release/bioc/html/maftools.html
https://bioconductor.org/packages/release/bioc/html/maftools.html
https://github.com/dviraran/xCell
https://cibersort.stanford.edu


Article
ll

OPEN ACCESS
METHOD DETAILS

TCGA data
We used RNA, mutations, and clinical profiles for thirty non-hematological TCGA tumor types. Cancer types profiled include: Adre-

nocortical carcinoma (ACC), Bladder Urothelial Carcinoma (BLCA), Brain Lower Grade Glioma (LGG), Breast invasive carcinoma

(BRCA), Colon adenocarcinoma (COAD), Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), Cholangio-

carcinoma (CHOL), Esophageal carcinoma (ESCA), Glioblastoma multiforme (GBM), Head and Neck squamous cell carcinoma

(HNSC), Kidney Chromophobe (KICH), Kidney renal clear cell carcinoma (KIRC), Kidney renal papillary cell carcinoma (KIRP), Liver

hepatocellular carcinoma (LIHC), Lung adenocarcinoma (LUAD), Lung squamous cell carcinoma (LUSC), Mesothelioma (MESO),

Ovarian serous cystadenocarcinoma (OV), Pancreatic adenocarcinoma (PAAD), Pheochromocytoma and Paraganglioma (PCPG),

Prostate adenocarcinoma (PRAD), Rectum adenocarcinoma (READ), Sarcoma (SARC), Skin Cutaneous Melanoma (SKCM), Stom-

ach adenocarcinoma (STAD), Testicular GermCell Tumors (TGCT), Thyroid carcinoma (THCA), Uterine Carcinosarcoma (UCS), Uter-

ine Corpus Endometrial Carcinoma (UCEC), and Uveal Melanoma (UVM).

RNA sequencing data

RNA sequencing data for 11,069 patients was downloaded from the GDC pan cancer portal (https://gdc.cancer.gov/about-data/

publications/pancanatlas).40 Data was processed using the Firehose pipeline with upper quantile normalization. For patients with

more than one RNA-seq sample, primary tumor sample was favored. RNA sequencing samples from patients with DLBC and

LAML were excluded.

Mutations

Version 2.8 of the mutations annotation file (MAF) generated by the MC3 group was downloaded from the GDC pan cancer portal

(https://gdc.cancer.gov/about-data/publications/pancanatlas).40 Samples from patients with DLBC and LAMLwere excluded. Clus-

ter annotations were added to the MAF files. The maftools R package was used for visualization purposes.

Clinical data

Survival information was derived from TCGA-Clinical Data Resource (CDR) Outcome file provided in the GDC pan cancer portal

(https://gdc.cancer.gov/about-data/publications/pancanatlas).40

Patient stratification
Building of angio-immune score matrix

An unbiased selection of all gene sets relating to endothelial cell activity and T cell activity from the molecular signatures database

was conducted.41 A total of 91 gene signatures were identified and compiled to curate the angio-immune gene set collection. Gene

set variation analysis (GSVA) was implemented to score the enrichment of 91 gene sets among patients of 30 TCGA cohorts to

generate matrix of enrichment scores.

Clustering gene sets

Correlation matrix using Pearson coefficients were generated across enrichment scores for individual gene sets. Pheatmap package

in R was used to generate a hierarchically clustered heatmap.42 Two modules of gene sets were identified and characterized based

on the gene set membership.

Clustering patients

Correlation matrix using Pearson coefficients were generated across enrichment scores for patients. Pheatmap package in R was

used to generate a hierarchically clustered heatmap. Three angio-immune subsets were identified and characterized based on dis-

tribution of enrichment of different gene sets.

Immune characteristics of tumors
Immune and stromal cell enrichment

xCell, a gene signatures-based enrichment approach, was used to delineate enrichment of 64 immune and stromal cell types as pre-

viously described.17 Briefly, the xCell R package was used generate raw enrichment scores, transform into linear scale, and apply a

spillover compensation to derive corrected enrichment scores. Distribution of enrichment scores for patients belonging to different

angio-immune clusters were compared.

Immune cell deconvolution

CIBERSORT,43 which uses a nu-support vector regression algorithm to estimate cell fractions in inputted mixture files, was used to

depict immune cell fractions from bulk RNA-Seq data as previously described. Briefly, the leukocyte signature matrix, LM22, con-

taining the expression of 547 genes across 22 immune cell subtypes, was used to deconvolute immune cell fractions for each patient

in all cohorts. CIBERSORT was run on the R environment (version 4.04) using 100 permutations to generate leukocyte fractions for

each patient. An alpha value of 0.05 was used to filter nonsignificant deconvolution results. Patients were grouped by angio-immune

cluster and distribution of cell type fraction was compared. Neoantigen load and TCR richness were downloaded from the GDC pan

cancer portal (https://gdc.cancer.gov/about-data/publications/pancanatlas).
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Immunotherapy datasets
Pretreatment TPM normalized RNA sequencing data from anti-PD1/L1 and anti-CTLA4 treated cohorts were downloaded for the

following studies: Gide,20 Hugo,21 Liu,23 Van Allen,44 Nathanson,45 Mariathasan,22 Kim,24 Braun,26 and Motzer.46 Studies were

selected based on the following criteria: >20 samples for enrichment calculation, RNA sequencing of pretreatment biopsies, and

only anti-PD1/PDL1 treated patients. Gene signature enrichment and molecular subtypes were derived as described elsewhere in

the manuscript. Survival and response rates to treatment when available were compared among angio-immune clusters.

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless indicated elsewhere, all visualizations were completed in GraphPad Prism 9.

GraphPad Prism 9 was used for all statistical analysis. Data is presented as mean ± SE of mean. One-way ANOVA was used for

comparison across more than two groups. Non-parametric tests were used when data was not normally distributed. Log-rank tests

were used for all survival analysis. Alpha value of 0.05 was used throughout the study.
e3 Cell Reports Medicine 4, 100896, January 17, 2023
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Figure S1. Three pan cancer angio-immune subtype identification (Supplemental 
Information for Figure 1). 

A) Schematic depicting generation of enrichment matrices used for angio-immune subtype identification. 
RNA-sequencing data was used to score the enrichment of 91 gene signatures using GSVA. Results of 
GSVA are used to identify angio-immune subtypes. 

B) Heatmap depicting Pearson correlation of gene sets across 11,069 TCGA tumor samples. Gene sets are 
bound by positive correlation and separated by negative correlation. 



 
Figure S2. Pan-cancer clustering is fair to individual tumor types (Supplemental Information for Figure 1). 

A) Comparison of membership to previously established molecular subtypes and angio-immune clusters in 
skin cutaneous melanoma (SKCM).  

B) Comparison of membership to previously established molecular subtypes and angio-immune clusters in 
ovarian carcinoma (OV). 

C) Comparison of membership to previously established molecular subtypes and angio-immune clusters in 
adrenocortical carcinoma (ACC). 

  



 
Figure S3. Overall survival of TCGA tumors (Supplemental Information for Figure 1). Overall survival for 
tumor types among patients belonging to the three angio-immune clusters. Survival differences observed in bladder 
adenocarcinoma (BLCA), lung adenocarcinoma (LUAD), head and neck squamous cell carcinoma (HNSC), clear 
cell renal carcinoma (KIRC), low grade glioma (LGG), pancreatic adenocarcinoma (PAAD), stomach 
adenocarcinoma (STAD), and renal adenocarcinoma (READ). 
  



 
Figure S4. Distinct mutations characterize angio-immune clusters in specific tumor types (Supplemental 
information for Figure 2). 

A) Oncoplot depicting mutation frequency across angio-immune clusters in skin cutaneous melanoma. Plots 
were generated using the maftools package. Publicly available mutation annotation files from the GDC 
pancancer atlas was used to derive the data. 

B)  Oncoplot depicting mutation frequency across angio-immune clusters in bladder adenocarcinoma. Plots 
were generated using the maftools package. Publicly available mutation annotation files from the GDC 
pancancer atlas was used to derive the data. 

C) Oncoplot depicting mutation frequency across angio-immune clusters in stomach adenocarcinoma. Plots 
were generated using the maftools package. Publicly available mutation annotation files from the GDC 
pancancer atlas was used to derive the data. 

D) Oncoplot depicting mutation frequency across angio-immune clusters in renal cell carcinoma. Plots were 
generated using the maftools package. Publicly available mutation annotation files from the GDC 
pancancer atlas was used to derive the data. 



*=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001 

 
Figure S5. Immune cell infiltration analysis for individual tumor types are consistent with reported pan-
cancer phenotypes (Supplemental information for Figure 2). 

A) Violin plots showing xCell enrichment results of CD8 T cell, M1 macrophage, classical dendritic cell 
(cDC), B cells, Th1 cells, and Th2 cells across angio-immune subtypes among skin cutaneous melanoma 
patients from the TCGA. One way ANOVA was used to determine statistical significance. 

B) Violin plots showing xCell enrichment results of CD8 T cell, M1 macrophage, classical dendritic cell 
(cDC), B cells, Th1 cells, and Th2 cells across angio-immune subtypes among bladder cancer patients from 
the TCGA. One way ANOVA was used to determine statistical significance. 



C) Violin plots showing xCell enrichment results of CD8 T cell, M1 macrophage, classical dendritic cell 
(cDC), B cells, Th1 cells, and Th2 cells across angio-immune subtypes among stomach adenocarcinoma 
patients from the TCGA. One way ANOVA was used to determine statistical significance. 

D) Violin plots showing xCell enrichment results of CD8 T cell, M1 macrophage, classical dendritic cell 
(cDC), B cells, Th1 cells, and Th2 cells across angio-immune subtypes among clear cell renal carcinoma 
patients from the TCGA. One way ANOVA was used to determine statistical significance. 

  



 
Figure S6. Analysis of anti-CTLA4 treated melanoma (Supplemental information for Figure 3). 

A) Heatmap of Pearson Correlation of 51 patients with Melanoma treated with anti-CTLA4 across 91 gene 
sets corresponding T-cell and angiogenesis activity. Angio-immune subtypes were conserved in this 
melanoma cohort. 

B) Bar graphs depicting the average enrichment of angiogenesis signature and T-cell signature in the three 
angio-immune subtypes in the anti-CTLA4 treated Melanoma cohort. One way ANOVA was used to 
determine statistical significance. 

C) Overall survival for patients in different angio-immune clusters upon treatment with anti- CTLA4 in 
melanoma patients. 

*=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001 
 

  



 
Figure S7. Re-evaluation of Checkmate010 and Checkmate025 (Braun) reveals differing 
propensity for response by angio-immune subtypes (Supplemental information for Figure 4). 

A) Heatmap of Pearson Correlation of 311 patients with Renal Cell Carcinoma across 91 gene sets 
corresponding T-cell and angiogenesis activity. Angio-immune subtypes were conserved in this renal 
cancer cohort. 

B) Bar graphs depicting the average enrichment of angiogenesis signatures and T-cell signatures in the three 
angio-immune subtypes in the Braun Renal Cell Carcinoma cohort. One way ANOVA was used to 
determine statistical significance. 

C) Overall survival of patients treated with everolimus vs nivolumab 
D) Overall survival of patients treated with everolimus belonging to different angio-immune clusters 
E) Overall survival of patients treated with nivolumab belonging to different angio-immune clusters 
F) Overall survival of patients belonging in C1 treated with everolimus vs nivolumab 
G)  Overall survival of patients belonging in C2 treated with everolimus vs nivolumab 
H) Overall survival of patients belonging in C3 treated with everolimus vs nivolumab 
*=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001 
 



 
  



 
Figure S8. Re-evaluating tumor mutational burden as a predictor of response 
(Supplemental information for Figure 5). 

A) Overall survival of anti-PDL1 treated bladder cancer patients separated by tumor mutational burden status. 
Survival was plotted for patients across the cohort and belonging to the three angio-immune clusters 
separated by high (>50th percentile) and low (<50th percentile) tumor mutational burden.  

B) Progression-free survival of anti-PDL1 treated renal cancer patients separated by tumor mutational burden 
status. Survival was plotted for patients across the cohort and patients belonging to the three angio-immune 
clusters separated by high (>50th percentile) and low (<50th percentile) tumor mutational burden 
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