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1. Supplementary Text 

1.1 Hierarchical model 

Observed scRNA-seq counts are a noisy reflection of true gene-expression levels. We model the 

observed counts as a hierarchical model (Supplementary Figure S1a), which captures two core 

mechanistic processes: a sequencing measurement process (Supplementary Figure S1b) and a gene 

expression process (Supplementary Figure S1c). To make this idea precise, we let n  denote the true 

number of mRNAs expressed in cells, following the stationary distribution ( )geneP n  from a specific gene 

expression system. Let y  denote the observed number of mRNA molecules in cells, which in principle 

follows a conditional distribution denoted by ( )measP y n . Thus, the framework of the hierarchical model 

can be mathematically described as 

 
( ) ( ) ( )

( ) ( )

obs meas gene

meas gene
0

;
n

P Y y P y n P n

P y n P n dn


=  = 

= 
 (S1) 

where the    notation represents the mixtures of distributions. Next, we rationalize our hierarchical 

model through the following detailed analyses. 

Measurement model 

First, we can couple a sequencing process into a gene expression model via the measurement model 

( )measP y n  of scRNA-seq data (1). This is because the reads we observed are actually sampled from the 

true number of mRNAs by sequencing instruments. Assume that the observed reads of scRNA-seq data 

are the sampling result of mRNA without replacement, and that we can use a hypergeometric distribution 

to describe the measurement process (Supplementary Figure S1b). In general, hypergeometric 

distribution is computationally challenging, but we can use a binomial distribution to approximate it if the 

sample number is much smaller than the total number, i.e., 

 ( ) ( )meas Binomial , ,Y P y n n =  (S2) 

where  0,1   is the sampling probability in the sequencing process.  

Note that a discrete gene expression model can be written in a Poisson representation, that is, 

 
( ) ( ) ( )

( ) ( )

gene
0

Poisson

Poisson .
x

P n n x f x dx

n x f x



=




 (S3) 
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where ( )f x  is a kernel density function. Then, we can use the following hierarchical model to describe 

the observed number by taking a binomial distribution as a measurement model (Eq. (S2)),  

 ( ) ( ) ( )Binomial , Poisson .
n x

Y n n x f x    (S4) 

Note that for the mixture distribution ( ) ( )Binomial , Poisson
n

n n x  , we can derive its probability-generating 

function  
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  (S5) 

which is the probability generating functions of ( )Poisson x . Thus, Eq. (S4) can be rewritten as 

 ( ) ( )Poisson
x

Y y x f x   (S6) 

which is actually a Poisson representation for scRNA-seq data with a factor  . 

Gene expression model 

In this section, we discuss a discrete gene-expression model (described by ( )geneP n  ) that can 

simultaneously characterize transcriptional burst kinetics and feedback regulations. Since transcription 

factors (TFs) are often taken as feedback regulators, a gene expression model with feedback should 

consider protein levels. However, techniques for genome-wide measurement of proteomics are not yet 

sufficient for this consideration. An alternative approach is to use high-throughput scRNA-seq data to 

replace the protein levels (Supplementary Figure S1c) (2), and this is reasonable since the abundances 

of mRNA and protein are highly related (3). In the following, we rationalize that scRNA-seq data are 

suitable for the inference of feedback type by using Eq. (4) in the main text.  

First, let us consider a transcription model with feedback regulation, described by the following 

reaction scheme 

 

( )on

off

syn

deg

OFF ON,

ON OFF,

ON ON mRNA,

mRNA .

k n

k

k

k

⎯⎯⎯→

⎯⎯→

⎯⎯→ +

⎯⎯→

 (S7) 
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where onk  and offk  are the promoter’s activation and inactivation rates respectively, synk  and degk  are 

the mRNA’s synthesis and degradation rates respectively. Here we consider that only the promoter 

activation rate is auto-regulated by TFs (4,5), and assume that the number of proteins (TFs) is 

proportional to the number of mRNAs, i.e., the number of proteins is r n  , where n   is the mRNAs 

numbers and r   is a constant ratio factor. The regulation of the activation process by proteins is 

characterized by a Hill function. Let ( )off ,P n t  and ( )on ,P n t  be the probability that there are n  mRNAs 

in OFF state and ON state at time t , respectively. We then write two chemical master equations (CMEs) 

for Eq. (S7) 

 

( )

( )
( ) ( )

( ) ( ) ( )

( )

( )
( ) ( )

( ) ( ) ( )

( ) ( )

off

on off off on

deg off off

on

on off off on

deg on on

syn on on

,
, ,

1 1, , ,

,
, ,

1 1, ,

1, , .

h

hh

h

hh

P n t K
k P n t k P n t

t K rn

k n P n t nP n t

P n t K
k P n t k P n t

t K rn

k n P n t nP n t

k P n t P n t





 
= − + + 

 +  

+ + + −  

 
= + − 

 +  

+ + + −  

+ − −  

 (S8) 

where K  denotes the dissociation constant between the promoter and proteins, and onk k =  with 

k  being the basal activation rate represents a basal burst rate in the absence of regulation. Note that 

the Hill coefficient 0h   corresponds to negative feedback, and 0h   to positive feedback. 

Next, we find the stationary mRNA distribution ( ) ( ) ( )gene off onlim , ,
t

P n P n t P n t
→

= +     by introducing a 

Poisson representation. For this, we define two kernel density functions ( )off ,f x t   and ( )on ,f x t  

according to the following relationships 

 
( ) ( )

( ) ( )

max

max

off off
0

on on
0

, , ,
!

, , ,
!

n x
x

n x
x

x e
P n t f x t dx

n

x e
P n t f x t dx

n

−

−

=

=





 (S9) 

where maxx  is the maximum of the maximum values of functions ( )off ,f x t  and ( )on ,f x t  with regard to 

x  . Note that the total kernel density function ( ) ( ) ( )off on, , ,f x t f x t f x t= +   satisfies the normalization 

condition ( )
max

0
, 1

x

f x t dx = . Substituting Eq. (S9) into Eq. (S8), multiplying n  on both sides of Eq. (S8), 

and summing up n   from 0   to infinity approximately, we obtain the following differential Chapman-

Kolmogorov equations for ( )off ,f x t  and ( )on ,f x t ,  
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 (S10) 

with the no-flux boundary conditions ( ) ( )off off max0; ; 0J t J x t= =  , and ( ) ( )on on max0; ; 0J t J x t= =  , where 

( ) ( )off deg off; ,J x t k xf x t= −  and ( ) ( ) ( )on syn deg on; ,J x t k k x f x t= − . It is reasonable to choose max syn degx k k=  to 

make the boundary terms vanish. Thus, the boundary conditions imply that ( )off syn deg , 0f k k t =   and 

( )on 0, 0f t = .  

From Eq. (S10), we find that the stationary distribution ( ) ( ) ( )off onlim , ,
t

f x f x t f x t
→

= +    takes the form 

 ( ) ( ) ( ) ( )( )
on

offon
11 1 ˆˆ ˆ ˆ ˆ1 1 ,

k hhkk
f x Cx x rx K


−

−+ −
= − +  (S11) 

where synx̂ x k=  , synK̂ K k=  , syn syn degk k k=  , on on degk k k=  , off off degk k k=  , and C   is a normalization 

constant. Note that x̂  represents a non-dimensional mRNA quantity normalized by maxx . 

Now, we consider the case of bursty expression (i.e., assuming 
off on 1k k   ) (4,6). In this case, 

function ( )ˆf x  can be approximated as 

 
( ) ( ) ( )( )

( ) ( )( )
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on off
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k
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−
−

+ −

−
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= − +  

 

 +

 (S12) 

where C  is a normalization constant. Therefore, the stationary mRNA distribution ( )geneP n  is given by 

 ( ) ( ) ( )
1

gene
0

ˆ ˆ ˆPoisson .synP n n k x f x dx=   (S13) 

To verify the correctness of Eq. (S13) obtained from Eq. (S7), we use the mRNA distribution generated 

by the Gillespie algorithm to compare it with the theoretically approximate solution obtained by 

substituting Eq. (S11) or Eq. (S12) into Eq. (S13). From Supplementary Figure S1d-g, we observe that 

the approximate theoretical results fit well with the numerically generated data, whatever in positive and 

negative feedback cases. This indicates that the stationary solution of the discrete gene expression model 

(Eq. (S7)) can be well described by Poisson representation. 

Noting that the relationship max synx̂ x x x k= =  and substituting Eq. (S12) into Eq. (S13), we find that 

the stationary distribution characterized by the burst parameters can be finally expressed as 
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 ( ) ( ) ( ) ( )( )1 1

gene
0

Poisson 1 .
a h

ha x bP n C n x x e x k dx


− + − −= +  (S14) 

where 
ona k=  is burst frequency, syn offb k k=  is burst size and k K r=  is a parameter. 

Hierarchical model for autoregulatory feedback system  

Since the feedback system Eq. (S7) can be described by a Poisson representation, i.e., Eq. (S14), we 

can choose the binomial distribution given by Eq. (S2) as the measurement model. Using Eq. (S6), the 

observed mRNA expression distribution of scRNA-seq data is calculated according to 

 
( ) ( ) ( )

( ) ( ) ( )( )

obs
0

1 1

0

Poisson

Poisson 1 .
a h

ha x b

P y y x f x dx

C y x x e x k dx








− + − −

=

= +




 (S15) 

From the above analysis, we can see that the hierarchical model described by Eq. (S15) is an 

interpretable and mechanistic one. Moreover, it can be used in the simultaneous inference of 

transcriptional burst kinetics and feedback (as shown in the main text) since we can extract five significant 

parameters ( ), , , ,a b k h =  of the auto-regulatory feedback system from scRNA-seq data.  

We emphasize that the kernel density function ( )f x  in Eq. (S15) is in a form similar to the stationary 

distribution from (7), but the authors in that paper used a continuous stationary distribution to characterize 

translational bursting. In contrast, we use a hierarchical model, which combines the measurement 

process with a binomial distribution and the gene-expression process with a discrete stationary 

distribution (i.e., Eq. (S14)), to infer transcriptional bursting kinetics and feedback forms from scRNA-seq 

data.  
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1.2 Telegraph model 

The classical telegraph model considers two gene states: an OFF state where the gene is not expressed 

and an ON state where the gene is transcribed. Specifically, the switching rates from OFF to ON and from 

ON to OFF are onk  and offk , respectively. The gene transcription rate is synk  and the mRNA degradation 

rate is degk . The model is described by the following four reactions:  

 

on

off

syn

deg

OFF ON

ON OFF

ON ON mRNA,  

mRNA .

k

k

k

k

⎯⎯→

⎯⎯→

⎯⎯→ +

⎯⎯→

 (S16) 

Moreover, it is assumed that all the reaction events involved are Markovian, i.e., the probability that the 

reaction events happen depends only on the present state of the system, independent of the prior history.  

Let ( );P x t  represent the probability that the mRNA has x  molecules at time t . The steady-state 

distribution of these equations has been shown (8) to take the form 

 ( )
( ) ( )
( ) ( )

( )
on on off syn

1 1 on on off syn

on on off

; ; ,
!

xk x k k k
P x F k x k k x k

xk k k x

 +  +
= + + + −
  + +

 (S17) 

where the switching rates are in unit of mRNA decay rate, i.e., on on degk k k= , off off degk k k= , syn syn degk k k= . 

Moreover, the distribution in Eq. (S17) can be regarded as a Poisson-Beta distribution (9), i.e., the 

mixture of a Poisson distribution and a Beta distribution. Specifically, if the Poisson distribution has a 

mean synk t  , where synk   is a scale parameter and t   follows the Beta distribution with parameters 

( )on off,k k , then the expression of ( )P x  can be reproduced by calculating  

 ( )
( ) ( )

( )

offon

syn

11
1 syn

0
on off

1
,

! ,

x
kk

k t
k t t t

P x e dt
x B k k

−−
− −

=   (S18) 

In spite of this fact, calculating the integral in Eq. (S18) is time-consuming. Therefore, we exploit the 

Gauss-Jacobi quadrature method (10) to compute Eq. (S18). If changing the variable 2 1u t= −  , Eq. 

(S18) can be rewritten as 

 ( )
( )

( )( ) ( ) ( ) ( )on offsyn

on off

1 syn 1 11 2

1 1
on off

1 21 1
1 1 .

2,

x

k kk u

k k

k u
P x e u u du

xB k k

− −− +

+ − −

+
= + − ！

 (S19) 

Finally, based on the Gauss-Jacobi quadrature method and maximum likelihood estimation method, 
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we can estimate the model parameters ( )on off syn, ,k k k   and compute the burst size syn offk k  , burst 

frequency 1

onk −  and variability of mRNA. 
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2. Supplementary Figures 

 

Supplementary Figure S1. Hierarchical model for generating single-cell data. (a) Hierarchical model 

is used in modeling the observed distribution of scRNA-seq data, which can be considered as a coupling 

of two mechanistic processes: measurement model (b) and gene expression model (c). (b) Schematic 

diagram of the measurement model. The sequencing process can be considered as the sampling without 

replacement for mRNA. Alternative models can be hypergeometric distributions or approximate Binomial 

distributions. (c) Schematic diagram of a gene-expression model. The proteins produced by mRNA 

translation can interact back with the gene promoter, thus affecting the rate of state switching. The 

shading indicates the transcriptome data used to replace protein abundance in the actual inference, under 

the assumption of linear dependence of mRNA and protein. And this model is used in modeling the ‘true’ 

distribution of gene expression. (d-e) Comparisons of the distributions of simulated (gray histogram) and 

two approximate theoretical results (The solid blue line corresponds to Eq. (S11), and the dotted orange 

line corresponds to Eq. (S12)). Parameters values in the case of positive feedback: (d) on 5k = , off 100k = , 

syn 1000k =  , 10K r =  , 2h = −  , 0.05 =   and deg 1k =     (e) on 5k =  , off 100k =  , syn 1000k =  , 1K r =  , 

4h = − , 0.05 =  and deg 1k = . Parameters values in the case of negative feedback: (f) on 10k = , off 50k = , 

syn 1000k =  , 1K r =  , 2h =  , 0.05 =   and deg 1k =    (g) on 10k =  , off 50k =  , syn 1000k =  , 50K r =  , 4h =  , 

0.05 =  and deg 1k = . 
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Supplementary Figure S2. Influences of parameters a  and b  on static mRNA distributions in 

the hierarchical model, where the left column is for positive feedback ( 2h = − ), the middle column for 

negative feedback ( 2h = ), and the right column for no feedback ( 0h = ). (a-f) Static mRNA distribution for 

1a    (a-c) and for 1a    (d-f) (see color bars), where the other parameter values are set as 10b =  ,

0.05 =  , 5k =  , 0.5g =  . (g-l) Static mRNA distributions for fixed 0.5a =   (g-i) and 5a =   (j-l), where 

color bars show increases in b , and the other parameter values are set as 0.05 = , 5k = , 0.5g = . 
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Supplementary Figure S3. Influences of parameters h  and k  on static mRNA distributions in 

the hierarchical model, where the left column is for positive feedback ( 2h = − ), and the right column for 

negative feedback ( 2h = ). (a-d) Influences of feedback strengths (color bars) on static mRNA distribution 

for fixed 0.5a =  (a-b) and for fixed 5a =  (c-d), where the other parameter values are set as 10b = ,

0.05 = , 5k = , 0.5g = . (e-h) Influences of equilibrium binding constant k  (color bars) on static mRNA 

distribution, where (e-f) is for 0.5a =  and (g-h) for 5a = , and the other parameter values are set as: 

0.05 = , 5k = , 0.5g = . 
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Supplementary Figure S4. Precision and robustness of inferred results in the case of no feedback. 

(a) Contours illustrate the error (color bars) of inferred burst kinetics from simulated expression data. The 

orange dots represent burst frequencies and sizes in the examples showed in (b) and (c). (b) mRNA 

distributions for fixed 3a = , 4b = , where the gray histograms are for simulated data, red solid line for 

the distribution generated using true kinetic parameters and blue points for the distribution generated 

using estimated kinetic parameters  Inset: analysis of model selection based on the corrected Akaike 

information criterion (AICc) that is normalized for visualization convenience, where three colored bars 

represent the results of model selection for three cases of different feedbacks and the check mark 

represents the final selected model. (b1-b3) Boxplot of inferred burst frequencies, burst sizes and 

feedback models as functions of different cell numbers and random deletions (sensitive), where the red 

dashed line corresponds to the true parameter. (c and c1-c3) Analysis of robustness inference similar to 

b and b1-b3 for fixed 5a = , 10b = .  
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Supplementary Figure S5. Precision and robustness of inferred results in the case of positive 

feedback. (a) Contours illustrate the errors (color bars) of inferred burst kinetics for simulated gene-

expression data generated by setting different equilibrium binding constants 2,  10,  100k = (from left to 

right) and 3h = − . The orange dots represent burst frequencies and sizes for the examples shown in (b) 

and (c). (b) mRNA distributions for fixed 2a = , 15b = , where the gray histograms are for simulated data, 

red solid line for the distribution generated using true kinetic parameters and blue points for the 

distribution generated using estimated kinetic parameters  Inset: analysis of model selection based on 

the AICc that is normalized for visualization convenience, where three colored bars represent the results 

of model selection for three cases of different feedbacks and the check mark represents the final selected 

model. (b1-b3) Boxplot of inferred burst frequencies, burst sizes and feedback models as functions of 

different cell numbers and random deletions (sensitive), where the red dashed line corresponds to the 

true parameter. (c and c1-c3) Analysis of robustness inference similar to b and b1-b3 for fixed 4a = , 

10b = . 
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Supplementary Figure S6. Precision and robustness of inferred results in the case of negative 

feedback. (a) Contours illustrate the errors (color bars) of inferred burst kinetics for simulated gene-

expression data generated by setting different equilibrium binding constants 2,  10,  100k = (from left to 

right) and 3h = . The orange dots represent burst frequencies and sizes for the examples shown in (b) 

and (c). (b) mRNA distributions for fixed 3a = , 18b = , where the gray histograms are for simulated data, 

red solid line for the distribution generated using true kinetic parameters and blue points for the 

distribution generated using estimated kinetic parameters  Inset: analysis of model selection based on 

the AICc that is normalized for visualization convenience, where three colored bars represent the results 

of model selection for three cases of different feedback and the check mark represents the final selected 

model. (b1-b3) Boxplot of inferred burst frequencies, burst sizes and feedback models as functions of 

different cell numbers and random deletions (sensitive), where the red dashed line corresponds to the 

true parameter. (c and c1-c3) Analysis of robustness inference similar to b and b1-b3 for fixed 2a = , 

10b = . 
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Supplementary Figure S7. Results for performing goodness-of-fit test analysis. (a) Demonstration 

of Goodness-fit test for all inferred genes, where the histogram shows the gene numbers with good-fit 

(blue color) and bad-fit (red color) vs the mean expression levels. (b) Comparison of the mean expression 

level and the variability (CV2) between the scRNA-seq dataset and the hierarchical model, where the red 

dashed line represents those results for the model and the data are completely consistent. 
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Supplementary Figure S8. Comparison of fitting and model selection between hierarchical and 

telegraph models of bimodal distribution. Bimodal examples for comparison of the inferred 

distributions between our hierarchical model (orange line) and the telegraph model (green line), where 

the gray histograms represent the distributions of mRNA counts. Corrected Akaike information criterion 

(AICc) is calculated for model selection.  
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Supplementary Figure S9. Genome-wide inference of the relationships between kinetic 

parameters and mean expression levels. (a) Scatter plot of mean gene-expression levels against 

expression variability (CV2) for all genes. (b) Scatter plot of mean gene-expression levels against rCV2 

for all genes. (c) Scatter plot of mean gene-expression levels against burst frequencies for all genes. (d) 

Scatter plot of mean gene-expression levels against burst sizes for all genes. In a-d, the solid lines 

represent the fitting curves with a cubic spline and the shading represents 95% confidence interval. 
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Supplementary Figure S10. Correlations among promoter motifs, feedbacks and burst kinetics. 

(a) Boxplots of the mean expression levels of genes either with (1) or without (0) promoter motifs, where 

p-value represents the result of Wilcoxon test. (b) Correlations between promoter motifs and feedback 

regulations, where the shades of the color indicate the frequencies in the contingency table, which are 

normalized by x axis. (c-e) Results for the regressions of variability (rCV2, c), burst frequencies (d) and 

burst sizes (e) by using promoter motif features, where each point shows the t-value in a multivariate 

linear regression model, which is used to judge whether to reject the null hypothesis that the feature has 

no connection with the dependent variable. Color: Significantly higher (red point), significantly lower 

(green point) and no significant (gray point) effects. 
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Supplementary Figure S11. Correlations among TSS distributions, feedbacks and burst kinetics. 

(a,b) Boxplots of mean expression level of genes either with sharp TSS distribution or with broad TSS 

distribution in three cases of different feedbacks (a) and for all genes (b), where the p-values represent 

the results of Wilcoxon test. (c,d) Boxplots of variability of genes either with sharp TSS distribution or with 

broad TSS distribution in three cases of different feedbacks (c) and for all genes (d). (e,f) Boxplots of 

burst frequency (e) and burst size (f) of genes either with sharp TSS distribution or with broad TSS 

distribution for all genes. 
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Supplementary Figure S12. Synergic effects of enhancer-promoter interaction and feedback 

regulation on burst kinetics. (a-c) Correlations between enhancer-promoter (E-P) interaction intensity 

and mean gene-expression levels (a), burst frequencies (b) or burst sizes (c) in three cases of different 

feedbacks, where the dashed line represents the peak value in case of positive feedback and the line 

segment on the right-hand side of the picture represents the maximum minus the minimum, that is, the 

amplitude of affecting kinetic parameters (mean levels, burst frequencies and burst sizes). Color: positive 

feedback (red line), non-feedback (blue line) and negative feedback (green line). (d-g) Correlations 

between E-P interaction intensity and mean gene-expression levels (d), variability (rCV2, e), burst 

frequencies (f) or burst sizes (g) for all genes. 
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3. Supplementary Table 

Supplementary Table S1: The predicted feedback loop of genes that verified by publications. 

Gene 

name 

Feedback 

Type 

PMID 

(or DOI) 

Gene  

name 

Feedback 

Type 

PMID 

(or DOI) 

Acta1 Positive 32087752 Cdkn1a Positive 20160708 

Acta2 Positive 26559755 Cebpd Positive 25591788 

Actn1 Positive 16736472 Clic1 Positive 32905514 

Adamts5 Positive 18328163 Clic4 Positive 31879279 

Adipor1 Positive 33359123 Cnbp Positive 28168305 

Aebp1 Positive 32565808 Cnn2 Positive 24464300 

Ahnak Positive 21940993 Col6a3 Positive 33214660 

Akt1 Positive 26235620 Commd1 Positive 26586569 

Aldh18a1 Positive 32075946 Ctgf Positive 23259531 

Aldoa Positive 32530543 Ctsl Positive 33919392 

Angptl2 Positive 33747748 Cxcl5 Positive 35116536 

Ankrd11 Positive 20452957 Ddah1 Positive 23717555 

Anxa2 Positive 33712571 Dhx9 Positive 35590370 

Aprt Positive 16105024 Ecm1 Positive 27075243 

Arpc4 Positive 34836783 Eif3i Positive 25147179 

Atf5 Positive 29137451 Ensa Positive 21164013 

Basp1 Positive 33042262 Ephx1 Positive 30293161 

Bdnf Positive 25171395 Fasn Positive 21643005 

Bgn Positive 33117706 Fhl2 Positive 16343438 

Brd2 Positive 21068722 Fstl1 Positive 18519848 

Bsg Positive 
10.1101/2021.1

1.29.470317 

Fxyd5 Positive 31746425 

Fzd7 Positive 35942683 

Btg2 Positive 11989967 Gng10 Positive 34429144 

Cald1 Positive 26926107 Gng11 Positive 26926107 

Cap1 Positive 34099549 Golm1 Positive 35805075 

Ccdc104 Positive 23303910 Grb10 Positive 15901248 

Cck Positive 12829630 Hbegf Positive 31033049 

Ccl2 Positive 27888616 Hbp1 Positive 28348080 

Ccl7 Positive 35715847 Hdgf Positive 26296979 

Cct2 Positive 33268369 Hmga1 Positive 31814893 

Cd81 Positive 
10.1101/2022.0

2.23.481674 

Hnrnpc Positive 35661832 

Hnrnpm Positive 35158098 

Cdc37 Positive 12435747 Htra1 Positive 22949504 

Cdc42se1 Positive 30754684 Il1rl1 Positive 35578178 

Cdk1 Positive 22726437 Klf6 Positive 33734616 

Cdk4 Positive 10235368 Ldha Positive 35359405 

Cdk5 Positive 11050161 Lox Positive 21643005 
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(Continued to Supplementary Table S1) 

Gene 

name 

Feedback 

Type 

PMID 

(or DOI) 

Gene 

name 

Feedback 

Type 

PMID 

(or DOI) 

Ltbr Positive 29769272 Wnk1 Positive 35691270 

Malat1 Positive 26735578 Ythdf2 Positive 34160549 

Meg3 Positive 33602903 Abi1 Negative 11208021 

Mmp14 Positive 31298339 Adam9 Negative 34671207 

Ncl Positive 25938538 Alas1 Negative 29364890 

Neat1 Positive 33253679 Anxa1 Negative 27105503 

Nisch Positive 35108640 Atf4 Negative 27629041 

Pak2 Positive 12226077 Bin1 Negative 30733337 

Pdrg1 Positive 34812552 Bmp1 Negative 25701650 

Pgk1 Positive 30537744 Calm1 Negative 29657261 

Plk2 Positive 29448085 Camk2g Negative 16002660 

Postn Positive 

10.1161/CIRCR

ESAHA.120.316

943 

Ccm2 Negative 29364115 

Chd4 Negative 25453762 

Chpf Negative 33809195 

Prdx6 Positive 31007045 Ckap4 Negative 27322059 

Psmd1 Positive 
10.1182/blood-2

019-126963 

Col4a2 Negative 35532293 

Dad1 Negative 31123095 

Psmd3 Positive 
10.1182/blood-2

019-126963 

Ddr2 Negative 22832484 

Ddx24 Negative 24204270 

Ptpn11 Positive 30355677 Dhrs3 Negative 28207193 

Rbfox2 Positive 31241461 Dnajc3 Negative 33210431 

Rock2 Positive 27724862 Drap1 Negative 12471260 

Rpl23 Positive 28539603 Eif3h Negative 29136179 

Rraga Positive 35739524 Erp29 Negative 21419175 

S100a10 Positive 30675195 Fabp5 Negative 31883840 

Sdpr Positive 30879950 Gas5 Negative 35706414 

Serpine2 Positive 33760135 Gba Negative 33617695 

Sh3bgrl3 Positive 33839406 Gpc1 Negative 31355137 

Son Positive 27293512 Herc2 Negative 31665549 

Sox4 Positive 30906628 Hnrnpa0 Negative 35879279 

Sparc Positive 18542844 Iqgap1 Negative 22328503 

Tagln2 Positive 27402267 Kras Negative 24755884 

Thbs1 Positive 32853092 Lamp1 Negative 29644770 

Timp1 Positive 35961511 Lats2 Negative 27006470 

Tspo Positive 33066460 Loxl1 Negative 29164236 

Uba2 Positive 35661832 Ly6e Negative 31684192 

Unc5b Positive 32141538 Map2k2 Negative 29023632 

Uqcr10 Positive 34860557 Nedd4 Negative 31787758 

Wisp2 Positive 30651114 Nolc1 Negative 24154670 
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(Continued to Supplementary Table S1) 

Gene 

name 

Feedback 

Type 

PMID 

(or DOI) 

Gene  

name 

Feedback 

Type 

PMID 

(or DOI) 

Npm1 Negative 23874639 Smarca4 Negative 30297712 

Nrp2 Negative 29130509 Srsf2 Negative 25818199 

Pgd Negative 33241112 Ssrp1 Negative 26755331 

Prrc1 Negative 34295164 Stat3 Negative 24973454 

Rab7 Negative 29296513 Tardbp Negative 33137311 

Rab8a Negative 22219378 
Thoc7 Negative 

10.1101/2021.

09.07.459221 Rac1 Negative 27136688 

Rb1cc1 Negative 33340270 Tmed9 Negative 35805075 

Rbm39 Negative 
10.1101/2022.0

8.30.505862 

Tnk2 Negative 26677978 

Trim3 Negative 30542119 

Rdx Negative 16651542 Trip12 Negative 22497224 

Rhoa Negative 27136688 Trip6 Negative 32104300 

Rpl22 Negative 23990801 Tspan31 Negative 24565034 

Rps3 Negative 20217897 Ubxn4 Negative 34021047 

Sar1a Negative 
10.1101/2022.0

7.21.501000 

Usp14 Negative 30021169 
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