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Supplemental Information:

Analysis of gene and theme overlap of size-scaling factors between datasets:

We investigated which ontological themes were enriched in both analyses finding that
peptides pertaining to cell cycle, DNA repair, and division processes remained
enriched in smaller cell lines (eg; ‘DNA repair’, ‘Cell cycle process’, ‘Cytokinesis’, 80%
Al-A2, 16 % A2-Al indicating 80% of themes enriched in the first analysis match the
second and 16% detected in the second match the first) whilst lipid and carbohydrate
metabolic peptides (eg; ‘Lipid metabolic process’, ‘Carbohydrate derivative metabolic
process’, ‘Sterol metabolic process’, 30% A1-A2, 21% A2-Al ) are consistently
enriched in larger cell lines. Due to the lack of agreement, the enrichment of ECM
components in larger cell lines detected in the prior analysis may reflect an
upregulation or overexpression rather than a scaling relationship. Enacting the same
analysis for the phosphorylation data, we note excellent agreement between analyses
(63% Al -A2, 60% A2-Al) for small cell lines, with both enriching for cell cycle and
biosynthetic processes (eg; regulation of cellular biosynthetic process, mitotic cell
cycle, DNA replication). Larger cell lines exhibited much weaker agreement (9% Al-
A2, 30% A2-Al) but both analyses revealed enrichment of cytoskeletal and GTPase
regulatory phosphorylations (eg; Regulation of GTPase activity, ‘Cell junction

assembly’, ’Actin filament based process’) (SF3).

Investigating the overlap of individual genes, we note a particularly strong overlap
between analyses for phosphopeptides enriched in smaller cell lines (36% A1-A2, 30%
A2-Al). Phosphopeptides enriched in larger cell lines show a more modest overlap
(16% Al1-A2, 14% A2-Al) like that observed in peptide expressions for smaller cell
lines (15% A1-A2, 27% A2-Al). Peptide expressions in larger cell lines exhibit the
weakest overlap (5% Al-A2, 8% A2-Al) (SF3). Screening for interactions between
overlapping genes we observe a set of 21 physically interacting genes centred on
BRCA1 enriched in smaller cell lines. As a ‘hit’ in two separate scaling analyses, these

data indicate that the BRCA1 complex scales with cell size (SF3).

These data corroborate our previous analysis, strengthening the claim that G2/M and
DNA repair processes define smaller melanoma cell lines, (with associated peptides

sub-scaling with cell size), whilst cytoskeletal organisation and the rewiring of lipid



metabolism define larger cell lines (peptides super-scaling with size). Interestingly
we recover a large, BRCA1 complex in both analyses, implicating the complex in

size-dependent phenomena.

Derivation of the proliferation time and size gain distributions:

We are interested in the waiting time distribution before the first successful event. The

probability to fail a division is:
Pfail = 1_Pdiv equ51

For a cell to have not divided by a given time point, it must have failed to divide at
every prior time point. The probability of successive failures occurring at a given time

is equal to:
t
F(t) = (Pfail) = (1 - aAdiv)t equ. S2

Where ‘1’ is time since the last division. The probability of having divided by a given ‘t’

is the probability that the cell has not failed at every prior step:
Ct)=1—-—(1- ady,)t equ.S3

The probability distribution follows as:
d
P(t) = pr [1-(1- adgw)']=-1— adg) ' In(1 — adyy) equ.S4

Pt)= 2e™ , A= —In(1— adyy,) equ.S5

We may extract the expected gained mass by scaling the time by In(2)/(dt/dA). The

In(2) factor accounts for a division event having happened any time in the interval O-t.

A(t)
CA(t)) =1— (1 — adgy,)n@4awk  equ.S6
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We can see that this result constitutes an adder —type system when expressing the
expected area gain as a Laurent series about a = 0 (fitted values never exceed 1X10"-
5) (F6B/C):

—In (QkAgy, InQk kAg, 1 2 1 3
— — — —Agi, ak — — Ay, a?k ... .S1
In(1— adgy) a 2 1zfaw MET gy tiaw @ eau-310

It is clear that the mean area gain is approximately constant, as the first term
dominates the expression by virtue of alpha = 0. Thus, a constant average mass is
added each cycle, despite the area gain distribution itself being dependent on division

size.
Deriving the moments of the cell size distribution:

Starting with an initial size distribution, F(A), and size gain distribution, G(A), we may

define the expected size distribution up to the first division, H(A) as:
F(A)*G(A) =H(A) equ.S11

On division, the value of cell size is considered to halve. Thus, the birth size

distribution is given as:
F(24) * G(2A) = H(2A) = B(A) equ.S512

Where the inclusion of 2A has mapped the probability of A to half its value, thereby
simulating a division event. This is then convolved with G(A) again for the next

division cycle, and so on:
[[F(2"A) « G(2"A)] * G(2""1A)] ...« G(A) = H(A) equ.S13

Where n denotes the number of divisions. Note that as n increases, the influence of
the initial size distribution on the total convolution decreases as F(2"A) has non-zeros
values only at extremely low sizes as n increases. Indeed, we can approximate the

above as:
Ppiy(A) = [[F(2"4) * G(2"A)] * G(2" A)] ... G (A)

~ G(A) * G(2A) * ...G(2"A) equ.S14



G(A) has been shown to be an exponential distribution. Convolution of n exponential
functions with different scale parameters results in a hypo-exponential function with
mean equal to the sum of the means of all participating distributions:

(P (A)) = t 1.t S15
piw(A) = T+t oty e

The sum can be written as:

t .2 —1(1+1+1+ 1)—2 516
Attt T U3 on) T 7 e

Indicating that the distribution tends toward a constant mean. The corresponding

variance is similarly given as:
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Yielding a constant coefficient of variation:

4
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These results may be trivially adjusted to account for ‘X’ identical events governing
division. Indeed, G(A) is merely transformed from a constant exponential distribution
to a constant Erlang distribution of shape factor ‘X’ and rate parameter 1/x k/a. This
stems from G(A) being generated from the convolution of ‘X’ exponentially distributed
gain variables corresponding to the area gain in each cycle stage each with mean 1/(x)
k/a. As is the case for the hypoexponential, Erlang distributions have means and
variance equal to the sum of those of the participating distributions allowing us to easily
modify equ.S15/S17:

X X X X X 1 1 1 2x
(Ppin(4,x)) = —+—+—+---—=—(1+—+—+---—>=—
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4x
\,3 A)? X 1
A* _ Vx equ.519

V= Tk T
A

Equ.S18 tells us that from the coefficient of variation, we may estimate the number of
stages needed to effectively model the cell size distributions. This relationship is
similar to that obtained recently (Nieto et al., 2020) where (CV)*2 was found to be
proportional to one over the number of modelled cell cycle stages. Importantly, given
a single value of the 'a’ or 'k’ parameters, this is entirely independent of ‘a’ or ‘K’

facilitating simple calculation of the required ‘X’:

= — .52
X 3002 equ.S20



Supplemental Figure 1: Representative images of the primary panel of cell

lines
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Supplemental Figure 1: Images of the cell lines: A) Representative images from the 11 cell lines.
In blue is the Hoechst intensity, and grey, the tubulin intensity. All images were taken at 20X
magnification using an Opera Cell: Explorer-automated spinning disk confocal microscope. Images
have been auto-adjusted to optimise contrast within the acapella environment (PerkinElmer)



Supplemental figure 2: Quantification of cell DNA content via FACs analysis
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Supplemental Figure 2: FACs Analysis: A) Quantification of cell DNA through FACs analysis.
Many of the cell lines, both large and small, exhibit a small polyploid population.



Supplemental figure 3: Measurement of cell growth rate
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Supplemental Figure 3: Cell growth data: Cell population growth curves for a subset of the
investigated lines. Cell density is normalised relative to the starting confluence of the culture. Note

that a large line, B14341, shows a comparable doubling time to smaller line, 5555.



Supplemental figure 4: Validation of size controllers in
noma cell lines
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Supplemental figure 4: Validation of size controllers in an independent panel of melanoma cell
lines: A) Volcano plot relating the fold change’ across the small and large cell lines (defined as either
side of the mean size) to the significance of the correlation between cell size and peptide expression.
B) Themes enriched in each region of ‘A’ as denoted by the colour of the box in the top right of each
panel. From left to right; hypo-scales with size, hyper scales with size, over expressed in large cells
(enrichments significant to at least P<1X10”-3). Significance constraints for this analysis are determined
identically to the original analysis C) Volcano plot relating the ‘fold change’ across the small and large
cell lines (defined as either side of the mean size) to the significance of the correlation between cell size
and phosphopeptide expression. D) Themes enriched in each region of ‘C’ as denoted by the colour
of the box in the top right of each panel. From left to right; hypo-scales with size, hyper scales with size,
over expressed in large cells (bottom = overexpressed in small cells). E) Example hits from each
analysis, the top half the peptide expression analysis, the bottom, the phosphopeptide expression
analysis. F-I) Venn diagrams depicting the overlap of themes enriched across both sets of cell lines.
Top left = peptide expression in small lines, top right = peptide expression in big lines, bottom left =
phosphopeptide expression in small lines, bottom right, phosphopeptide expression in big lines. J)
Percent overlap between analyses at the gene level. K) Example genes that are hits across both
analyses, the top panel shows BRCAL peptide expression and the bottom ASS1 peptide expression.
L) A set of interacting peptides derived from the overlapping list of hit genes enriched in smaller cell
lines centred on BRCAL.



Supplemental figure 5: Growth signalling across cell lines
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Supplemental Figure 5: Growth signalling across cell lines: A) subset of phosphopeptides that

negatively correlate with cell size pertaining to the ‘mTOR signalling’ KEGG pathway. B) As in ‘A’,

but showing elements that positively correlate with cell size. C) Example correlation between mTOR

signalling phosphorylations and cell size.



Supplemental Figure 6: Cytoskeletal phosphorylation across cell lines
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Supplemental Figure 6: Cytoskeletal phosphorylation across cell lines: A) subset of
phosphopeptides that negatively correlate with cell size pertaining to the ‘cytoskeleton’ and
‘adhesion’ KEGG pathways. B) As in ‘A’, but showing elements that positively correlate with cell

size. C) Example correlation between cytoskeletal phosphorylations and cell size.



Guide to supplemental data files:
SD1: single cell morphological data for the original 11 cell lines.

‘SER’ are texture features reflecting the distribution of intensity of the relevant
molecule. Exp4Cam3 and Exp2Cam?2 refer to the tubulin signal, Exp3Cam2 the DNA
signal.

SD2: processed (phospho)proteomic data for the original 11 cell lines, raw datafiles
available on the PRIDE database as in text.

Pgl/4:

‘Normalised’ refers to detected counts for each protein divided by the total counts
detected for all proteins in the cell line (and scaled)

‘Scaled’ refers to normalised values scaled across cell lines such that the mean
normalised expression across lines equals ‘100’ units.

Phospho-scaled:

First green rows = expression (scaled), second mass corrected (scaled)
phosphopeptide expressions

Yellow = scaled phosphopeptide expressions

Other:

All expression data on other pages is ‘scaled’

SDa3: ontological enrichments detailed throughout the manuscript
‘expanded’ refers to the additional 12 cell lines used in the validation dataset

SD4: known effects and causative kinases of hit phosphorylation sites identified in
this analysis

SD5: processed transcriptomic data for the original 11 lines used in this analysis

SD6: processed (phospho)proteomic data for the additional validating set of 12 cell
lines

SD7: cell areas of the expanded set of 12 cell lines.
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