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Supplementary Figures

a Allele-specific CNAs b Loss-of-heterozygosity 
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Supplementary Fig. 1: Summary of CHISEL’s results across 10 single-cell datasets from 2 breast cancer patients.
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Supplementary Fig. 2: CHISEL’s results are consistent with previous analysis for «90% cells. a, In every section of patient S0, CHISEL and

Cell Ranger DNA infer approximately the same tumor purity, which is computed as the fraction of diploid cells. More specifically, a cell is defined

as diploid when the allele-specific copy numbers are equal to t1, 1u in at most 5% of the genome. b, In every cell, the difference in tumor ploidy is

computed as the relative difference between the ploidy inferred by CHISEL and Cell Ranger DNA. c, In every cell, the difference in copy numbers

is computed as the fraction of the genome with different total copy numbers inferred by CHISEL and Cell Ranger DNA.
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Supplementary Fig. 3: CHISEL infers more accurate copy numbers than previous analysis for «10% cells. a, The total copy numbers

reported in previous total copy-number analysis (left) and CHISEL (right) are reported for the 211/2053 cells in section E of patient S0 with high

difference in the inferred ploidy (ě0.2). Previous analysis infers very different genome ploidy and total copy numbers for these 211 cells, while

CHISEL infers copy numbers similar to those of the other cells in section E. Cells are thus separated into 7 groups according to the different genome

ploidy inferred in previous analysis. RDRs and BAFs are computed in either 100-200kb bins across all chromosomes when pooling the sequencing

reads from all the cells in each group. b, The RDRs and BAFs computed across all chromosomes in groups I and II are nearly identical and, hence,

do not support the different tumor ploidy inferred in previous analysis. c, BAFs of group II indicate allelic imbalance in chromosomes 1, 4, and 8,

and allelic balance in chromosomes 3, 5, and 7. In contrast, previous analysis suggests allelic balance for chromosomes 1, 4, and 8 with total copy

number 2 (i.e. allele-specific copy numbers are t1, 1u), and allelic imbalance for chromosomes 3, 5, and 7 with total copy numbers 3 (i.e. with no

potential balanced configurations of allele-specific copy numbers). d, BAFs of group III indicate the presence of both the alleles in chromosomes

1, 4, and 8 (i.e. BAF‰0 and BAF‰1), differently than chromosomes 10 and 13. In contrast, previous analysis report a total copy number 1 for

chromosomes 1, 4, and 8, which correspond to the loss of one allele. e, BAFs of group IV indicate the presence of both alleles in chromosomes

1, 2, and 8 (i.e. BAF‰0 and BAF‰1), differently than chromosomes 10 and 13. In contrast, previous analysis reports a total copy number 1 for

chromosomes 1, 2 and 8, corresponding to the loss of one allele. f, BAFs of group V indicate allelic imbalance in chromosomes 1, 2, 4, and 8. In

contrast, previous analysis reports a total copy number 2 for these chromosomes, inconsistent with any imbalanced configuration of allele-specific

copy numbers. g, BAFs of group VI indicate the presence of both alleles in chromosomes 2, 3, 4, 5 and 8 (i.e. BAF‰0 and BAF‰1). In contrast,

previous analysis reports a total copy number 1 for these chromosomes, which correspond to the loss of one allele. h, Previous analysis reports a

total copy number 0 for chromosomes 1, 2, 4, and 5, but a large number of reads is observed in these chromosomes in group VII.
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Supplementary Fig. 4: CHISEL reduces the number of outlying CNAs inferred by previous analysis. a, The total copy numbers reported in

previous total copy-number analysis (left) and CHISEL (right) are reported for all the 2053 cells (rows in the same order) in section E of patient S0.

The total copy numbers inferred in previous analysis are characterized by a high number of CNAs in small genomic regions and isolated in at most

few cells. These events are outlying and likely noisy because they are shared by at most few cells. In contrast, only a limited number of outlying

copy-number changes are present in the total copy numbers inferred by CHISEL. b, The outlying and noisy CNAs that are present in only few cells

are especially clear in the 152 cells with the highest copy number difference between CHISEL and Cell Ranger DNA.

6



Supplementary Fig. 5: CHISEL’s allele and haplotype- specific copy numbers for 2075 cells in section E of patient S0. The allele-specific,

haplotype-specific, and total copy numbers are reported in a, b, and c, respectively, across all autosomes (grey rectangles in the first row). CHISEL

groups 1448 cells into 6 clones (colors in the left-side bar) and classifies the remaining cells as noisy (grey in the left-side bar). The cells are equally

ordered in each grid by their copy-number distance; as such, noisy cells are placed next to the closest clone. The few noisy bins located right in the

centromeres of some chromosomes have been excluded as they exhibited noisy copy numbers across all cells.
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Supplementary Fig. 6: CHISEL’s allele- and haplotype-specific copy numbers for 1943 cells in section D of patient S0. The allele-specific,

haplotype-specific, and total copy numbers are reported in a, b, and c, respectively, across all autosomes (grey rectangles in the first row). CHISEL

groups 1385 cells into 5 clones (colors in the left-side bar) and classifies the remaining cells as noisy (grey in the left-side bar). The cells are equally

ordered in each grid by their copy-number distance; as such, noisy cells are placed next to the closest clone. The few noisy bins located right in the

centromeres of some chromosomes have been excluded as they exhibited noisy copy numbers across all cells.
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Supplementary Fig. 7: CHISEL’s allele- and haplotype-specific copy numbers for 1754 cells in section C of patient S0. The allele-specific,

haplotype-specific, and total copy numbers are reported in a, b, and c, respectively, across all autosomes (grey rectangles in the first row). CHISEL

groups 1259 cells into 6 clones (colors in the left-side bar) and classifies the remaining cells as noisy (grey in the left-side bar). The cells are equally

ordered in each grid by their copy-number distance; as such, noisy cells are placed next to the closest clone. The few noisy bins located right in the

centromeres of some chromosomes have been excluded as they exhibited noisy copy numbers across all cells.
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Supplementary Fig. 8: CHISEL’s allele- and haplotype-specific copy numbers for 2239 cells in section B of patient S0. The allele-specific,

haplotype-specific, and total copy numbers are reported in a, b, and c, respectively, across all autosomes (grey rectangles in the first row). CHISEL

groups 1694 cells into 6 clones (colors in the left-side bar) and classifies the remaining cells as noisy (grey in the left-side bar). The cells are equally

ordered in each grid by their copy-number distance; as such, noisy cells are placed next to the closest clone. The few noisy bins located right in the

centromeres of some chromosomes have been excluded as they exhibited noisy copy numbers across all cells.
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Supplementary Fig. 9: CHISEL’s allele- and haplotype-specific copy numbers for 2191 cells in section A of patient S0. The allele-specific,

haplotype-specific, and total copy numbers are reported in a, b, and c, respectively, across all autosomes (grey rectangles in the first row). CHISEL

groups 2008 cells into 3 clones (colors in the left-side bar) and classifies the remaining cells as noisy (grey in the left-side bar). The cells are equally

ordered in each grid by their copy-number distance; as such, noisy cells are placed next to the closest clone. The few noisy bins located right in the

centromeres of some chromosomes have been excluded as they exhibited noisy copy numbers across all cells.
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Supplementary Fig. 10: Evidence of doublets in section A1 of patient S1. a, RDRs and BAFs for all 5Mb genomic bins are reported for 3 tumor

cells in section A1 of patient S1. Two large clusters of genomic bins (green and purple arrows) have a value of BAF consistent with a LOH event

(|0.5 - BAF|«0.5), i.e. loss of one of the two alleles. b, RDRs and BAFs for all 5Mb genomic bins are reported for 3 tumor cells in section A1 of

patient S1. The BAFs of the same clusters of bins that are consistent with LOH in a have a clear shift away from |0.5 - BAF|«0.5 towards values

that indicate the presence of both the alleles, i.e. |0.5 - BAF|«0.2 and |0.5 - BAF|«0.25. All the other clusters also exhibit a similar shift in BAF.

These shifts only observed in a limited number of cells are consistent with the occurrence of doublets where a tumor cell and a normal cell have

received the same barcode and we thus observe a mixture of sequencing reads belonging to both cells.
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Supplementary Fig. 11: Allele-specific CNAs reveal two distinct clones in section E of patient S0. The clones III and IV identified by

CHISEL in section E of patient S0 and comprising 58 and 20 cells, respectively, have the same total copy number 4 in chromosomes 2 and 3.

However, while the two clones have the same allele-specific copy numbers t2, 2u (light orange) in chromosome 3, they have different allele-specific

copy numbers in chromosome 2 equal to t3, 1u (dark orange) and t2, 2u (light orange), respectively. RDRs (computed across 100kb genomic

regions) and BAFs (computed across 50kb haplotype blocks) across chromosomes 2 and 3 are computed by pooling the sequencing reads from all

cells in either clone III (left) or clone IV (right). The different allele-specific copy numbers of the two clones are well supported by RDRs and

BAFs: while all the cells in both clones have similar RDRs across chromosomes 2 and 3 as well as similar BAFs«0.5 in chromosome 3 consistent

with allele-specific copy numbers t2, 2u, the cells in clone IV have BAF«0.5 also in chromosome 2 but the cells in clone III exhibit a clear shift

away from BAF=0.5 in chromosome 2 which is consistent with allele-specific copy numbers t3, 1u.
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Supplementary Fig. 12: The RDRs and BAFs computed in pseudo-bulk samples support the mirrored-subclonal CNAs identified by

CHISEL. (Top) The copy-number tree inferred by CHISEL contains 8 distinct tumor clones (J-I, . . . , J-VIII) with the same haplotype-specific

copy numbers and varying number of cells (indicated as “#cells”). (Bottom left) The RDRs and BAFs in 5Mb genomic bins across five chro-

mosomes from a pseudo-bulk sample formed by merging all the sequencing reads from the 1823 cells in clone J-II with a resulting sequencing

coverage of «55ˆ. The genomic regions are colored according to the values of BAF (green for BAFą 0.5, black for BAF« 0.5, and pink for

BAFă 0.5). (Bottom right) The RDRs and BAFs in 5Mb genomic bins across five chromosomes from a pseudo-bulk samples formed by merging

all the sequencing reads from the 1686 cells in clone J-IV with a resulting sequencing coverage of «51ˆ. The genomic regions are colored with

the same color as in (Bottom left). Bins on chromosome 2 have the same values of RDR but swap the values of BAF between the two pseudo-bulk

samples, supporting CHISEL’s inference of a mirrored-subclonal CNA on chromosome 2 that distinguishes these two clones.
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Supplementary Fig. 13: CHISEL infers allele- and haplotype-specific copy numbers for 10 202 cells in patient S0. The allele- and haplotype-

specific copy numbers are reported in a and b, respectively, across all autosomes (grey rectangles in the first row). CHISEL groups 8 324 cells into

9 clones (colors in the left-side bar), including eight tumor clones and one diploid clone, and classifies the remaining cells as noisy (grey in the

left-side bar). The cells are equally ordered in each grid by their copy-number distance; as such, noisy cells are placed next to the closest clone. The

few noisy bins located right in the centromeres of some chromosomes have been excluded as they exhibited noisy copy numbers across all cells.
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Supplementary Fig. 14: Consensus copy numbers for the clones inferred by CHISEL and previous total copy-number analysis across all

cells of patient S0. a, Allele-specific copy numbers for the 9 clones identified by CHISEL, including the diploid clone. b, Haplotype-specific

copy numbers for the 9 clones identified by CHISEL, including the diploid clone, are represented by specifying the haplotype where the lower

allele-specific copy number is located. c, Total copy numbers for the 8 clones identified by previous total copy-number analysis, including the

diploid clone.
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Supplementary Fig. 15: Somatic SNVs support the tumor clones inferred by CHISEL in patient S0. For each tumor section of patient S0 with

high tumor purity, CHISEL infers the allele-specific copy numbers (left side) of distinct clones (rows) in 5Mb genomic bins across all autosomes

(columns). The height of each row is proportional to the number of cells in the corresponding clone (reported on the left side). The number of unique

SNVs to each clone are represented with bars whose height is proportional to the corresponding number of cells and whose width is proportional

to the corresponding number of unique SNVs. Each bar is correspondingly labelled with the number of unique SNVs. To compare the number

of unique SNVs to those expected by chance for every clone, p-values are computed using a permutation test with n “ 105 randomly sampled

subsets of cells of the same size as the considered clone and significant values (p ă 10´1) are in boldface. Nearly all tumor clones are significantly

supported by their number of unique SNVs but the diploid clone; this is expected as the normal cells in the diploid clone generally has less somatic

SNVs than tumor cells.
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Supplementary Fig. 16: Somatic SNVs support the tumor clones inferred by CHISEL in patient S1. For each single-cell dataset of patient

S1, CHISEL infers the allele-specific copy numbers (left side) of distinct clones (rows) in 5Mb bins across all autosomes (columns). The height of

each row is proportional to the number of cells in the corresponding clone (reported on the left side). The number of unique SNVs to each clone

are represented with bars whose height is proportional to the corresponding number of cells and whose width is proportional to the corresponding

number of unique SNVs. Each bar is correspondingly labelled with the number of unique SNVs. To compare the number of unique SNVs to those

expected by chance for every clone, p-values are computed using a permutation test with n “ 105 randomly sampled subsets of cells of the same

size as the considered clone and significant values (p ă 10´1) are in boldface. Nearly all tumor clones are significantly supported by their number

of unique SNVs but the diploid clone; this is expected as the normal cells in the diploid clone generally has less somatic SNVs than tumor cells.

Datasets S1-A1, S1-A2, and S1-A3 as well as datasets S1-B1 and S1-B2 corresponds to technical replicates of the same tumor sample, and their

similarities support the corresponding results.
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Supplementary Fig. 17: Observed VAF of somatic SNVs is consistent with CHISEL tree. The variant-allele frequency (VAF) is computed

across all cells of patient S0 as the fraction of variant sequencing reads covering each of the 10 551 SNVs present in the tumor clones identified

by CHISEL. Moreover, the SNVs are partitioned by CHISEL into 4 classes: clonal SNVs (black) that are present in all tumor clones, subclonal

SNVs that are unique to either the left (green) or right (blue) branch of the CHISEL tree, and low prevalence SNVs which are identified as potential

false positives. Since tumor purity is «50% across all cells of patient S0, the expected VAF for clonal SNVs not affected by further CNAs but

the WGD (i.e. with allele-specific copy numbers t2, 2u) is «0.33 when occurred before WGD (Pre WGD) because 2 copies are mutated over 4 in

«50% of tumor cells and the remaining «50% are normal cells with no copies mutated over 2. The expected VAF for clonal SNVs not affected

by further CNAs but the WGD is «0.167 when occurred after WGD (Post WGD) because 1 copy is mutated over 4 in «50% of tumor cells and

the remaining «50% are normal cells with no copies mutated over 2. In accordance with CHISEL’s classification of SNVs, only clonal SNVs

have expected values of VAF for mutations occurred before WGD. In addition, all the subclonal SNVs have values of VAF expected after WGD or

lower, in accordance with the two branches of the CHISEL tree that separate after the occurrence of the clonal WGD. Note that some clonal SNVs

have values of VAF«0.2 due to CNAs; in fact, both SNVs occurring after WGD and before WGD have expected VAF of«0.2 in genomic regions

affected by a deletion after WGD (i.e. with allele-specific copy numbers t2, 1u) and deleting one mutated copy in case the SNV occurred before

WGD, because in both cases 1 copy is mutated over 3 in the 50% of tumor cells and the remaining «50% are normal cells with no copies mutated

over 2. Also, the low prevalence SNVs have very low values of VAF, underscoring their classification.
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Supplementary Fig. 18: CHISEL identifies allele-specific CNAs in DOP-PCR sequencing data of 89 breast cancer cells. a, Total copy

numbers inferred by CHISEL in DOP-PCR sequencing data of 89 single cells from breast cancer patient P2 in Kim et al. (2018)1. CHISEL

identified two distinct clones, in agreement with the published analysis. b, Consensus total copy numbers inferred by CHISEL using all the cells

that were identified in the same clone. c, Allele-specific copy numbers inferred by CHISEL from the sequencing data of the same 89 cells. d,

Consensus allele-specific copy numbers inferred by CHISEL using all the cells that were identified in the same clone. The tumor clone (green)

is characterized by extensive allele-specific CNAs, including copy-neutral LOHs (dark grey genomic regions) and others (e.g. yellow regions on

chromosomes 3 and 13 with allele-specific copy numbers t3, 0u).

20



Supplementary Fig. 19: CCF analysis of somatic SNVs in two high-coverage pseudo bulk-tumor samples reveal additional intra-tumor

heterogeneity. (Top) The copy-number tree inferred by CHISEL contains 8 distinct tumor clones (J-I, . . . , J-VIII) with the same haplotype-

specific copy numbers and varying number of cells (indicated as “#cells”). (Bottom left) The cancer-cell fractions (CCFs) of 515 somatic single-

nucleotide mutations (SNVs) unique to clone J-II are computed using an existing method2 from a pseudo-bulk sample formed by pooling all

reads from single cells in clone J-II, resulting in a sequencing coverage «55ˆ. (Bottom right) The CCFs of 1712 SNVs unique to clone J-IV

are computed from a pseudo bulk-tumor sample formed by pooling all reads from single cells in clone J-IV, resulting in a sequencing coverage

«51ˆ. (Bottom) Many SNVs have CCF“ 1 indicating presence in all cells of either clone J-II or J-IV, but there are also a large number of

SNVs with CCFă 1 indicating groups of cells with distinct complements of SNVs.
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Supplementary Fig. 20: Probability of identifying allelic imbalance in a single cell as a function of bin length and sequencing coverage per

cell. The probability of distinguishing bins with different allele-specific copy-numbers of t3, 3u and t4, 2u in single cells for various bin lengths

and sequencing coverages per cell is computed analytically. 5Mb genomic bins give a probability >95% (white rectangle) when the sequencing

coverage per cell is 0.025ˆ.
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Supplementary Fig. 21: GC bias in RDRs estimated by CHISEL with a matched-normal sample. Read-depth ratios (RDRs) as a function of

GC content in 5Mb genomic bins (points) across all 1448 cells from section E of breast cancer patient S0 (left) and across four individual cells,

including two tumor cells (top right) and two diploid cells (bottom right). A linear regression (red line) and 95% confidence interval (shaded area)

indicate that RDRs show little apparent GC bias.
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Supplementary Fig. 22: Probability of correctly phasing haplotype blocks within a 5Mb genomic bin with allelic imbalance (BAF=0.48 vs.

BAF=0.52) as a function of block length and total sequencing coverage. The probability of correctly phasing haplotype blocks across cells for

various haplotype-block lengths and total sequencing coverages (i.e. the product of number of cells and sequencing coverage per cell) is computed

analytically. 50kb haplotype blocks give a probability >95% (white rectangle) when the total sequencing coverage across all cells is 50ˆ.
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Supplementary Fig. 23: Error in the estimation of minor-allele proportion as function of the length of haplotype blocks and the length of

genomic bins. The maximum error (left) and average error (right) is computed over 100 random samples. For each combination of lengths of

haplotype blocks and genomic bins, the error is calculated for 2000 single cells with a sequencing coverage 0.03ˆ per cell. The maximum and

average errors are low (<0.005 and <0.002, respectively) using 50kb of haplotype blocks and 5Mb of genomic bins (white rectangles).
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Supplementary Fig. 24: CHISEL accurately infers the minor-allele proportion of a genomic bin across cells. Alternate and total read counts

Vp, Tp across cells are simulated for 200 haplotype blocks p assuming that the alternate reads belongs to the minor/major allele (magenta/green

color) in 50%/50% of the blocks and varying the block length (50kb or 100kb), the total sequencing coverage (across all cells with 30X, 45X, and

60X), and the minor-allele proportion λ (0.46, 0.48, and 0.5). CHISEL accurately estimates the value Y (blue arrow) of λ in every case. Assuming

allelic balance (i.e. λ “ 0.5), a 95% confidence interval (CI) for Y (black dashed lines) is computed with a bootstrapping approach (n “ 400).

The estimated Y is correctly within CI only when λ “ 0.5. Thus, CHISEL can accurately infer the haplotypes for all cases but those with λ “ 0.5

by consistently assigning the lower/major counts to the same haplotype, since Vp{Tp ď 0.5 for almost every block p whose count Vp is from the

minor allele (i.e. magenta).
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Supplementary Fig. 25: CHISEL’s global clustering outperforms local clustering from an HMM in estimating allele-specific copy numbers.

a, Allele-specific copy numbers inferred by CHISEL (top) or an HMM (bottom) on a random sample of 500 cells from the breast cancer patient S0

that were identified as belonging to the same clone, whose consensus profile is shown (middle). b, The error rate for CHISEL ’s global clustering

(x-axis) and the HMM (y-axis) for each 5Mb genomic bin (point) along the entire genome. The error rate of the HMM is higher (above diagonal)

than the error rate of CHISEL for 502/539 genomic bins (shaded area represents a Gaussian kernel-density estimation). c, The average error rates

of CHISEL (blue) and the HMM (red) across the genome as a function of the number of subsampled cells. Each bar indicates the standard error of

the mean over 200 subsampled datasets. d, The average error rates of CHISEL (blue) and the HMM (red) across the genome as a function of the

number of genomic bins. Each bar indicates the standard error of the mean over 200 subsampled datasets.
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Supplementary Fig. 26: CHISEL infers haplotype-specific copy numbers by modelling CNA evolution. Allele-specific copy numbers (top)

are inferred for n cells (rows) in 5 distinct genomic regions (columns) across three chromosomes (grey rectangles in the first row). Cells are grouped

into three distinct subpopulations (red, blue, and gray) with different allele-specific copy numbers. In the two regions t, l of the second chromosome,

red cells have allele-specific copy numbers t2, 1u and t2, 2u, blue cells have t2, 1u in both regions, and gray cells have t1, 1u in both regions. Since

red cells have BAFs yt,1 “ 0.33 and yl,1 “ 0.5, the minor allele Mt has copy numbers ct,1 “ 1 and cl,1 “ 2 in these cells. Since blue cells

have BAFs yt,2 “ 0.67 and yl,2 “ 0.33, the minor allele Mt has copy numbers ct,2 “ 2 and cl,2 “ 1 in these cells. Thus, there are 2 distinct

ways of phasing the allele-specific copy numbers of t, l into haplotype-specific copy numbers. (Right) The first phasing places Mt and Ml on the

same haplotype A (i.e.Ht “ A andHl “ A), resulting in t and l having different haplotype-specific copy numbers in the blue cells, i.e. p2, 1q and

p1, 2q, respectively. When a WGD occurs, this phasing results in an evolutionary scenario composed of three deletions: one deletion affects t in the

red cells and the other two deletions affect t and l in the blue cells on two distinct haplotypes. (Left) The second phasing places Mt and Ml on the

two different haplotypes B and A, respectively (i.e. Ht “ B and Hl “ A), resulting in t and l having the same haplotype-specific copy numbers

p1, 2q in the blue cells. When a WGD occurs, this phasing results in an evolutionary scenario composed of two deletions: one deletion affecting

t in the red cells, as before, and the other affecting both t and l in the blue cells on the same haplotype. Under a principle of parsimony, CHISEL

chooses the left evolutionary scenario with the minimum number of CNAs and infers the corresponding haplotype-specific copy numbers (bottom).

Interestingly, the first and less likely scenario is chosen when assuming that the minor alleles Mt and Ml (i.e. those with less copies across all cells)

are located on the same haplotype (i.e. Ht “ A and Hl “ A). This happens because Mt,Mt are defined across all cells, therefore Mt is the allele

with fewer copies in the red cells since there are more red then blue cells, while Ml is the allele with fewer copies in the blue cells.
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Supplementary Fig. 27: CHISEL accurately recovers clones containing as few as 10-20 cells. CHISEL was run on datasets obtained by

subsampling cells from each clone in each tumor section. Recall (y-axis on left-side plots) and precision (y-axis on right-side plots) were recorded

over n “ 100 independent samples (dots indicate the mean and bars indicate the standard deviations) for each subsampled clone (different color in

each distinct section) and for varying numbers of subsampled cells (x-axis).
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Supplementary Fig. 28: Accurate identification of diploid cells from the counts of aligned sequencing reads. Precision, recall, and accuracy

are computed in every tumor section of patient S0 for the diploid cells identified by the method designed to form a pseudo matched-normal sample.

This method identifies diploid cells only using the counts of aligned sequencing reads and it has been applied with a threshold of 90% on the fraction

of the genome with potential total copy number equal to 2. The true diploid cells have been defined as those inferred with total copy numbers 2 by

previous total copy-number analysis and with allele-specific copy numbers t1, 1u by CHISEL.

30



Supplementary Results

1 Comparison of the total copy numbers inferred by CHISEL with previous analysis

We compared the total copy numbers inferred by CHISEL for all cells in section E of patient S0 with those reported

in previous total copy-number analysis3. More specifically, previous analysis used Cell Ranger DNA4 to infer total

copy numbers and showed that its results were consistent5 with Ginkgo6, another state-of-the-art method for inferring

total copy numbers from single-cell DNA sequencing data. We observed that CHISEL and Cell Ranger DNA infer

similar tumor purity, genome ploidy, and total copy numbers for the «90% of cell across all sections of patient S0

(Supplementary Fig. 2a-c). However, CHISEL infers more accurate total copy numbers than Cell Ranger DNA for

the remaining «10% of cells (Supplementary Fig. 3) and with less outlying and noisy CNAs (Supplementary Fig. 4).

The higher accuracy of the copy numbers inferred by CHISEL is directly related to the novel key features of CHISEL

described in Methods. First, the more accurate total copy numbers inferred by CHISEL reflect the advantages of the

constrained and probabilistic approach that jointly infers the scale factor γ and the allele-specific copy numbers by

integrating BAFs. In contrast, the different genome ploidies inferred by Cell Ranger DNA across different subpop-

ulations of cells reflect the issues in inferring the ploidy and the related total copy numbers among a large number

of feasible solutions without considering BAFs. Second, the fewer outlying and noisy CNAs inferred by CHISEL

reflect the advantages of the global clustering of RDRs and BAFs across all genomic bins, which leverages the shared

evolutionary process among the cells. In contrast, the isolated and small CNAs inferred by Cell Ranger DNA reflect

the issues of the standard local clustering in identifying genomic bins with the same copy numbers through local

segmentation of genomic bins.

2 Analysis of DOP-PCR single-cell DNA sequencing data with CHISEL

We applied CHISEL to a DOP-PCR7 single-cell sequencing dataset comprising 89 cells from breast cancer patient

P2 in Kim et al. (2018)1 with an average coverage of «0.24ˆ per cell. We performed this analysis to investigate

the performance of CHISEL on a single-cell dataset with a very different trade-off between the number of sequenced

cells (i.e. 89 vs. «2 000) and sequencing coverage per cell (i.e. «0.24ˆ vs. ă0.03ˆ) compared to the 10X Genomics

CNV datasets analyzed in this work. Since a matched-normal sample was not available, we used the method that we

have specifically introduced to form a pseudo matched-normal sample by extracting diploid cells. Due to the very

low number of cells, the resulting pseudo matched-normal sample had a relatively low sequencing coverage of «9ˆ,

which limited the number of heterozygous germline SNPs that we could identify and phase. This issue resulted in

noisy and high variable signals from DNA sequencing data, in addition to the high noise that has been already noted

in the previous analysis1. As such, we applied CHISEL using default parameters but using a modification of the BIC

model that more stringently penalizes solutions with more free parameters, using an additional factor γ “ 6 similar to

previous studies8, 9 in order to deal with the high-variability and noise of this dataset.

CHISEL identified the presence of a diploid clone and a tumor clone whose total copy numbers were largely in

agreement with the published analysis1 of the same 89 cells (Supplementary Fig. 18a-b). However, CHISEL also
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computed allele-specific CNAs (Supplementary Fig. 18c-d) revealing large regions of 11 chromosomes with copy-

neutral loss of heterozygosity (LOH) which were erroneously classified as normal diploid regions in the published

analysis1. For example, CHISEL found a copy-neutral LOH on chromosome 13 which affects BRCA2 and RB1, genes

implicated in breast cancer10.

3 Comparison of global and local clustering with varying numbers of cells and bins

We compared the performance of the global clustering method used by CHISEL with an Hidden Markov Model

(HMM) local method on a large number of subsampled datasets with varying number of cells or varying number of

bins. In particular, we used TITAN11, a method that uses an HMM to infer CNAs from jointly RDRs and BAFs.

TITAN is commonly applied to bulk tumor samples, and to perform an appropriate comparison we applied TITAN

to single cells in single genome mode (i.e. limiting to the presence of a single genome and fixing the tumor purity

to be 100%) and also fixing the tumor ploidy to the same value inferred by CHISEL. Note that a slight variation of

the same HMM method has been previously used to infer total copy numbers from RDRs in low-coverage single-cell

sequencing data12, 13. We generated «2 000 datasets by subsampling either a varying number of cells between 1 and

1 000 or a varying number of genomic bins between 1 and 500. We applied both the global clustering of CHISEL and

the local HMM method of TITAN to each of these datasets. Since the two methods inferred very similar allele-specific

copy numbers (i.e. in most of the cells the differences affected <10% of the genome) and indicated the presence of the

same clones, we used the allele-specific copy numbers of these clones as ground truth. We compute the error rate for

every genomic bin as the fraction of cells with different allele-specific copy numbers in the bin.

We observed that CHISEL’s global clustering identifies allele-specific copy numbers with a substantially lower

error rate than the HMM method (Supplementary Fig. 25a). Specifically, the HMM has an error rate that is 2-fold

higher than CHISEL’s global clustering method in >93% of genomic regions (Supplementary Fig. 25b). The error

rate of the HMM is constant with increasing cell number, as the HMM does not use information from multiple cells.

In contrast, the error rate of CHISEL’s global clustering decreases steadily with increasing number of cells, and is

>2-fold lower than the HMM with >5 cells (Supplementary Fig. 25c). These results confirm that the global clustering

is able to leverage the shared information across multiple cells to accurately infer allele-specific copy numbers from

the RDRs and BAFs of single cells. In addition, the error in CHISEL’s global clustering is consistently lower than

the error of the HMM when the number of bins is varied; in contrast, the HMM’s error increases dramatically as the

number of bins in decreased (Supplementary Fig. 25d).

4 Forming a pseudo matched-normal sample from read counts of single cells

We integrated in CHISEL a method to identify diploid cells only from the numbers of sequencing reads aligned to

genomic bins. The CHISEL’s analysis of allele- and haplotype-specific copy numbers uses a matched-normal sample

for two specific steps in the computation of RDRs and BAFs: (1) normalization of read counts to correct for mapping

and other biases; (2) identification of heterozygous germline SNPs for obtaining haplotype blocks through reference-
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based phasing algorithms. As a matched-normal sample may be unavailable in certain cases, this integrated method

can be used to identify diploid cells and we can thus pool the corresponding sequencing reads to form a pseudo

matched-normal sample; the details of the methods are reported in Supplementary Note 10. To assess the accuracy in

the identification of diploid cells, we applied this method on all the tumor sections of patient S0 by only considering

the number of aligned sequencing reads. Since this integrated method is independent from the allele- and haplotype-

specific analysis of CHISEL, we use the diploid clone identified by CHISEL and the one identified in previous total

copy number analysis as the ground truth. Therefore, we observed that the integrated method of CHISEL enables the

accurate identification of diploid cells only from the counts of aligned sequencing reads (Supplementary Fig. 28).
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Supplementary Methods

1 Computation of read-depth ratio

CHISEL partitions the reference genome into fixed-size bins; note that breakpoints are thus inferred only at the bin

level when two neighboring bins are inferred with different haplotype-specific copy numbers. As such, CHISEL infers

the read-depth ratio (RDR) xt,i of every bin t in cell i from the corresponding DNA sequencing data. Suppose we

sequence Tt,i reads aligned to t from i and T̆t reads aligned to t from a matched-normal sample. Similarly to existing

CNA methods for bulk sequencing9, 14–19, we normalize Tt,i using T̆t to correct for mapping biases, for example due

to GC content and low mappability, and to account for potential differences in the length of the bins as well as for the

presence of germline copy-number variations in the normal genome. Moreover, we observe that the total number of

reads substantially vary across different cells and, thus, we further normalize the read counts by the total number of

reads Ri, R̆ obtained from i and from the matched-normal sample, respectively. As such, we compute the RDR xt,i

as follows

xt,i “
Tt,i

T̆t

R̆

Ri
(5)

On the 10 single-cell sequencing datasets, we observed that such estimated RDRs do not exhibit GC bias (Supplemen-

tary Fig. 21). CHISEL provides to the user the option of further applying a correction for GC bias using a LOWESS

function as in existing single-cell methods6, 12, especially when a matched-normal sample is not available.

2 Selecting the lengths of genomic bins and haplotype blocks

The selection of appropriate lengths for genomic bins and haplotype blocks depends on the sequencing coverage of

individual cells and the total sequencing coverage across all cells. We use a probabilistic model to select these lengths,

which we describe below. For the 10X Chromium single-cell datasets analyzed in this paper, we show that genomic

bins of length 5Mb and haplotype blocks of length 50kb give high probabilities of identifying allelic imbalance and

correcting phasing haplotype blocks within a bin. The probabilistic model is available in the CHISEL software and can

be used to choose the lengths of genomic bins and haplotype blocks in datasets with different sequencing coverages.

We select the length of the genomic bins used in CHISEL so that the estimated BAFs have a high probability of

distinguishing allele-specific CNAs in individual cells with the same total copy numbers but different allele-specific

copy numbers; e.g. t3, 3u vs. t4, 2u. Thus, the choice of the length of genomic bins is related to the sequencing

coverage per cell, since CHISEL estimates the BAF yt,i of a genomic bin t in each cell i by using the sequencing

reads that cover all the SNPs within bin t in cell i. We calculate this probability as follows. First, given the sequencing

coverage per cell, we estimate the expected number of reads from a single cell that cover heterozygous germline SNPs

in a genomic bin under the assumption that the «1.6 million heterozygous germline SNPs that can be reliably phased

with current reference-based phasing methods20, 21 are uniformly distributed along the genome. Next, using a binomial

model similar to Eq. (7), we compute the probability PpVt,i ą Vl,iq of distinguishing the minor-allele read counts

Vt,i ,Vl,i from two bins t, l with allele-specific copy numbers t3, 3u and t4, 2u. We chose t3, 3u and t4, 2u because
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these are the most difficult allele-specific copy numbers to distinguish (i.e. smallest difference in allelic proportions)

for the most frequent values of total copy numbers (i.e. ď6)22. We found that with average coverage of 0.025ˆ

per cell (typical coverage for 10X Genomics CNV solution) 5Mb bins provide BAF estimates that allow CHISEL

to accurately distinguish allele-specific CNAs in individual cells, while smaller bin sizes (<1Mb) are reasonable if

sequencing coverage per cell is 5-fold higher (Supplementary Fig. 20).

We select the length of haplotype blocks used in CHISEL so that there is a high probability of correctly phasing

haplotype blocks within a bin. Thus, the choice of the length of haplotype blocks is related to the total sequencing

coverage across all cells, since CHISEL phases haplotype blocks according to the difference in allelic proportions

across all cells. Thus, the length of haplotype blocks is related to the number of reads covering germline SNPs in each

block that are required to distinguish small differences in proportions of the two alleles (e.g. 0.48 vs. 0.52). CHISEL

phases the haplotype blocks using the idea that the lower (respectively higher) read counts belong to the same allele

when there is allelic imbalance (first step of CHISEL). Thus, we estimate the total number of reads in each block as

above and use a binomial model for the numbers V 1, V 2 of reads that belong to the allele with proportion p and the

other allele with proportion 1´p, respectively. Assuming p ą 1´pwithout loss of generality, we analytically compute

the probability PpV 1 ą V 2q for different total sequencing coverages across all cells and various block lengths. We

found with a total sequencing coverage of 50ˆ across cells (the coverage for the datasets from the 10X Genomics

CNV Solution that we analyzed in the manuscript) haplotype blocks of length of 50kb have a probability ą95% of

correct phasing when the proportions of the two haplotypes are 0.48 and 0.52 (Supplementary Fig. 22).

An additional criterion affecting the choice of lengths of genomic bins and haplotype blocks is the accuracy in the

estimation of the minor-allele proportion across all cells (the first step of CHISEL). Thus, we estimated the error in

the CHISEL’s estimation of the minor-allele proportion for different lengths of genomic bins and haplotype blocks.

Specifically, we simulated read counts from the two alleles using a binomial model with allelic proportion 0.5 (since

this is the most difficult value to estimate) with number of trials equal to the expected number of reads on real data

for each choice of lengths of genomic bins and haplotype blocks. We used CHISEL’s EM algorithm to estimate the

allelic proportion for these simulated read counts and computed the error in the estimated allelic proportion for each

simulation, as well as the maximum and average error observed over 100 simulations. We found that 5Mb bins and

50kb haplotype blocks yielded low maximum and average errors for the sequencing coverages of the datasets in this

work (Supplementary Fig. 23).

3 Expectation-maximization algorithm to estimate the minor-allele proportion across cells

We designed an expectation-maximization (EM) algorithm23 to compute the maximum-likelihood estimation (MLE)

Yt of the proportion λt of copies of the minor allele Mt for a bin t across all cells. According to the definitions in

Methods, the minor allele Mt is the allele of t with fewer copies across all cells such that 0.0 ď λt ď 0.5 (and

0.0 ď Yt ď 0.5) and ct,i is the copy number of Mt in cell i. Therefore, λt is the fraction of ct,i across every cell i, i.e.

λt “
ř

i ct,i
ř

i ct,i
where ct,i is the total copy number of t in i. First we describe the model and problem formulation, and

next we describe the EM algorithm with the two composing steps.
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We observe the number of sequencing reads covering k blocks of a bin t. Each block is composed of two sequences

of nucleotides at consecutive SNPs called the reference and alternate sequences, with each sequence located on a

different allele of t. As such, we observe in each block p the total number Tp of reads covering block p across all cells

and the corresponding number Vp of reads only covering the alternate sequence of p across all cells. More specifically,

these read counts are obtained by pooling the corresponding sequencing reads from all cells with Tp “
ř

i Tp,i and

Vp “
ř

i Vp,i since the reference and alternate sequences of p are defined uniquely across all cells. We do not know

whether the alternate sequence of p is located on either Mt or the other allele of t and we represent the two possibilities

with the phase hp as follows

hp “

$

’

&

’

%

1 if the alternate sequence of p belongs to Mt

0 otherwise
(6)

Assuming reads are sequenced uniformly, every read sequenced from t and from all the cells has a probability of

covering the alternate sequence of p equal to λt if hp “ 1 and equal to 1 ´ λt if hp “ 0. Therefore, we model the

alternate-specific number Vp of reads for every block p as the following binomial distribution

Vp „

$

’

&

’

%

BinompTp, λtq if hp “ 1

BinompTp, 1´ λtq if hp “ 0

(7)

When observing the total number Tp “ τp and the alternate-specific number Vp “ νp of reads, we aim to infer the

MLE Yt of λt. For simplicity, we denote all the observations pT1 “ τ1, . . . , Tk “ τkq by T and all the observations

pV1 “ ν1, . . . , Vk “ νkq by V. We thus aim to solve the following problem.

Problem 1. Given the observed total and alternate-specific numbers T,V of reads for all blocks in the same bin t,

find the MLE Yt of λt, i.e.

Yt “ argmax
Y t

PrpV | λt “ Y t,Tq (8)

To solve Problem 1, we designed an EM algorithm which corresponds to an iterative algorithm: every iteration

r aims to find an estimation Y pr`1q
t of λt by computing a lower bound of the likelihood in Eq. (8) from a previous

estimation Y prqt and the complete likelihood PrpV,h | λt “ Yt,Tq, where the phases h “ ph1, . . . , hkq are the latent

variables. In fact, we can easily compute the complete likelihood PrpVp “ νp, hp | λt “ Yt, Tp “ τpq of every block

p from the model in Eq. (7) as follows

PrpVp “ νp, hp | λt “ Yt, Tp “ τpq “
ˆ

Prphp “ 1q

ˆ

τp
νp

˙

Y
νp
t p1´ Ytq

τp´νp

˙hp
ˆ

Prphp “ 0q

ˆ

τp
νp

˙

p1´ Ytq
νpY

τp´νp
t

˙1´hp (9)

As such, the iterations start with a random value Y p0qt and end at convergence. In particular, every iteration is composed

of two steps, the E-step and the M-step, and we use a large number (ą 400) of random restarts to deal with local optima,

such that Yt is chosen has the estimation with highest likelihood among all restarts. In the following two subsections

we describe the E-step and the M-step of the algorithm.
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3.1 Expectation in the E-step

The E-step aims to compute a function grpYt | Y
prq
t q as the expected value of the complete log-likelihood with respect

to the phases h, given the current value Y prqt and the observations V,T, i.e

grpYt | Y
prq
t q “ E

h|Y
prq
t ,V,T

rlog PrpV,h | λt “ Yt,Tqs (10)

The resulting function gtpYt | Y
prq
t q thus provides a lower bound for the objective function in Eq. (8)23.

We first compute a closed formula for the complete log-likelihood log PrpV,h | λt “ Yt,Tq. In particular, we

observe that the alternate-specific numbers V1, . . . , Vk of reads are stochastically independent by the model in Eq. (7)

when Yt is given. As such, assuming that Prphp “ 1q “ Prphp “ 0q “ 0.5 for every block p, we have the following

log PrpV,h | λt “ Yt,Tq “

log
ź

p

PrpVp “ νp, hp | λt “ Yt,Tq “

ÿ

p

log

˜

ˆ

0.5

ˆ

τp
νp

˙

Y
νp
t p1´ Ytq

τp´νp

˙hp
ˆ

0.5

ˆ

τp
νp

˙

p1´ Ytq
νpY

τp´νp
t

˙1´hp
¸

“

ÿ

p

hp

ˆ

log 0.5` log

ˆ

τp
νp

˙

` νp log Yt ` pτp ´ νpq logp1´ Ytq

˙

`
ÿ

p

p1´ hpq

ˆ

log 0.5` log

ˆ

τp
νp

˙

` νp logp1´ Ytq ` pτp ´ νpq log Yt

˙

(11)

Next, we derive the function grpYt | Y
prq
t q as the expected value of Eq. (11) with respect to the phases h, given the

current value Y prqt and the observations V,T, i.e.

grpYt | Y
prq
t q “

E
h|Y

prq
t ,V,T

rlog PrpV,h | λt “ Yt,Tqs “

E
h|Y

prq
t ,V,T

»

—

—

—

—

–

ÿ

p

hp

ˆ

log 0.5` log

ˆ

τp
νp

˙

` νp log Yt ` pτp ´ νpq logp1´ Ytq

˙

`
ÿ

p

p1´ hpq

ˆ

log 0.5` log

ˆ

τp
νp

˙

` νp logp1´ Ytq ` pτp ´ νpq log Yt

˙

fi

ffi

ffi

ffi

ffi

fl

“

ÿ

p

E
h|Y

prq
t ,V,T

rhps

ˆ

log 0.5` log

ˆ

τp
νp

˙

` νp log Yt ` pτp ´ νpq logp1´ Ytq

˙

`
ÿ

p

p1´ E
h|Y

prq
t ,V,T

rhpsq

ˆ

log 0.5` log

ˆ

τp
νp

˙

` νp logp1´ Ytq ` pτp ´ νpq log Yt

˙

(12)

To conclude the derivation of function grpYt | Y
prq
t q, we last need to compute the expected value of the phase hp

for every block p. We do this by applying the Bayes’s theorem given the current value Y prqt and the observations V,T
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as follows

E
h|Y

prq
t ,V,T

rhps “

Prphp “ 1 | Vp “ νp, Y
prq
t q “

PrpVp “ νp | Y
prq
t , hp “ 1q0.5

PrpVp “ νp | Y
prq
t , hp “ 0q0.5` PrpVp “ νp | Y

prq
t , hp “ 1q0.5

“

`

τp
νp

˘

pY
prq
t qνpp1´ Y

prq
t qτp´νp

`

τp
νp

˘

p1´ Y
prq
t qνppY

prq
t qτp´νp `

`

τp
νp

˘

pY
prq
t qνpp1´ Y

prq
t qτp´νp

“

pY
prq
t qνpp1´ Y

prq
t qτp´νp

p1´ Y
prq
t qνppY

prq
t qτp´νp ` pY

prq
t qνpp1´ Y

prq
t qτp´νp

(13)

To avoid numerical precision loss in the computation, we specifically compute Eq. (13) in the following equivalent

function

pY
prq
t qνpp1´ Y

prq
t qτp´νp

p1´ Y
prq
t qνppY

prq
t qτp´νp ` pY

prq
t qνpp1´ Y

prq
t qτp´νp

“

1

1` pY
prq
t qτp´2νpp1´ Y

prq
t q´pτp´2νpq

“

1

1` epτp´2νpq lnY
prq
t ´pτp´2νpq lnp1´Y

prq
t q

(14)

3.2 Maximization in the M-step

The M-step aims to find the new value Y pr`1q
t of Yt which maximizes the function grpYt | Y

prq
t q given the previous

Y
prq
t , i.e.

Y
pr`1q
t “ argmax

Yt

grpYt | Y
prq
t q (15)

The function grpYt | Y
prq
t q is defined by combining Eq. (12) and Eq. (13), and for simplicity we denote by zp the

value of Eq. (13) computed as in Eq. (14) for every block p. As such, we aim to find Y pr`1q
t as the value of Yt which

maximizes the following function

fpYtq “
ÿ

p

zp

ˆ

log 0.5` log

ˆ

τp
νp

˙

` νp log Yt ` pτp ´ νpq logp1´ Ytq

˙

`
ÿ

p

p1´ zpq
ˆ

log 0.5` log

ˆ

τp
νp

˙

` νp logp1´ Ytq ` pτp ´ νpq log Yt

˙ (16)

To do this, we first compute the derivative of the function fpYtq in Eq. (16) and, next, we find the value Y pr`1q
t for

which the derivative is equal to zero.
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First, we compute the derivative of the function fpYtq in Eq. (16) as follows

df

dYt
“
ÿ

p

zp

ˆ

νp
Yt
´
τp ´ νp
1´ Yt

˙

`
ÿ

p

p1´ zpq
ˆ

´
νp

1´ Yt
`
τp ´ νp
Yt

˙

“
ÿ

p

zpνp
Yt

´
zpτp ´ zpνp

1´ Yt
´

νp
1´ Yt

`
τp ´ νp
Yt

`
zpνp

1´ Yt
´

zpτp ´ zpνp
Yt

“
ÿ

p

2zpνp ` τp ´ νp ´ zpτp
Yt

´
ÿ

p

zpτp ` νp ´ 2zpνp
1´ Yt

“

ř

p 2zpνp ` τp ´ νp ´ zpτp
Yt

´

ř

p zpτp ` νp ´ 2zpνp
1´ Yt

“
α

Yt
´

γ

1´ Yt

(17)

where we define α “
ř

p 2zpνp ` τp ´ νp ´ zpτp and γ “
ř

p zpτp ` νp ´ 2zpνp, for simplicity.

We now compute the value of Y pr`1q
t which maximizes the function fpYtq in Eq. (16) and thus dfpY

pr`1q
t q

dYt
“ 0,

where the derivative of fpYtq is the one derived in Eq. (17). We assume that Yt ‰ 0 and Yt ‰ 1 as those cases can be

easily identified when we observe νp “ 0 or νp “ τp for every block p in t. As such we compute the value Y pr`1q
t

which satisfies the following equation

α

Y
pr`1q
t

´
γ

1´ Y
pr`1q
t

“ 0

α´ αY
pr`1q
t ` γY

pr`1q
t

Y
pr`1q
t p1´ Y

pr`1q
t q

“ 0

α´ pα` γqY
pr`1q
t “ 0

Y
pr`1q
t “

α

α` γ

(18)

We substitute α, γ with their actual values, and we obtain the following unique value for Y pr`1q
t

Y
pr`1q
t “

α

α` γ

Y
pr`1q
t “

ř

p 2zpνp ` τp ´ νp ´ zpτp
ř

p 2zpνp ` τp ´ νp ´ zpτp ` zpτp ` νp ´ 2zpνp

Y
pr`1q
t “

ř

p τpp1´ zpq ` νpp2zp ´ 1q
ř

p τp

(19)

4 Phasing haplotype blocks

We seek phases h1, . . . , hk of all k blocks within a bin t such that the corresponding BAF yt,i computed as

yt,i “

řk
p“1 hpVp,i ` p1´ hpqpTp,i ´ Vp,iq

řk
p“1 Tp,i

. (20)

provides an accurate estimation of ct,ict,i
(see Eq. (1) in Methods). Remember that ct,i is the copy number of the minor

allele Mt in cell i and is thus equal to one of the two corresponding allele-specific copy numbers, i.e. ct,i “ pct,i or

ct,i “ qct,i. In particular, we phase the blocks by using the proportion Yt P r0, 0.5s of Mt estimated in Supplementary

Methods 3. As in the previous sections, we observe the total number Tp of reads covering block p across all cells and
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the corresponding number Vp of reads only covering the alternate sequence of p across all cells. As such, we compute

the phases h1, . . . , hk differently when Yt ff 0.5 or Yt « 0.5, which correspondingly indicate the presence of allelic

imbalance or balance. The power to distinguish these two cases with the proportion Yt inferred by the EM algorithm

depends on the total read counts T1, . . . , Tk. While most of the bins contain sufficiently high read counts to distinguish

the two values accurately, there are few exceptions in genomic regions with a lower density of SNPs. As such, we

choose for each bin independently a threshold to confidently distinguish the two values. More specifically, we compute

a 95% confidence interval by bootstrapping and we observe from simulations the ability to accurately distinguish the

two cases when considering the read counts along each block and across all cells (Supplementary Fig. 24).

Allelic imbalance across cells When Yt ff 0.5, we aim to infer the maximum-likelihood estimate ĥp of the phase

hp of every block p given the observed total numbers T “ pT1 “ τ1, . . . , Tk “ τkq of reads, the observed alternate-

specific numbers V “ pV1 “ ν1, . . . , Vk “ νkq of reads, and the minor-allele proportion Yt P r0, 0.5s. For simplicity

we denote by h “ ph1, . . . , hkq the phases of all k blocks. In the following theorem, we show that the phases obtained

by consistently assigning the lower (respectively higher) read counts of all the k blocks to the same allele provide a

maximum likelihood estimate for the phases h.

Theorem 1. Given the total and alternate-specific numbers T,V of reads, the values ĥ defined as follows

@p, either ĥp “

$

’

&

’

%

1 if 2Xp ď Np

0 otherwise
or ĥp “

$

’

&

’

%

1 if 2Xp ą Np

0 otherwise
(21)

provide a maximum likelihood estimation of the phases h such that

log PrpV | ĥ,T, Ytq ě argmax
h

log PrpV | h,T, Ytq (22)

for any value of the minor-allele proportion Yt P r0, 0.5s.

Proof. By contradiction, we assume there exist phases h̃ different from the one described in Theorem 1, i.e. h̃ ‰ ĥ

and h̃ ‰ 1 ´ ĥ with 1 “ p1, . . . , 1q, such that PrpV | h̃,T, Ytq ě PrpV | h,T, Ytq for every possible phases h. As

we assume that read counts across the blocks of the same bin are stochastically independent, we have the following

PrpV | h̃,T, Ytq ě PrpV | h,T, Ytq “
ÿ

p

PrpVp “ νp | h̃p, Tp “ τp, Ytq ě
ÿ

p

PrpVp “ νp | hp, Tp “ τp, Ytq
(23)

Since h̃ ‰ ĥ ^ h̃ ‰ 1 ´ ĥ and due to the assumption in Eq. (23), we know there exists at least one block o with

ĥo ‰ h̃o where PrpVo “ νo | h̃o, To “ τo, Ytq ą PrpVo “ νo | ĥo, To “ τo, Ytq. This inequality thus leads to the

following implications according to the definition in Eq. (21) and the model in Eq. (7).

PrpVo “ νo | h̃o, To “ τo, Ytq ą PrpVo “ νo | ĥo, To “ τo, Ytq ñ
$

’

&

’

%

p1´ Ytq
νoY τo´νot ą Y νot p1´ Ytq

τo´νo if 2νo ď τo

Y νot p1´ Ytq
τo´νo ą p1´ Ytq

νoY τo´νot otherwise
ñ Yt ą 0.5

(24)
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Since h̃ ‰ ĥ ^ h̃ ‰ 1 ´ ĥ, we know there also exists at least another block q with ĥq “ h̃q and, therefore,

PrpVq “ νq | h̃q, Tq “ τq, Ytq “ PrpVq “ νq | ĥq, Tq “ τq, Ytq. However, we also know that PrpVq “ νq | h̃q, Tq “

τq, Ytq ě PrpVq “ νq | 1 ´ h̃q, Tq “ τq, Ytq because the phases h̃ provide the maximum value of the log likelihood

across all phases from the assumption in Eq. (23). As such, the following implications hold according to the definition

in Eq. (21) and the model in Eq. (7).

PrpVq “ νq | ĥq, Tq “ τq, Ytq ě PrpVq “ νq | 1´ ĥq, Tq “ τq, Ytq ñ
$

’

&

’

%

Y νot p1´ Ytq
τo´νo ě p1´ Ytq

νoY τo´νot if 2νo ď τo

p1´ Ytq
νoY τo´νot ě Y νot p1´ Ytq

τo´νo otherwise
ñ Yt ď 0.5

(25)

Eq. (24) and Eq. (25) are in contradiction and this proves Theorem 1.

The haplotype phases ĥ obtained from Theorem 1 are typically used to estimate BAF in previous bulk-tumor

studies because they provide an unbiased estimator for Yt in any genomic region t with allelic imbalance, i.e. Yt ff

0.524–26. Intuitively, Yt ff 0.5 indicates the presence of allelic imbalance in t and nucleotides with lower read counts

belong to the same haplotype27; this approach is especially accurate when considering high read counts, as those we

generally observe in this case along a whole block and across all cells. In particular, we show that Theorem 1 can

accurately infer the phases h by simulating the expected read counts from the haplotype blocks across a bin, varying

the values of Yt and considering different experimental settings that influence the observed read counts (Supplementary

Fig. 24). The capability of accurately identifying the true haplotypes from the read counts thus result in the BAF yt,i

computed in Eq. (20) to be an accurate estimate of the corresponding proportion ct,i
ct,i

of the minor-allele copies for

every bin t and cell i.

Allelic balance across cells When Yt « 0.5, the bin t is allelic balanced across all cells and the haplotype phases

ĥ from Theorem 1 provide a biased estimator of Yt as well as of the phases h28. In fact the expected numbers of

reads for the two sequences of every block p are approximately the same and, therefore, we cannot accurately infer the

phases h from the observed read counts. However, we show that we can obtain different phases in this case such that

the corresponding BAF yt,i provides an unbiased estimation of ct,i
ct,i

for every cell i. In particular, we do this under a

clearly-stated assumption: we assume that Yt « 0.5 implies that ct,ict,i
“

pct,i
ct,i

“
qct,i
ct,i

“ 0.5 in every cell i. We consider

this to be a reasonable assumption because there are only two possible violations, which are rare. The first violation

corresponds to the rare case where all tumor cells are partitioned in two (or its multiples) almost-exact halves with

precisely inverted haplotype-specific copy numbers for t (e.g. p2, 1q for 50% of the cells and p1, 2q for the other 50%).

Moreover, when this rare case occurs, the two halves likely have other CNAs that distinguish the two distinct clones

and CHISEL can be applied to each clone separately in a second-pass approach to identify the missing CNAs. The

second violation occurs when there is only an extremely low number of tumor cells with CNAs in t, which we can

ignore as there are always few noisy cells.

Under the previous assumption, we observe that the alternate-specific number Vp,i of reads from every block p

in cell i is independent from the haplotype phase hp when ct,i
ct,i

“ 0.5. In fact, we can model Vp,i similarly to the
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alternate-specific number Vp of reads across all cells in Eq. (20) as follows:

Vp,i „

$

’

&

’

%

BinompTp,i,
ct,i
ct,i
q if hp “ 1

BinompTp,i, 1´
ct,i
ct,i
q if hp “ 0

(26)

When ct,i
ct,i

“ 0.5, the corresponding model in Eq. (26) yields Vp,i „ Binompνp, 0.5q. Therefore, the BAF yt,i

computed in Eq. (20) with randomly-chosen phases provide an unbiased estimator ct,i
ct,i

, as stated in the following

theorem.

Theorem 2. When ct,i
ct,i

“ 0.5, the BAF yt,i computed in Eq. (20) is an unbiased estimator of ct,ict,i
when the phase hp

of each block p is uniformly selected at random according to Prphp “ 1q “ Prphp “ 0q “ 0.5.

Proof. According to Eq. (20), the phases h1, . . . , hk provide the following value of the BAF yt,i

yt,i “

řk
p“1 Vp,ihp ` pτp,i ´ Vp,1qhp

řk
p“1 τp,i

(27)

when we observe the total numbers T1,i “ τ1,i, . . . , T1,k,“ τ1,k of reads. Since ct,i
ct,i

“ 0.5, the alternate-specific

number Vp,i of reads is distributed according to the model in Eq. (26) as follows

Vp „ Binompτp, 0.5q (28)

because ct,i “ pct,i “ qct,i. As such, the alternate-specific number Vp,i of reads and the phase hp are stochastically

independent for every block p by Eq. (28). Thus, the expected value of BAF yt,i is equal to the following

Eryt,is “
řk
p“1 ErVp,isErhps ` pτp,i ´ ErVp,isqErhps

řk
p“1 τp,i

(29)

The expected value of Vp is ErVps “ τp0.5 by the model in Eq. (28) and the expected value of the phase hp is

Erhps “ 1 Prphs “ 1q ` 0 Prphs “ 0q “ 0.5. As such, the expected value of yt,i is equal to the following

Eryt,is “
ř

p τp0.5
2 ` pτp ´ τp0.5q0.5
ř

p τp
“ 0.5 (30)

Since Eryt,is ´ ct,i
ct,i

“ 0, yt,i is an unbiased estimator of ct,ict,i
when this proportion is equal to 0.5.

Theorem 2 guarantees that the BAF yt,i computed as in Eq. (20) using phases chosen uniformly at random is an

unbiased estimator of ct,ict,i
.

5 Inferring scale factor and allele-specific copy numbers

In each cell, CHISEL infers the scale factor γ and the allele-specific copy numbers tpct,qctu of every bin t in a two-stage

procedure: first, CHISEL identifies the potential candidates of the scale factor γ by integrating the BAFs and, second,

CHISEL chooses γ among the candidates and the corresponding maximum likelihood allele-specific copy numbers

using the standard Bayesian information criterion (BIC). In this section, we describe the details of this procedure in
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three subsections. In Section 5.1, we prove that the cell-specific scale factor γ can be computed by identifying the

total copy number of a single genomic region in each cell. In Section 5.2, we use the BAFs to identify all the potential

candidates of γ by selecting the largest balanced cluster and its potential allele-specific copy numbers. In Section 5.3,

CHISEL chooses γ among the candidates and the corresponding maximum-likelihood allele-specific copy numbers of

every bin using BIC.

5.1 Identification of scale factor from a given total copy number

Suppose that a total of R sequencing reads of length E have been sequenced uniformly from the genome of the cell,

and R̆ reads from a matched-normal sample. In this work (Supplementary Methods 1) as well as in previous bulk-

tumor7, 11, 16, 18, 24, 27–34 and single-cell4–6, 12, 13, 35–38 analysis, the RDR xt of bin t is defined as the ratio between the total

number Tt of reads observed in t from the cell and the corresponding number T̆t of reads observed from a matched-

normal sample. To account for varying total number of reads across different cells, we further normalize xt by the R

and R̆, and we thus obtain the following

xt “
Tt

T̆t

R̆

R
. (31)

According to the Lander-Waterman equation39, the average number of reads obtained from a single copy of a

genomic position in the cell is
ER

L
(32)

where L is the genome length of the cell, corresponding to the sum of the total copy numbers of every genomic

positions, i.e. L “
ř

t `tct when `t is the number of genomic positions in every bin t. The read count Tt corresponds

to the total number of reads obtained from all the copies of the genomic positions in t and is hence equal to

Tt “
ER

L
`tct (33)

by Eq. (32) because the cell contains ct copies of the `t genomic positions in t. Similarly, the read count T̆t from the

matched-normal sample, which is assumed to only contain normal diploid cells, is equal to the following

T̆t “
ER̆

L̆
`t2 (34)

because normal diploid cell have 2 copies of every genomic region and where L̆ is the normal genome length, i.e.

L̆ “
ř

t `t2. By combining the definitions in Eq. (33) and Eq. (34) with Eq. (35), we thus model the RDR xt as

follows

xt “
L̆R

LR̆2
ct (35)

Observe that L, L̆, R, R̆ are constant values across all the bins of the cell. Therefore, we define a cell-specific constant

scale factor γ “ L̆R{pLR̆2q and we obtain from Eq. (35) the corresponding direct proportionality between xt and ct

as follows

xt “ γct (36)
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Following Eq. (36), we know that the scale factor γ determines the direct proportionality between the total copy

number ct and the RDR xy for each bin t. Note that the scale factor γ is the same across all bins because γ only

depends on cell-specific constant values. Therefore, knowing the total copy number ct of a single bin t is sufficient to

compute the corresponding γ. The following theorem results from this simple observation, which is a direct extension

of the equivalent theorem previously introduced in HATCHet33.

Theorem 3. Given the RDR xt and the total copy number ct of a bin t, the scale factor has a unique value which is

computed as follows:

γ “
ct
xt

(37)

5.2 Constrained identification of candidates for the scale factor

We use the BAFs to identify the candidate values of γ under the assumption that the genome of every cell contains

a reasonable number of balanced bins, i.e. bins with equal copy numbers pct “ qct of both alleles. This assumption

follows from the observation that, in a cell, bins unaffected by CNAs have allele-specific copy numbers t1, 1u without

WGD, t2, 2u with one WGD, and so on. CHISEL thus identifies these bins as the largest cluster whose BAF is

approximately equal to 0.5, among those previously inferred in the second step of CHISEL. More specifically, we

estimate the BAF of each cluster s using the EM algorithm from Supplementary Methods 3 applied to all the bins

within s and where the read counts of each bin are computed from the phases obtained in Supplementary Methods 4.

To deal with potential over-clustering, we also merge in each cell all the clusters with very similar values of RDRs and

BAFs and we obtain a set S containing all the identified balanced genomic bins. We thus apply Theorem 3 to infer

all the potential values of γ by averaging the RDR of every bin in S and by considering the set Θ containing all the

possible values for the allele-specific copy numbers of balanced bins, i.e. Θ “ t1, 2, . . .u according to the observation

from previous assumption. Note that the total copy number of the balanced bins is equal to 2θ when θ P Θ is the

value of the allele-specific copy numbers of the bins in S. Therefore, we compute the set Γ comprising the potential

candidates for γ as follows

Γ “ tγ “
2θ

1
|S|

ř

tPS xt
: θ P Θu (38)

5.3 Selecting scale factor and allele-specific copy numbers

CHISEL finally uses BIC to choose γ among the candidates in Γ and the corresponding maximum-likelihood pair

tpct,qctu of allele-specific copy numbers for every bin t. Note that every bin t in a cluster s has the same allele-specific

copy numbers, i.e. |ttpct,qctu : t P su| “ 1. Therefore, when denoting by t pCs, qCsu the pair of allele-specific copy

numbers of every bin in cluster s, we model the RDR xt and the mirrored BAF yt of bin t P s as observations from

two normal distributions

xt „ N

˜

pCs ` qCs
γ

, σx

¸

and yt „ N

˜

mint pCs, qCsu

pCs ` qCs
, σy

¸

(39)

where the sample variances σx, σy are estimated from the clusters inferred in the second step of CHISEL and the

corresponding mean. For every candidate value of γ P Γ, we find the maximum likelihood estimates for t pCs, qCsu
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using an exhaustive search, which is feasible as the number of candidate values of γ (e.g. 3 when considering the

occurrence of at most 2 WGDs) and the number of distinct pairs t pCs, qCsu of allele-specific copy numbers for a cluster

s are relatively small. More specifically, we identify for every γ P Γ the allele-specific copy numbers t pCs, qCsu of

every cluster s which maximize the following log likelihood

Lpγq “
ÿ

s

ÿ

tPs

ln Prpxt | pCs, qCs, γ, σxq ` ln Prpyt | pCs, qCs, γ, σyq (40)

where every cluster is stochastically independent given γ, according to our model in Eq. (39). The higher the value of

γ is, the higher the number κpγq of possible combinations of allele-specific copy numbers, i.e.

κpγq “
C
ÿ

c“0

´Y c

2

]

` 1
¯

(41)

where C “ rγmaxt xts is the maximum total copy number. As such, we choose the candidate value of γ with

minimum BIC to balance between higher likelihood and lower model complexity to avoid overfitting. In fact, higher

values of γ always have higher likelihood but also higher model complexity, as they induce more combinations of

allele-specific copy numbers according to Eq. (41). More specifically, we choose γ as the candidate that minimizes

the corresponding BIC and we obtain the following

γ “ argmin
γ1

lnpmqκpγ1q ´ 2Lpγ1q (42)

6 Dynamic programming algorithm to infer haplotype-specific copy numbers

CHISEL phases the minor allele Mt of every bin t to minimize the number of CNAs needed to explain the resulting

haplotype-specific copy numbers pat,i, bt,iq of every bin t in cell i. To do this, CHISEL identifies the phase Ht P

tA,Bu of the minor allele Mt such that Ht “ A if the minor allele Mt is located on haplotype A, and Ht “ B

otherwise. When the phaseHt of bin t is known, we can indeed obtain the haplotype-specific copy numbers pat,i, bt,iq

in every cell i as in the following

pat,i, bt,iq “

$

’

&

’

%

pct,i, ct,i ´ ct,iq Ht “ A

pct,i ´ ct,i, ct,iq Ht “ B

(43)

given the minor-allele copy number ct,i, which corresponds to one of the two allele-specific copy numbers tpct,i,qct,iu,

and the total copy number ct,i “ pct,i ` qct,i. In fact, ct,i can be easily obtained by combining the estimated BAF yt,i

and the inferred pair tpct,i,qct,iu of allele-specific copy numbers when assuming that pct,i ě qct,i w.l.o.g. as follows

ct,i “

$

’

&

’

%

pct,i yt,i ě 0.5

qct,i otherwise
(44)

CHISEL infers the phase Ht of Mt for every bin t to minimize the number of CNAs required to explain the

haplotype-specific copy numbers pai,biq of every cell i by using the model of interval events that model CNAs as

events that either increase or decrease the copy numbers of neighboring genomic regions on the same haplotype40–42.
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Under a principle of parsimony, we thus aim to minimize the total number of interval events across all cells. Given

the phases Ht´1, Ht P tA,Bu for any pair of consecutive bins t ´ 1, t, we compute the corresponding number

dpt,Ht´1, Htq of interval events as follows

dpt,Ht´1, Htq “
ÿ

i

|at´1,i ´ at,i| ` |bt´1,i ´ bt,i| (45)

where the haplotype-specific copy numbers pat´1,i, bt´1,iq and pat,i, bt,iq are computed as in Eq. (43) given the allele-

specific copy numbers ct´1,i, ct,i of the minor alleles Mt´1,Mt. Therefore, we aim to solve the following problem.

Problem 2. Given the minor-allele and total copy numbers ct,i, ct,i of every bin t in every cell i, find the phases

H˚1 , . . . ,H
˚
m P tA,Bu

m such that

H˚1 , . . . ,H
˚
m “ argmin

H1,...,Hm

m
ÿ

t“2

dpt,Ht´1, Htq (46)

To solve Problem 2, we design a dynamic programming algorithm (DP) since the objective can be computed

recursively. In fact, the minimum number Dpl,Hlq “ min
H1,...,Hl´1

řl
t“2 dpt,Ht´1, Htq of interval events for the first l

bins when the phase Hl of the the minor allele Ml for the last bin l is given can be computed as follows

Dpl,Hlq “ min

$

’

&

’

%

Dpl ´ 1,Aq ` dpl,A, Hlq

Dpl ´ 1,Bq ` dpl,B, Hlq

(47)

As such, DP iteratively computes Dpl,Hlq for every bin l. In the following lemma, we prove the correctness of DP.

Lemma 4. Given the minor-allele copy numbers c1,i, . . . , cl,i and total copy numbers c1,i, . . . , cl,i of the first l bins

in every cell i, the following statements hold:

1. if Dpl,Hlq “ λ, there exists phases H1, . . . ,Hl such that
řl
t“2 dpt,Ht´1, Htq ď λ;

2. if there exists phases H1, . . . ,Hl with
řl
t“2 dpt,Ht´1, Htq “ λ, it follows Dpl,Hlq ď λ.

Proof. We prove both the statements of the lemma by induction on the m bins. The statements obviously hold for

t “ 2 because mintdp2,A, H2q, dp2,B, H2qu ď dp2, H1, H2q for any H1 P tA,Bu when H2 is known. Therefore,

we assume by induction that each statement holds for l ´ 1 and we prove that it also holds for l.

1. We assume by induction that, if Dpl ´ 1, Hl´1q “ λ1, there exists phases H1, . . . ,Hl´1 with
řl´1
t“2 dpt,Ht´1, Htq ď λ1. By the definition in Eq. (47), there exists a phase Hl´1 P tA,Bu for bin t ´ 1

such that Dpl ´ 1, Hl´1q “ Dpl ´ 2, Hl´2q ` dpl ´ 1, Hl´2, Hl´1q. If Dpl ´ 1, Hl´1q “ λ1, the inductive

assumption thus determines the existence of phases H1, . . . ,Hl´1 such that
řl´1
t“2 dpt,Ht´1, Htq ď λ1. Adding

the phase Ht of the minor allele Mt thus results in having phases H1, . . . ,Hl´1, Hl for the first l bins with
řl´1
t“2 dpt,Ht´1, Htq ` dpl,Hl´1, Hlq ď λ1 ` dpl,Hl´1, Hlq. If Dpl,Hlq “ λ, the number of events for the

phases H1, . . . ,Hl´1, Hl is equivalent to the following
řl
t“2 dpt,Ht´1, Htq ď λ, since Dpl ´ 1, Hl´1q “ λ1

and Dpl,Hlq “ Dpl ´ 1, Hl´1q ` dpl,Hl´1, Hlq. This proves the first statement.
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2. We assume by induction that, if there exists phases H1, . . . ,Hl´1 with
řl´1
t“2 dpt,Ht´1, Htq “ λ1, it fol-

lows Dpl ´ 1, Hl´1q ď λ1. We consider any combination pH1, . . . ,Hl´1, Hlq P tA,Bu
l of phases for the

minor alleles of the first l bins such that
řl
t“2 dpt,Ht´1, Htq ď λ. When

řl´1
t“2 dpt,Ht´1, Htq “ λ1 for

the first l ´ 1 bins only, it follows that Dpl ´ 1, Hl´1q ď λ1 by the inductive assumption and we equiva-

lently obtain that all the phases H1, . . . ,Hl´1, Hl thus result in having the following number of interval events
řl
t“2 dpt,Ht´1, Htq “ λ1 ` dpl,Hl´1, Hlq with

řl
t“2 dpt,Ht´1, H1q ě Dpl´ 1, Hl´1q ` dpl,Hl´1, Hlq. By

definition in Eq. (47), we know that Dpl,Hlq ď Dpl ´ 1, Hl´1q ` dpl,Hl´1, Hlq and therefore Dpl,Hlq ď λ

because
řl
t“2 dpt,Ht´1, Htq “ λ by definition. This proves the second statement.

Lemma 4 proves that DP solves Problem 2 because the first statement guarantees the existence of a solution for any

value of Dpl,Hlq and the second statement proves the optimality of the corresponding solution. As such, DP infers

the phases H1, . . . ,Hm of the minor alleles M1, . . . ,Mm that minimize the number of interval events by iteratively

computing all the values of Dpl,Hlq and by using the standard backtracking strategy for dynamic programming. The

resulting running time is thus linear as it corresponds to Opmq, and we obtain the following theorem, which determines

that Problem 2 is solvable in linear time and it does belong to the complexity class P.

Theorem 5. DP solves Problem 2 in linear time.

7 Inferring clones from haplotype-specific copy numbers

CHISEL infers distinct subpopulations of cells, or clones, with the same complement of CNAs. While the presence of

clones is expected from the cancer evolutionary process43, we do not directly observe these clones and their identifi-

cation is complicated by two main factors. First, we do not know the number N of clones. Second, the inferred copy

numbers of each cell may be affected by errors in the measurements (e.g. due to low number of sequenced reads) or

may be characterized by spurious aberrations (e.g. due to the different cell-cycle states). One thus needs to cluster the

cells into the corresponding clones and to separate the noisy cells. Current methods do not directly perform this infer-

ence or they do it based on total copy numbers4–6, 12, 13, 35–38. However, distinct clones with different haplotype-specific

copy numbers may have the same total copy numbers and even the same allele-specific copy numbers.

CHISEL identifies N clones by first clustering cells with sufficiently similar haplotype-specific copy numbers and

then selecting clusters that correspond to clones. In particular, we define the copy-number distance dpi, jq between

two cells i, j as the fraction of the genome with different haplotype-specific copy numbers, i.e.

dpi, jq “
1

m

ÿ

t

mint|at,i ´ at,j | ` |bt,i ´ bt,j |, 1u (48)

Since the inferred copy numbers are affected by errors in the measurements, we expect that any two cells in the same

clone may have different haplotype-specific copy numbers in a maximum fraction ε of the genome (e.g. 4–7%). As

such, CHISEL aims to group cells into a minimum number of clusters such that each cluster I Ď t1, . . . , nu only

contains cells with copy-number distance below ε, i.e. dpi, jq ď ε for each pair of cells i, j P I . To do this, CHISEL
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uses a standard algorithm for hierarchical clustering44, 45. Next, CHISEL selects the clusters that correspond to clones

by assuming that each clone contains at least a minimum number ι of cells, i.e. I is a clone if |I| ě ι. This is a

reasonable assumption as subpopulations containing a small number of cells are more likely due to the presence of

noisy cells. For visualization purposes, CHISEL also sorts all the cells to minimize the distance between neighbors.

At last, CHISEL obtains a consensus copy-number profile for each inferred clone. Such profiles can be thus used to

correct errors in the inferred haplotype-specific copy numbers.

8 Estimating the minimum size of detectable clones

We investigated the minimum size of a clone that CHISEL can accurately detect using the following approach. First,

we generated in-silico datasets by subsampling cells from each clone identified by CHISEL. Each in-silico dataset

is obtained by selecting a random subset of cells from a specific clone and all of the remaining cells. Second, we

apply CHISEL to each such dataset and we measure precision and recall between the subsampled clone and the clone

inferred by CHISEL that best matches the subsampled clone.

We applied the subsampling approach to each of the 5 single-cell datasets from the breast cancer patient S0.

Specifically, for each clone and each tumor section, we generated a dataset containing a random subset of 2-31 cells

of the clone and all the remaining cells. Note that this subsampling procedure preserves all other features of the

single-cell dataset, including rates and sizes of the CNAs in different clones as well as errors and biases in the DNA

sequencing signals. We ran CHISEL on each subsampled dataset and quantified CHISEL’s ability to detect the small

subpopulation of subsampled cells in terms of precision and recall. We found that CHISEL accurately recovers clones

containing as few as 10-20 cells in every case (Supplementary Fig. 27). Since the minimum size of detectable clones

may vary by dataset we added this subsampling method to the CHISEL software.

9 Selecting cells from barcodes

The standard approach for 10X Genomics Single-cell SNV Solution identifies individual cells by choosing the subset

of barcodes that effectively correspond to the targeted cells4. This selection is necessary because the potential presence

of spurious barcodes that do not characterize reads sequenced from the genome of an individual cell5. To do this, we

applied the same standard approach which only selects the barcodes that are associated to a sufficiently large number

of sequencing reads. More specifically, the threshold of 105 reads (i.e. corresponding to a sequencing coverage of

ą 0.003ˆ per cell) on the minimum number of sequencing reads has been empirically computed in previous analysis3.

Using the same threshold (which is user adjustable), CHISEL selects the same cells (with few exceptions) as in

previous analysis3.

10 Identifying diploid cells from read counts

CHISEL requires a matched-normal sample composed of normal diploid cells from the same patient for the estima-

tion of RDRs and BAFs. More specifically, the computation of RDRs requires the read counts from the matched-
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normal sample for standard normalization and the computation of BAFs requires a matched-normal sample to identify

germline heterozygous SNPs. However, a matched-normal sample may not be available. In this case, we thus pro-

pose to generate a pseudo matched-normal sample by identifying normal diploid cells and merge the corresponding

sequencing reads. As such, we propose a method to identify normal diploid cells simply from the observed number

τt,i of sequencing reads aligned to every bin t and cell i.

In the absence of errors and germline copy-number variations (CNV) in the normal genome, we know that the

observed read counts are directly proportional to the corresponding total copy numbers (Supplementary Methods 1).

In particular, ct,i “ γiτt,i for every bin t in a cell iwith an unknown scaling factor γi P R (Supplementary Methods 5).

Moreover, we expect the total copy number of every bin to be equal to 2, i.e. ct,i “ 2, in any normal cell i under the

previous assumption. When the error- and CNV-free assumption does not hold, we expect the read counts to be noisy,

i.e. γiτt,i « 2, and to be different than 2 in some cases, i.e. γiτt,i ‰ 2. We assume to know the maximum fraction ξ

of the genome with total copy numbers different than 2 in normal diploid cells and we identify whether a cell i is a

normal diploid cell in two steps. First, we aim to find γi using a method similar to the one applied by current single-cell

methods for inferring total copy numbers5, 6, 35–37. As such, we aim to minimize the error between the expected total

copy number 2 and the inferred total copy number rγiτt,iu across all bins, i.e.

γi “ argmin
γ

ÿ

t

|2´ rγiτt,iu| (49)

Specifically, we solve this problem by using a local search across a large subset of potential values of γi, starting from

the value estimated by averaging the read counts across all genome. Next, we classify the cell i as a normal diploid

cell if and only if the fraction of the genome with an estimated total copy number equal to 2 is lower than ξ, i.e. i is

normal if and only if
1

m

ÿ

t

|2´ rγiτt,iu| ď ξ (50)

11 Identifying somatic single-nucleotide variants in single cells

We examined somatic single-nucleotide variants (SNVs) as an orthogonal signal for supporting the results obtained

from copy-number analysis because these mutations were not used in either the copy-number inference or tree recon-

struction. However, the identification of SNVs in individual cells is impractical from low-coverage DNA sequencing

data and we thus propose a two-step approach. First, we pooled sequencing reads from all cells into a pseudo-bulk

sample and we identified SNVs across all cells by using a standard method for bulk-tumor sequencing data, which

is Varscan 246, 47. Second, we assigned each SNV to those cells with a variant read and we identified SNVs that are

present in a subpopulation of cells, or clone, by considering whether any of the corresponding cells has a variant

read. Unfortunately, this approach is complicated by two issues. On the one hand, the matched-normal sample may

contain some number of aneuploid cells, for example the matched-normal sample used for patient S0 comprises «8%

of aneuploid tumor cells. We observed that the presence of tumor cells in the matched-normal sample result in several

SNVs having a lower probability to be somatic mutations. On the other hand, some clones identified by CHISEL and

in previous total-copy number analysis contain a relatively small number of cells; for example, some clones contain
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ă100 cells. The SNVs in these clones are thus covered by a number of sequencing reads lower than expected, for

example we approximately expect only 2–4 reads covering each SNV in clones with «100 cells.

We dealt with the mentioned issues in the identification of somatic SNVs by introducing some additional filters and

properly relaxing some of the parameters of Varscan 2. First, we lowered the minimum coverage to select potential

SNV loci from 6 to 2 sequencing reads (according to the minimum expected number of covering reads in relatively-

small clones) and, to reduce potential errors and false positives, we only considered SNVs with at least 2 variant reads

in two distinct cells. Next, we selected only loci whose total number of covering reads across all cells is reasonable

according to GATK best practices48. Since the low number of sequencing reads from relatively-small clones may

result in genomic regions that are not covered by any sequencing read in these clones, we have also restricted the

analysis to loci that are covered by sequencing reads in all clones. Last, we increased the threshold on the p-value

score computed by Varscan 2 to choose somatic mutations. We did this to deal with the observed low frequencies of

the SNVs that result in higher scores and are due to two main factors: (1) the low tumor purity, i.e. fraction of tumor

cells, which is estimated to be between 60–83% for the tumor sections of patient S0 and is only «50% across all cells

of patient S0; and (2) the identified occurrence of a whole-genome duplication (WGD) which is associated to a lower

number of copies harboring the SNVs, for example a SNV occurred after WGD affects only 1 copy over 4 in genomic

regions with no further CNAs. Moreover, the higher threshold allows to deal with the higher scores resulting from the

presence of variant reads in the matched-normal sample due to the admixture of aneuploid tumor cells. As such, we

empirically computed the threshold (i.e. 0.19–0.24) from the results of Varscan 2 in order to include the highest-quality

SNVs that are covered by at least 2 variant reads in distinct cells.

12 Analysis of variant-allele frequency for somatic single-nucleotide variants

We examined the relationship between the variant-allele frequency (VAF) of each somatic single-nucleotide variant

(SNV) and the clonal status of the SNV induced by the CHISEL tree for the 10 551 SNVs identified in the tumor

clones. We calculated the VAF of each SNV using the standard definition as the fraction of variant reads over the total

number of reads covering the SNV locus. When assuming that reads are sequenced uniformly, the VAF of a SNV e

located in a bin t is an estimator of the fraction of copies of t harboring e across all cells. More specifically, the VAF

of e is an estimator of the following fraction2, 49
řn
i“1 9ce,t,i

řn
i“1 ct,i

(51)

where the mutated copy number 9ce,t,i represents the number of copies of t harboring e in cell i.

We also defined a restricted VAF for a SNV with respect to a subpopulation of cells by restricting to sequencing

reads with barcodes matching the cells in the subpopulation. In particular, we computed a left-restricted VAF and a

right-restricted VAF by restricting to the sequencing reads from cells belonging to the left (clones J-1 and J-II)

and right (clones J-III, . . . , J-VIII) branches of the CHISEL tree. The restricted VAF of e is an estimator of

the fraction of copies of the bin t harboring e similarly to Eq. (51) but restricted to the cells in the corresponding

subpopulation. This approach enables to simultaneously compare the restricted VAFs of the same SNV in the left and

right branches, providing further support for the estimated fraction of mutated copies in both branches.
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In the next subsections, we first describe the expected values of VAF (Section 12.1) and restricted VAF (Sec-

tion 12.2) for a SNV in the CHISEL tree. In particular, we do this by considering the occurrence of a whole-genome

duplication (WGD) in the trunk of the tumor phylogeny, as the one identified in patient S0, and by distinguishing

between clonal SNVs that are present in all tumor cells and subclonal SNVs that are only present in a subset of the

tumor cells. At last (Section 12.3), we classify the 10 551 SNVs identified in the tumor clones according to the clonal

status induced by the CHISEL tree.

12.1 Expected value of VAF

The value of VAF for a somatic SNV e in a genomic bin t depends on three factors: (1) tumor purity µ which

corresponds to the proportion of tumor cells; (2) allele-specific copy numbers tpct,i,qct,iu with total copy number

ct,i “ pct,i ` qct,i in every cell i; (3) the mutated copy number 9ce,t,i in every cell i. Tumor purity µ is a key factor

when considering all cells in patient S0 because none of the copies of t in normal diploid cells harbor the SNV e and,

therefore, 9ce,t,i “ 0, ct,i “ 2 for every normal cell i. Specifically, we observe µ « 0.5 across all cells in patient S0.

We first focus on a clonal SNV e located in a genomic bin t, which is thus present in all tumor cells. We start by

assuming that t is affected by the WGD (as all the bins) but no further CNAs; therefore we know that t has allele-

specific copy numbers tpct,i,qct,iu “ t2, 2u and total copy number ct,i “ 4 in every tumor cell i. Since the mutated

copy number 9ce,t,i only depends in this case on the occurrence of e either before or after the WGD, we can estimate

the value of VAF by Eq. (51) in the two distinct cases. When the SNV e occurs before the WGD, we expect that

9ce,t,i “ 2 in every tumor cell i because the mutated copy number is doubled as well as all the copies of t; the expected

value of the corresponding VAF is thus «0.33 because the expected value of the fraction in Eq. (51) is « 0.5¨2
0.5¨2`0.5¨4 .

When the SNV e occurs after the WGD, 9ce,t,i “ 1 in every tumor cell i because e affects only a single copy over the

4 total copies resulting from the WGD and the expected value of the corresponding VAF is thus «0.167 because the

expected value of the fraction in Eq. (51) is « 0.5
0.5¨2`0.5¨4 . These expected values are correct for all genomic bins that

are not affected by further CNAs besides the WGD, which are the majority across the genome of patient S0. However,

the expected value of VAF is affected by CNAs. In fact, CNAs result in genomic regions with different allele-specific

copy numbers, as observed in both patients S0 and S1. As such, a genomic bin t with total copy number ct,i ą 4 in

all or some cells may result in an expected value of VAF lower than «0.167 as well as a bin t with total copy number

ct,i ă 4 may have an expected value of VAF higher than «0.33. Note that a complete investigation of all the possible

combinations of allele-specific and mutated copy numbers is beyond the scope of this study.

We next focus on a subclonal SNV e located in a genomic bin t, which is thus present only in a subset of the

tumor cells. When considering a genomic bin t not affected by further CNAs besides the WGD with allele-specific

copy numbers tpct,i,qct,iu “ t2, 2u and total copy number ct,i “ 4 in every tumor cell i, the expected value of VAF

of a subclonal SNV e is ď 0.167 because any subclonal SNV must have occurred after WGD and 9ce,t,i ą 0 only in

a subpopulation of the tumor cells. The expected value of VAF for subclonal SNVs is affected by potential CNAs

similarly to the previous case of clonal SNVs. Moreover, we expect that subclonal SNVs with higher VAF have

occurred earlier in the tumor evolution than subclonal SNVs with lower VAF, since these SNVs are generally present
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in more cells.

12.2 Expected value of restricted VAF.

The value of restricted VAF of a somatic SNV e in a genomic bin t depends on only two factors, differently than the

previous VAF: (1) allele-specific copy numbers tpct,i,qct,iu with total copy number ct,i “ pct,i ` qct,i in every cell i of

the restricted subpopulation of cells; (2) the mutated copy number 9ce,t,i in every cell i of the restricted subpopulation

of cells. We first focus on a clonal SNV that is present in all tumor cells and, consequently, is present in all cells of

the restricted subpopulation. Similarly to the previous case of VAF, we can estimate the expected value of restricted

VAF for a SNV e located in a genomic bin t not affected by further CNAs besides the WGD, with allele-specific

copy numbers tpct,i,qct,iu “ t2, 2u and total copy number ct,i “ 4 in every tumor cell i. We do this according to the

occurrence of e either before or after the WGD identified in patient S0. When the clonal SNV e occurs before or after

WGD, we expect that 9ce,t,i “ 2 or 9ce,t,i “ 1, respectively, in every cell within the restricted subpopulation and the

expected value of the corresponding restricted VAF is thus «0.5 or «0.25. Note that these values are different than

the corresponding values of VAF because here we restricted to a subpopulation of tumor cells with no admixture of

normal cells. Moreover, since clonal SNVs that are not affected by further CNAs besides the WGD are equally present

in all tumor cells, we expect the same values of restricted VAF for the same SNV e when restricting to either the left

or right branch of the CHISEL tree.

The expected value of VAF for clonal SNVs is affected by CNAs that result in genomic regions with different

allele-specific copy numbers, as in the case of VAF. In this study we specifically focused on the genomic bins of

chromosome 2 where CHISEL identified a mirrored-subclonal CNA distinguishing the two branches: the clones of

the left branch in the CHISEL tree have haplotype-specific copy numbers p1, 2q, while all clones but a small one

of the right branch have haplotype-specific copy numbers p2, 1q. As the allele-specific copy numbers are t2, 1u in

both branches, we can estimate the expected values of the restricted VAFs for a clonal SNV e occurring before the

WGD, distinguishing when e is located on the haplotype of either the deleted or retained allele. When e is located

on the haplotype of the retained allele, we expect 9ce,t,i “ 2 and ct,i “ 3 because the mutated copy number has

been doubled by the WGD but the deletion did not affect the copies harboring e; therefore, the expected value of

the corresponding VAF is «0.66. When e is located on the haplotype of the deleted allele, we expect 9ce,t,i “ 1 and

ct,i “ 3 because the mutated copy number has been doubled by the WGD and the mirrored-subclonal CNA deletes

one of these copies; therefore, the expected value of the corresponding VAF is «0.33. We observed the presence of

SNVs with restricted VAF equal to «0.33 in the left branch and equal to «0.66 in the right branch, or vice versa.

These values are compatible with SNVs located on different haplotypes and the different values of the restricted VAFs

in the two branches confirm the mirrored deletions of two distinct haplotypes.

Last, we investigate the expected values of the restricted VAF for subclonal SNVs which are not present in all

tumor cells and are unique to cells in either the left or right branch of the CHISEL tree. Following the same previous

observations on VAF, we expect the values of restricted VAF to be ď 0.25 for subclonal SNVs in regions not affected

by further CNAs besides the WGD because any subclonal SNV must have occurred after the WGD. However, these
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values may be different when affected by CNAs. For example, in the specific case of chromosome 2 with allele-

specific-copy numbers t2, 1u in each branch, we expect the values of restricted VAF to be ď0.33 because subclonal

SNVs occurred after the WGD and affected only one copy of t, resulting in 9ce,t,i “ 1 and ct,i “ 3. As mentioned

before, a complete investigation of all the possible combinations of allele-specific and mutated copy numbers is beyond

the scope of this study, however we can separate subclonal SNVs that occurred early or late in the evolution of the cells

in the restricted subpopulation, i.e. in either the left or right branch of the CHISEL tree. For example, in the specific

case of chromosome 2, we can distinguish early SNVs occurred in the evolutionary history of each branch as we expect

that these SNV have restricted VAF«0.33 because they are present in nearly all cells in the corresponding branch. In

contrast, only subpopulation of cells within the branch harbor later SNVs, resulting in restricted VAFď 0.33.

12.3 Classification of SNVs based on a copy-number tree

We classified the SNVs according to the corresponding clonal status induced by the CHISEL tree. More specifically,

we separated all the 10 551 SNVs identified in the tumor clones into clonal SNVs, which are present in all tumor

clones, and subclonal SNVs, which are unique to either the left or right branch of the CHISEL tree. Unfortunately, the

classification is complicated by two main issues. First, the rate of false positive identified by Varscan 2 is higher than

expected due to the low-frequency of several mutations and due to the relaxed filters (Supplementary Methods 11).

Second, we do not observe all the SNVs that are present in each clone for two reasons: (1) small clones with a low

number of cells also have a low number of sequencing reads; (2) the variant frequencies of the SNVs are low due

to the occurrence of WGD as the fraction of copies harboring a mutation is generally lower, e.g. a SNV occurred

after WGD affects only 1 copy over 4 in genomic regions with no further CNAs besides the WGD. Therefore, we

distinguished true and false SNVs by identifying SNVs with high or low prevalence, respectively, across the clones

of the corresponding branch. In particular, we selected high prevalence SNVs that are present in at least a minimum

number of clones which is chosen proportionally to the total number of clones in the corresponding branch: 3 for clonal

SNVs, 2 for SNVs unique to the right branch of the CHISEL tree, and 1 for the SNVs unique to the left branch of the

CHISEL tree. We thus identified 2 798 clonal SNVs present in both branches, 1 632 SNVs unique to the right branch,

and 594 SNVs unique to the left branch. The remaining low-prevalence SNVs have both low VAFs (Supplementary

Fig. 17) and low restricted VAFs in both branches, underscoring the low confidence in these mutation calls.
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