Supporting Information

Comparison of Two Zinc Hydride Precatalysts for Selective Dehydrogenative Borylation of Terminal Alkynes: A Detailed Mechanistic Study

Rajata Kumar Sahoo, Arukela Ganesh Patro, Nabin Sarkar, and Sharanappa Nembenna*

School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752 050, India

Contents

Table S1: Optimization of Zinc Catalyzed Dehydroborylation of Phenylacetylene.

Synthesis, Analytical Data, and NMR spectra (¹H, ¹³C{¹H}, ¹¹B NMR) of Stoichiometric Experiments.

Figure S1: ¹H NMR (400 MHz, 25 °C, C_6D_6) spectrum of compound **II**.

Figure S2: ¹³C{¹H} NMR (100 MHz, 25 °C, C_6D_6) spectrum of compound **II**.

$\begin{array}{c} 0.78 \\ 0.78 \\ 0.01 \\ 0.$

Figure S3: ¹H NMR (400 MHz, 25 °C, d_8 -toluene) spectrum of compound **II**.

Figure S4: ¹³C{¹H} NMR (100 MHz, 25 °C, d_8 -toluene) spectrum of compound **II**.

The reaction between zinc alkynyl II and HBpin {NMR-Scale}: The addition of HBpin (4.06 μL, 0.028 mmol) to a J. Young valve NMR tube containing a solution of compound **II** (0.014 mmol) in d_8 -toluene at room temperature after 30 minutes resulted in the formation of compounds **I** and **2a** with a 30% yield was observed by multinuclear NMR spectroscopy. ¹H and ¹¹B NMR spectroscopy revealed that the reaction had reached an equilibrium, best evidenced by the integration of resonance for Bpin moieties of **2a** and HBpin. Extended heating up to 24 h at 80 \degree C showed no change in the relative ratio of 2a and II, suggesting that the equilibrium position had already been reached before heating. NMR Yield: (30%).

Figure S5: ¹H NMR (400 MHz, 25 °C, d_8 -toluene) spectrum of compounds $[L^1ZnH]_2 \& 2a$.

Figure S6: ¹³C{¹H} NMR (100 MHz, 25 °C, d_8 -toluene) spectrum of compounds $[L^1ZnH]_2 \& 2a$.

Figure S7: ¹¹B NMR (128 MHz, 25 °C, d_8 -toluene) spectrum of compounds $[L^1ZnH]$ **2** & 2a. A doublet peak at δ 27.76 – 29.12 ppm arises from free HBpin.

The reaction between zinc hydride I and 2a {NMR-Scale}: The addition of **2a** (6.5 mg, 0.028 mmol) to a solution of complex **I** (0.020 g, 25 °C, 0.014 mmol) in d_8 -toluene in a J. Young valve NMR tube after 1 h at 60 °C resulted in the formation of compound **II**, and HBpin with 70% yield was observed by ${}^{1}H$ and ${}^{11}B$ NMR spectroscopy. After 24 h at room temperature, no change was observed in the reaction mixture. ¹H and ¹¹B NMR spectroscopy revealed that the reaction reached an equilibrium, best evidenced by the integration of resonance for Bpin moieties of $2a$ and compound **II**. Extended heating up to 24 h at 80° C showed no change in the relative ratio of **2a** and **II**, suggesting that the equilibrium position had already been reached before heating. NMR Yield: (70%).

Figure S8: ¹H NMR (400 MHz, 25 °C, d_8 -toluene) spectrum of compounds **II** & 2HBpin.

Figure S9: ¹³C{¹H} NMR (100 MHz, 25 °C, d_8 -toluene) spectrum of compounds **II** & 2HBpin.

Figure S10: ¹¹B NMR (128 MHz, 25 °C, d_8 -toluene) spectrum of compounds **II** & 2HBpin. A doublet peak at δ 27.74 – 29.10 ppm arises from free HBpin.

Synthesis of compound II and 2a {NMR-Scale}: The addition of phenylacetylene (3.07 μL, 0.028 mmol) to a J. Young valve NMR tube containing a solution of compound **I** and **2a** (30%) in *d*₈-toluene at room temperature after 15 minutes resulted in the complete formation of compound **II** and **2a** was observed by ¹H and ¹¹B NMR spectroscopy. The above study indicates that once 30% compound **2a** and **I** was formed, it immediately reacted with one additional equivalent of phenylacetylene to form a quantitative amount of product **2a** and compound **II**. It stops the equilibrium reaction between compounds **II** and **2a**. NMR Yield: (>99%). ¹H NMR (400 MHz, d_8 -toluene) δ 7.34 – 7.32 (m, 4H), 7.19 – 7.18 (m, 3H), 7.10 – 7.03 (m, 14H), $6.92 - 6.81$ (m, 15H), $6.61 - 6.59$ (d, $³J_{HH} = 9.6$ Hz, 8H), 5.05 (s, 4H), 3.14 </sup> 3.05 (m, 8H), $2.76 - 2.65$ (m, 8H), $2.39 - 2.29$ (m, 8H), $2.19 - 2.11$ (m, 8H), 1.38 (t, $3J_{HH} = 7.4$ Hz, 24H), 1.03 (s, 24H), 0.95 (t, ${}^{3}J_{HH} = 7.6$ Hz, 24H). ${}^{13}C({}^{1}H)$ NMR (101 MHz, d_8 -toluene) δ 157.5, 141.1, 139.0, 135.0, 132.3, 131.9, 131.8, 128.7, 128.3, 128.0, 128.0, 126.6, 126.4, 126.3, 125.9, 125.3, 83.5, 77.2, 24.9, 24.3, 24.2, 14.4, 14.2. ¹¹B NMR (128 MHz, *d*₈-toluene) δ 24.71.

Figure S11: ¹H NMR (400 MHz, 25 °C, d_8 -toluene) spectrum of compounds **II** & 2a.

Figure S12: ¹³C{¹H} NMR (100 MHz, 25 °C, d_8 -toluene) spectrum of compounds **II** & 2a.

Figure S13: ¹¹B NMR (128 MHz, 25 °C, d_8 -toluene) spectrum of compounds **II** & 2a.

The reaction between zinc hydride I, phenylacetylene, and compound 2a {NMR-Scale}: In a J. Young valve NMR tube $(0.020 \text{ g}, 25 \text{ °C}, 0.014 \text{ mmol})$ complex **I**, $(6.5 \text{ mg}, 0.028 \text{ mmol})$ of **2a,** and $(3.07 \mu L, 0.028 \text{ mmol})$ of phenylacetylene were added successively in d_8 -toluene. Reaction progress was monitored by ${}^{1}H$ NMR analyses, which confirmed that at room temperature after 20 minutes, the complete formation of compound **II** with the liberation of H² gas and unreacted compound **2a** was observed by ¹H and ¹¹B NMR spectroscopy. The above study indicates the exclusive formation of compound **II** with a quantitative yield, and compound **2a** was untouched. It again revealed that the presence of phenylacetylene stopped the equilibrium reaction between compounds **I** and **2a**. NMR Yield: ($>99\%$). ¹H NMR (400) MHz, *d*8-toluene) δ 7.34 – 7.32 (m, 4H), 7.22 – 7.15 (m, 3H), 7.10 – 7.02 (m, 14H), 6.92 – 6.81 $(m, 15H)$, 6.61 – 6.59 (d, $³J_{HH}$ = 9.5 Hz, 8H), 5.05 (s, 4H), 3.14 – 3.05 (m, 8H), 2.75 – 2.66 (m,</sup> 8H), 2.39 – 2.29 (m, 8H), 2.19 – 2.11 (m, 8H), 1.38 (t, ³J_{HH} = 7.5 Hz, 24H), 1.03 (s, 24H), 0.95 $(t, {}^{3}J_{HH} = 7.5$ Hz, 24H). ¹³C{¹H} NMR (101 MHz, *d*₈-toluene) δ 157.5, 141.1, 139.0, 135.0, 132.3, 131.9, 131.8, 128.7, 128.3, 128.0, 128.0, 126.7, 126.3, 126.0, 125.3, 101.6, 83.5, 77.2, 24.9, 24.3, 24.2, 14.4, 14.2. ¹¹B NMR (128 MHz, *d*8-toluene) δ 24.69.

Figure S14: ¹H NMR (400 MHz, 25 °C, d_8 -toluene) spectrum of compounds **II** & 2a.

Figure S15: ¹³C{¹H} NMR (100 MHz, 25 °C, d_8 -toluene) spectrum of compounds **II** & 2a.

Figure S16: ¹¹B NMR (128 MHz, 25 °C, d_8 -toluene) spectrum of compounds **II** & 2a.

Figure S17: ¹H NMR (400 MHz, 25 °C, CDCl₃) spectrum of compound $[L^2ZnI]_2$.

Figure S19: ¹H NMR (700 MHz, 25 \textdegree C, d_8 -toluene) spectrum of compound **III**.

Figure S21: ¹H NMR (400 MHz, 25 °C, C_6D_6) spectrum of compound **IV**.

Figure S23: ¹H NMR (700 MHz, 25 $^{\circ}$ C, d_8 -toluene) spectrum of compound **IV**.

 $\overline{\mathbf{8}}$

 $\overline{9}$

 $\frac{1}{14}$

 $\frac{1}{13}$

 12

 $\frac{1}{11}$

 $\overline{10}$

 $\frac{7}{f1(ppm)}$

 $\frac{1}{5}$

 $\ddot{\bf{6}}$

 $\frac{1}{2}$

 \mathbf{i}

 $\ddot{\mathbf{0}}$

 $\overline{\mathbf{3}}$

 $\overline{\mathbf{4}}$

Figure S24: ¹³C{¹H} NMR (176 MHz, 25 °C, d_8 -toluene) spectrum of compound **IV**. **The reaction between zinc alkynyl IV and HBpin {NMR-Scale}:** The addition of HBpin (6.81 μL, 0.047 mmol) to a J. Young valve NMR tube containing a solution of compound **IV** (0.023 mmol) in *d*8-toluene at room temperature after 30 min. resulted in the formation of compounds **III** and **2a,** with a 25% yield observed by multinuclear NMR spectroscopy. ¹H and ¹¹B NMR spectroscopy revealed that the reaction has reached an equilibrium best evident by the integration of resonance for Bpin moieties of **2a** and HBpin. Extended heating up to 24 h at 80 $^{\circ}$ C showed no change in the relative ratio of 2a and **IV**, suggesting that the equilibrium position had already been reached before heating. NMR Yield: (25%).

Figure S25: ¹H NMR (700 MHz, 25 °C, d_8 -toluene) spectrum of compounds $[L^2ZnH]_2 \& 2a$.

Figure S26: ¹³C{¹H} NMR (176 MHz, 25 °C, d_8 -toluene) spectrum of compounds $[L^2ZnH]_2 \& 2a$.

Figure S27: ¹¹B NMR (128 MHz, 25 °C, d_8 -toluene) spectrum of compounds $[L^2ZnH]_2 \&$ **2a**. A doublet peak at δ 27.78 – 29.13 ppm arises from free HBpin.

The reaction between zinc hydride III and 2a {NMR-Scale}: The addition of **2a** (10.71 mg, 0.047 mmol) to a solution of complex **III** (0.020 g, 25 °C, 0.023 mmol) in d_8 -toluene in a J. Young valve NMR tube after 1h at 60 °C resulted in the formation of compound **IV** and HBpin with 75% yield observed by multinuclear NMR spectroscopy. ¹H and ¹¹B NMR spectroscopy revealed that the reaction has reached an equilibrium best evident by the integration of resonance for Bpin moieties of $2a$ and **IV**. Extended heating up to 24 h at 80 $^{\circ}$ C showed no change in the relative ratio of **2a** and **IV**, suggesting that the equilibrium position had already been reached before heating. NMR Yield: (75%).

Figure S28: ¹H NMR (400 MHz, 25 °C, d_8 -toluene) spectrum of compounds **IV** & 2HBpin.

Figure S29: ¹³C{¹H} NMR (100 MHz, 25 °C, *d*₈-toluene) spectrum of compounds **IV** & 2HBpin.

Figure S30: ¹¹B NMR (128 MHz, 25 °C, d_8 -toluene) spectrum of compounds **IV** & 2HBpin. A doublet peak at δ 27.77 – 29.13 ppm arises from free HBpin.

Synthesis of compound IV and 2a {NMR-Scale}: The addition of phenylacetylene (5.15 μL, 0.047 mmol) to a J. Young valve NMR tube containing a solution of compound **III** and **2a** (25%) in *d*8-toluene at room temperature after 20 min. resulted in the complete formation of compounds **IV** and **2a** was observed by ${}^{1}H$ and ${}^{11}B$ NMR spectroscopy. The above study indicates that once 25% of compound **III** and **2a** were formed, it immediately reacted with one additional equivalent of phenylacetylene to form a quantitative amount of product **2a** and compound **IV**. It stops the equilibrium reaction between compounds **IV** and **2a**. NMR Yield: (>99%). ¹H NMR (700 MHz, d_8 -toluene) δ 7.34 – 7.33 (m, 4H), 7.14 – 7.13 (m, 4H), 7.05 – 7.02 (m, 12H), 6.92 (t, ${}^{3}J_{\text{HH}} = 7.1$ Hz, 3H), 6.88 (t, ${}^{3}J_{\text{HH}} = 7.1$ Hz, 3H), 6.81 – 6.79 (m, 6H), 4.92 (s, 2H), 2.63 – 2.57 (m, 8H), 2.49 – 2.44 (m, 8H), 1.58 (s, 12 H), 1.21 (t, $^3J_{\text{HH}} = 7.3$ Hz, 24H), 1.04 (s, 24H). ¹³C{¹H} NMR (176 MHz, *d*8-toluene) δ 168.1, 145.5, 136.8, 132.2, 131.9,

131.8, 128.8, 128.0, 128.0, 126.4, 125.3, 122.4, 95.4, 83.5, 77.3, 29.9, 24.2, 22.8, 14.3. ¹¹B NMR (128 MHz, C₆D₆) δ 24.38.

Figure S31: ¹H NMR (700 MHz, 25 °C, d_8 -toluene) spectrum of compounds **IV** & 2a.

Figure S32: ¹³C{¹H} NMR (176 MHz, 25 °C, d_8 -toluene) spectrum of compounds **IV** & 2a.

Figure S33: ¹¹B NMR (128 MHz, 25 °C, C_6D_6) spectrum of compounds **IV** & 2a.

The reaction between zinc hydride III, phenylacetylene, and compound 2a {NMR-Scale}:

In a J. Young valve NMR tube $(0.020 \text{ g}, 25 \text{ °C}, 0.023 \text{ mmol})$ complex **I**, $(10.71 \text{ mg}, 0.047$ mmol) of **2a,** and (5.15 μL, 0.047 mmol) of phenylacetylene were added successively in *d*₈toluene. Reaction progress was monitored by ${}^{1}H$ NMR analyses, which confirmed at room temperature after 25 min complete formation of compound **IV** with the liberation of H_2 gas, and unreacted compound $2a$ was observed by ${}^{1}H$ and ${}^{11}B$ NMR spectroscopy. The above study indicates that the exclusive formation of compound **IV** with a quantitative yield and compound **2a** was untouched. It again revealed that phenylacetylene's presence stops the equilibrium reaction between compounds **III** and **2a**. NMR Yield: $(>99\%)$. ¹H NMR (700 MHz, d_8 toluene) δ 7.34 – 7.33 (m, 4H), 7.14 – 7.13 (m, 4H), 7.05 – 7.02 (m, 12H), 6.92 (t, $\delta J_{\text{HH}} = 7.0$ Hz, 3H), 6.88 (t, ${}^{3}J_{\text{HH}} = 7.2$ Hz, 3H), 6.81 – 6.78 (m, 6H), 4.92 (s, 2H), 2.63 – 2.57 (m, 8H), 2.49 – 2.44 (m, 8H), 1.58 (s, 12 H), 1.21 (t, ${}^{3}J_{HH} = 7.3$ Hz, 24H), 1.04 (s, 24H). ¹³C{¹H} NMR (176 MHz, *d*8-toluene) δ 168.1, 145.5, 136.8, 132.3, 131.9, 131.8, 128.8, 128.0, 128.0, 126.4, 125.4, 122.4, 95.4, 83.5, 77.3, 24.6, 24.2, 22.8, 14.3. ¹¹B NMR (128 MHz, *d*8-toluene) δ 24.70.

Figure S34: ¹H NMR (700 MHz, 25 °C, d_8 -toluene) spectrum of compounds **IV** & 2a.

Figure S35: ¹³C{¹H} NMR (176 MHz, 25 °C, d_8 -toluene) spectrum of compounds **IV** & 2a.

Figure S36: ¹¹B NMR (128 MHz, 25 °C, d_8 -toluene) spectrum of compounds **IV** & 2a. **Scheme S1. Stoichiometric Experiments for Dehydroborylation of Terminal Alkynes**

Figure S37: ¹H NMR (400 MHz, 25 °C, C_6D_6) spectrum of compound \mathbf{II}' .

Figure S38: ¹³C{¹H} NMR (100 MHz, 25 °C, C₆D₆) spectrum of compound **II'**.

Figure S39: ¹⁹F{¹H} NMR (377 MHz, 25 °C, C_6D_6) spectrum of compound **II'**.

The reaction between zinc alkynyl II' and HBpin {NMR-Scale}: The addition of HBpin (4.06 μL, 0.028 mmol) to a J. Young valve NMR tube containing a solution of compound **II'** (0.014 mmol) in d_8 -toluene at room temperature after 30 minutes resulted in the formation of compounds **I** and 2m with a 20% yield were observed by multinuclear NMR spectroscopy. ¹H and ¹¹B NMR spectroscopy revealed that the reaction had reached an equilibrium, best evidenced by the integration of resonance for Bpin moieties of **2m** and HBpin. Extended heating up to 24 h at 80 $^{\circ}$ C showed no change in the relative ratio of $2m$ and II^* , suggesting that the equilibrium position had already been reached before heating. NMR Yield: (20%).

Figure 40: ¹H NMR (400 MHz, 25 °C, C_6D_6) spectrum of compounds $[L^1ZnH]_2 \& 2m$.

Figure S41: ¹³C{¹H} NMR (100 MHz, 25 °C, C₆D₆) spectrum of compounds $[L^1ZnH]$ **2** & **2m**.

Figure S42: ¹¹B NMR (128 MHz, 25 °C, C_6D_6) spectrum of compounds $[L^1ZnH]_2 \& 2m$. A doublet peak at δ 27.82 – 29.18 ppm arises from free HBpin.

Figure S43: ¹⁹F{¹H} NMR (377 MHz, 25 °C, C₆D₆) spectrum of compounds $[L^1ZnH]$ ₂ & 2m.

Synthesis of compound II' and 2m {NMR-Scale}: The addition of 4- (trifluoromethyl)phenylacetylene (**1m**) (4.5 μL, 0.028 mmol) to a J. Young valve NMR tube containing a solution of compound **I** and $2m$ (20%) in d_8 -toluene at room temperature after 15 minutes resulted in the complete formation of compound \mathbf{II}' and $2\mathbf{m}$ was observed by ¹H and ¹¹B NMR spectroscopy. The above study indicates that once 20% compound **2m** and **I** was formed, it immediately reacted with one additional equivalent of 4- (trifluoromethyl)phenylacetylene to form a quantitative amount of product **2m** and compound **II'**. It stops the equilibrium reaction between compounds or **II' and 2m**. NMR Yield: (>99%). ¹H NMR (400 MHz, C_6D_6) δ 7.12 – 7.07 (m, 16H), 6.99 – 6.89 (m, 16H), 6.65 – 6.63 (d, ³J_{HH} $= 9.6$ Hz, 8H), 5.07 (s, 4H), 3.16 – 3.07 (m, 8H), 2.75 – 2.66 (m, 8H), 2.39 – 2.30 (m, 8H), $2.20 - 2.11$ (m, 8H), 1.39 (t, ${}^{3}J_{\text{HH}} = 7.4$ Hz, 24H), 1.01 (s, 24H), 0.96 (t, ${}^{3}J_{\text{HH}} = 7.6$ Hz, 24H). ¹³C{¹H} NMR (101 MHz, C₆D₆) δ 157.6, 141.7, 141.0, 139.0, 134.9, 132.4, 131.9, 126.9, 126.5, 126.3, 126.2, 125.0, 125.0, 125.0, 124.9, 124.5, 124.5, 124.5, 124.4, 107.7, 105.4, 84.0, 24.9, 24.4, 24.3, 14.6, 14.2. ¹¹B NMR (128 MHz, C₆D₆) δ 24.60. ¹⁹F{¹H} NMR (377 MHz, C_6D_6) δ -62.42, -62.78.

Figure S44: ¹H NMR (400 MHz, 25 °C, C_6D_6) spectrum of compounds **II'** & **2m**.

Figure S45: ¹³C{¹H} NMR (100 MHz, 25 °C, C₆D₆) spectrum of compounds **II'** $\&$ **2m**.

 $\begin{array}{cc} 10 & 0 \\ 0 & \text{f1 (ppm)} \end{array}$

Figure S47: ¹⁹F{¹H} NMR (377 MHz, 25 °C, C₆D₆) spectrum of compounds **II'** & **2m**.

Figure S48: ¹H NMR (400 MHz, 25 $^{\circ}C$, C_6D_6) spectrum of compound **IV**'.

Figure S49: ¹³C{¹H} NMR (400 MHz, 25 °C, C₆D₆) spectrum of compound **IV**'.

Figure S50: ¹⁹F{¹H} NMR (377 MHz, 25 °C, C₆D₆) spectrum of compound **IV**'.

The reaction between zinc alkynyl IV' and HBpin {NMR-Scale}: The addition of HBpin (6.81 μL, 0.047 mmol) to a J. Young valve NMR tube containing a solution of compound **IV'** (0.023 mmol) in C_6D_6 at room temperature after 30 minutes resulted in the formation of compounds **III** and **2m** with a 14% yield along with 1,1-diborylated alkenes product are confirmed by multinuclear NMR (${}^{1}H$, ${}^{13}C\{{}^{1}H\}$, ${}^{11}B$, ${}^{19}F\{{}^{1}H\}$). When prolongated the heating, the alkynylborates convert to the 1,1-diborylated alkenes are observed by ^{11}B NMR.

Figure S51: ¹H NMR (400 MHz, 25 °C, C_6D_6) spectrum of compounds $[L^2ZnH]$ **2** & **2m**.

Figure S53: ¹¹B NMR (128 MHz, 25 °C, C_6D_6) spectrum of compounds $[L^2\mathbf{ZnH}]_2 \& 2m$. A doublet peak at δ 27.78 – 29.14 ppm arises from free HBpin.

Figure S54: ¹⁹F{¹H} NMR (377 MHz, 25 °C, C₆D₆) spectrum of compounds $[L^2ZnH]$ ₂ & 2m.

Figure S55: ¹⁹F{¹H} NMR (377 MHz, 25 °C, C₆D₆) spectrum of $[L^1ZnH]_2$ & 2m Vs. **[L²ZnH]²** & **2m**.

Figure S56: ¹H NMR spectrum of compound **2a** (400 MHz, CDCl3).

Figure S57: ¹³C{¹H} NMR spectrum of compound **2a** (100 MHz, CDCl₃).

Figure S58:¹¹B NMR spectrum of compound 2a (128 MHz, CDCl₃).

Figure S59: ¹H NMR spectrum of compound **2a** (400 MHz, CDCl3).

Figure S60: ¹³C{¹H} NMR spectrum of compound **2a** (100 MHz, CDCl3).

Figure S61:¹¹B NMR spectrum of compound 2a (128 MHz, CDCl₃).

Figure S62: ¹H NMR spectrum of compound **2a** (400 MHz, CDCl3). Mesitylene was used as an internal standard. * = unreacted compound **1a**.

Figure S63: ¹³C{¹H} NMR spectrum of compound **2a** (100 MHz, CDCl3). Mesitylene was used as an internal standard.

Figure S64: ¹H NMR spectrum of compound **2b** (400 MHz, CDCl3).

Figure S65: ¹³C{¹H} NMR spectrum of compound 2b (100 MHz, CDCl₃).

Figure S67: ¹H NMR spectrum of compound **2c** (400 MHz, CDCl3).

Figure S68: ¹³C{¹H} NMR spectrum of compound 2c (100 MHz, CDCl₃).

Figure S69:¹¹B NMR spectrum of compound 2c (128 MHz, CDCl₃).

Figure S70: ¹H NMR spectrum of compound **2c** (400 MHz, CDCl3). Mesitylene was used as an internal standard. * = unreacted compound **1c**.

Figure S71: ¹³C{¹H} NMR spectrum of compound **2c** (100 MHz, CDCl3). Mesitylene was used as an internal standard.

Figure S72:¹¹B NMR spectrum of compound 2c (128 MHz, CDCl₃). Mesitylene was used as an internal standard.

Figure S73: ¹H NMR spectrum of compound 2d (400 MHz, CDCl₃).

Figure S74: ¹³C{¹H} NMR spectrum of compound **2d** (100 MHz, CDCl₃).

Figure S75:¹¹B NMR spectrum of compound 2d (128 MHz, CDCl₃).

Figure S76: ¹H NMR spectrum of compound **2e** (400 MHz, CDCl3).

Figure S77: ¹³C{¹H} NMR spectrum of compound **2e** (100 MHz, CDCl3).

Figure S79: ¹H NMR spectrum of compound **2f** (400 MHz, CDCl3).

Figure S80: ¹³C{¹H} NMR spectrum of compound **2f** (100 MHz, CDCl3).

Figure S81:¹¹B NMR spectrum of compound 2f (128 MHz, CDCl₃).

Figure S83: ¹³C{¹H} NMR spectrum of compound **2g** (100 MHz, CDCl3).

Figure S85: ¹³C{¹H} NMR spectrum of compound **2h** (100 MHz, CDCl₃).

Figure S86:¹¹B NMR spectrum of compound 2h (128 MHz, CDCl₃).

Figure S87: ¹H NMR spectrum of compound 2i (400 MHz, CDCl₃).

Figure S89:¹¹B NMR spectrum of compound 2i (128 MHz, CDCl₃).

Figure S91: ¹³C{¹H} NMR spectrum of compound 2j (100 MHz, CDCl₃).

Figure S92:¹¹B NMR spectrum of compound 2j (128 MHz, CDCl₃).

Figure S93: ¹H NMR spectrum of compound 2k (400 MHz, CDCl₃).

Figure S94: ¹³C{¹H} NMR spectrum of compound **2k** (100 MHz, CDCl3).

Figure S95: ¹¹B $\{^1H\}$ NMR spectrum of compound **2k** (128 MHz, CDCl₃). A peak observed at δ 27.28 ppm arises from free HBpin.

Figure S96: ¹H NMR spectrum of compound **2l** (400 MHz, CDCl3).

Figure S97: ¹³C{¹H} NMR spectrum of compound **2l** (100 MHz, CDCl3).

Figure S98:¹¹B NMR spectrum of compound 2l (128 MHz, CDCl₃).

Figure S99: ¹H NMR spectrum of compound **2m** (400 MHz, CDCl3).

Figure S100: ¹³C{¹H} NMR spectrum of compound **2m** (100 MHz, CDCl3).

Figure S101:¹¹B NMR spectrum of compound 2m (128 MHz, CDCl₃).

Figure S102: ¹H NMR spectrum of compound **2n** (400 MHz, CDCl₃). * = unreacted compound **1n**.

Figure S103: ¹H NMR spectrum of compound **2o** (400 MHz, CDCl₃).

Figure S104: ¹³C{¹H} NMR spectrum of compound **2o** (100 MHz, CDCl3).

Figure S105:¹¹B NMR spectrum of compound 2o (128 MHz, CDCl₃).

Figure S106: ¹H NMR spectrum of compound 2p (400 MHz, CDCl₃).

Figure S107: ¹³C{¹H} NMR spectrum of compound $2p$ (100 MHz, CDCl₃).

Figure S108:¹¹B NMR spectrum of compound 2p (128 MHz, CDCl₃).

Figure S109: ¹H NMR spectrum of compound **2q** (400 MHz, CDCl3).

Figure S110: ¹³C{¹H} NMR spectrum of compound **2q** (100 MHz, CDCl3).

Figure S111: ¹¹B $\{^1H\}$ NMR spectrum of compound 2q (128 MHz, CDCl₃). A peak observed at δ 27.07 ppm arises from free HBpin.

Figure S112: ¹H NMR spectrum of compound **2r** (400 MHz, CDCl₃).

Figure S113: ¹³C{¹H} NMR spectrum of compound 2r (100 MHz, CDCl₃).

Figure S114: ¹H NMR spectrum of compound **2s** (400 MHz, CDCl3).

Figure S115: ¹³C{¹H} NMR spectrum of compound $2s$ (100 MHz, CDCl₃).

Figure S116: ¹H NMR spectrum of compound **2t** (400 MHz, CDCl3).

Figure S117: ¹³C{¹H} NMR spectrum of compound 2t (100 MHz, CDCl₃).

Figure S118: ¹H NMR spectrum of compound 2u (400 MHz, CDCl₃).

Figure S119: ¹³C{¹H} NMR spectrum of compound 2u (100 MHz, CDCl₃).

Figure S121: ¹H NMR spectrum of compound 2v (400 MHz, CDCl₃).

Figure S122: ¹³C{¹H} NMR spectrum of compound **2v** (100 MHz, CDCl3).

Figure S123:¹¹B NMR spectrum of compound 2v (128 MHz, CDCl₃).

Figure S124: ¹H NMR spectrum of compound **2w** (400 MHz, CDCl3).

Figure S125: ¹³C{¹H} NMR spectrum of compound $2w$ (100 MHz, CDCl₃).

Figure S126:¹¹B NMR spectrum of compound 2w (128 MHz, CDCl₃).

Figure S127: ¹H NMR spectrum of compound **2x** (400 MHz, CDCl3).

Figure S128: ¹³C{¹H} NMR spectrum of compound $2x$ (100 MHz, CDCl₃).

Figure S129:¹¹B NMR spectrum of compound 2x (128 MHz, CDCl₃).

Figure S130: ¹H NMR spectrum of compound **2y** (400 MHz, CDCl3).

Figure S131: ¹³C{¹H} NMR spectrum of compound **2y** (100 MHz, CDCl₃).

Figure S132: ¹¹B NMR spectrum of compound 2y (128 MHz, CDCl₃).

Figure S133: ¹H NMR spectrum of compound **2z** (400 MHz, CDCl3).

Figure S134: ¹³C{¹H} NMR spectrum of compound **2z** (100 MHz, CDCl3).

Figure S135: ${}^{11}B\{{}^{1}H\}$ NMR spectrum of compound $2z$ (128 MHz, CDCl₃).

Figure S136: ¹H NMR spectrum of compound **2aa** (400 MHz, CDCl3).

Figure S137: ¹³C{¹H} NMR spectrum of compound **2aa** (100 MHz, CDCl3).

Figure S138:¹¹B NMR spectrum of compound **2aa** (128 MHz, CDCl₃). A doublet peak at δ 27.49-28.86 ppm arises from free HBpin.

Figure S139: ¹H NMR spectrum of compound **2ab** (400 MHz, CDCl3).

Figure S140: ¹³C{¹H} NMR spectrum of compound 2ab (100 MHz, CDCl₃).

Figure S141:¹¹B NMR spectrum of compound 2ab (128 MHz, CDCl₃).

38877500777928

Figure S142: ¹H NMR spectrum of compound **2ac** (400 MHz, CDCl3).

Figure S143: ¹³C{¹H} NMR spectrum of compound **2ac** (100 MHz, CDCl3).

Figure S144: ¹¹B{¹H} NMR spectrum of compound 2ac (128 MHz, CDCl₃).

Figure S145: ¹H NMR spectrum of compound **2ad** (400 MHz, CDCl3).

Figure S146: ¹³C{¹H} NMR spectrum of compound 2ad (100 MHz, CDCl₃).

Figure S147:¹¹B NMR spectrum of compound 2ad (128 MHz, CDCl₃).

Figure S148: ¹H NMR spectrum of compound **2a** and unreacted styrene (400 MHz, CDCl₃).

Figure S149: ¹³C{¹H} NMR spectrum of compound **2a** and unreacted styrene (100 MHz, CDCl3).

Figure S150:¹¹B NMR spectrum of compound 2a and unreacted styrene (128 MHz, CDCl₃).

Figure S151: ¹H NMR spectrum of compound **2a** and unreacted benzyl benzoate (400 MHz, CDCl₃).

Figure S152: ¹³C{¹H} NMR spectrum of compound **2a** and unreacted benzyl benzoate (100) MHz, CDCl₃).

Figure S153: ¹H NMR spectrum of compound **2a** and unreacted pyridine (400 MHz, CDCl3).

$\frac{20}{1.88}$ 0.84

Figure S154: ¹H NMR spectrum of compound $2x$ and unreacted 1-pentyl isocyanide (400) MHz, CDCl₃).

Figure S155: ¹³C{¹H} NMR spectrum of compound **2x** and unreacted 1-pentyl isocyanide $(100 \text{ MHz}, \text{CDCl}_3).$

Figure S156:¹¹B NMR spectrum of compound 2x and unreacted 1-pentyl isocyanide (128) MHz, CDCl₃).

X-ray Crystallographic Data of II and **IV**

X-ray Crystallography

The single crystals of compounds **II** and **IV** were crystallized from Benzene at rt as colorless blocks after 2 d. The crystal data of compounds **II** and **IV** were collected on a Rigaku Oxford diffractometer with graphite-monochromated Cu-K α radiation ($\lambda = 1.54184$ Å) and Mo-K α radiation (λ = 0.71073 Å) respectively at 100 K. Selected data collection parameters, and other crystallographic results are summarized in Table S2. The structure was determined using direct methods employed in *ShelXT*,¹ *OleX*², and refinement was carried out using least-square minimization implemented in *ShelXL*. ³ All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atom positions were fixed geometrically in idealized positions and were refined using a riding model.

Figure 157. Molecular structure of **II**. The thermal ellipsoids are shown at 50% probability, and all the hydrogen atoms (except for $H(4)$, $H(5)$) and ethyl groups have been removed for clarity. Selected bond lengths (Å) and angles (deg), For **II**: Zn1-N1 1.9612(17), Zn1-N2 1.9539(16), Zn1-C1 2.026(2), Zn1-C1' 2.316(2), Zn1-Zn1' 2.8705(5), C1-C2 1.167(3); N1- Zn1-N2 94.82(7), N1-Zn1-C1 115.44(7), N2-Zn1-C1 124.65(8), C1-Zn1-C1' 97.52(8), Zn1- C1-Zn1' 82.48(8).

Figure 158. Molecular structure of **IV**. The thermal ellipsoids are shown at 50% probability, and all the hydrogen atoms have been removed for clarity. Selected bond lengths (Å) and angles (deg), For **II**: Zn1-N1 1.984(4), Zn1-N2 1.988(4), Zn1-C1 1.979(5), C1-C2 1.213(7); N1-Zn1-N2 97.20(16), N1-Zn1-C1 119.02(19), N2-Zn1-C1 123.33(18).

Compound **II IV** Empirical Formula $C_{100}H_{118}N_{10}Zn_2 2 (C_6H_6)$ $C_{66}H_{76}N_4Zn_2$ CCDC 2177018 2177019 Molecular mass 1746.99 1056.16 Temperature (K) 100 100 Wavelength (\hat{A}) 1.54184 0.71073 Size(mm) $0.2 \times 0.18 \times 0.17$ $0.2 \times 0.18 \times 0.17$ Crystal system triclinic monoclinic monoclinic Space group $P-1$ P^2 1/c $a(\text{\AA})$ 12.0811(3) 17.8516(6) *b* (Å) 13.0427(3) 18.4478(7) c (\AA) 16.7425(4) 16.8605(5) α (deg)[°] 90 β (deg)[°] 94.032(3) $γ$ (deg)^o 63.721(2) 90 Volume (\AA^3) 2349.64(10) 5538.8(3) Z 4 Calculated density $(g/cm³)$) 1.235 1.2664 Absorption coefficient $\text{(mm}^{-1})$ 1.041 0.911 $F(000)$ 2243.1 Theta range for data collection (deg)° 7.592 to 136.478 6.8 to 50.7 Limiting indices $\vert -14 \leq h \leq 14, -15 \leq k \leq 15, -20 \leq l \leq$ 19 $-25 \le h \le 23, -25 \le k \le 23, -23 \le l \le$ 23 Reflections collected 34507 47199 Independent reflections $\left| 8567 \text{ [R}_{\text{int}} = 0.0358, \text{R}_{\text{sigma}} = 0.0252 \text{]} \right|$ 10002 [R_{int} = 0.0776, R_{sigma} = 0.0828] Completeness to theta 99 % 99 % 99 % Absorption correction Empirical Empirical Empirical Empirical Data/restraints/parameters 10002 / 0 / 661 Goodness – of–fit on F^2 1.016 1.161 Final R indices $[I>2]$ $sigma(I)$] $R_1 = 0.0452$, $wR_2 = 0.1218$ $R_1 = 0.0600$, $wR_2 = 0.1655$

Table S2. Crystallographic Data and Refinement Parameters for Compounds **II** and **IV.**

REFERENCES

- (1) Sheldrick, G. Crystal structure refinement with SHELXL. *Acta Crystallogr. C*. **2015,** *71*, 3–8.
- (2) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement, and analysis program. *J. Appl. Crystallogr.* **2009**, *42*, 339-341.
- (3) (a) Sheldrick, G. M. A short history of SHELX. *Acta Crystallogr., Sect. A: Found. Crystallogr*. **2008**, *64*, 112-122. (b) Sheldrick, G. M. SHELXT - Integrated space-group and crystal-structure determination. *Acta Crystallogr., Sect. A: Found. Adv.* **2015**, *71*, 3-8.