Supporting Information

Comparison of Two Zinc Hydride Precatalysts for Selective Dehydrogenative Borylation of Terminal Alkynes: A Detailed Mechanistic Study

Rajata Kumar Sahoo, Arukela Ganesh Patro, Nabin Sarkar, and Sharanappa Nembenna*

School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752 050, India

Contents

Optimization of Zinc Catalyzed Dehydroborylation of PhenylacetyleneS2											
Synthesis,	Analytical	l Data, and	NMR s	spectra	a (¹ H,	$^{13}C\{^{1}H\},$	¹¹ B NMR) of			
Stoichiometric Experiments											
¹ H, ¹³ C{ ¹ H} NMR spectra of $[L^2ZnI]_2$, and III											
1 H, 13 C{	¹ H} and	¹¹ B NMR	Spectra	of	Dehydr	ogenative	Borylation	of			
Alkynes											
¹ H, ¹³ C{	¹ H} and	¹¹ B NMR	Spectra	of	Intern	nolecular	Chemosele	ctive			
Reaction											
X-ray Crystallographic Data of II and IV											
References	5							.S93			

Table S1: Optimization of Zinc Catalyzed Dehydroborylation of Phenylacetylene.

Entry	precatalyst	mol %	HBpin (eq.)	Solvent	Temp (° C)	Time (h)	Conv. (%)
1			1.05	neat	rt	6	0
2	Ι	10	1.05	neat	60	6	99
3	Ι	5	1.05	neat	rt	6	99
4	Ι	3	1.05	neat	rt	6	99
5	Ι	1.5	1.05	neat	rt	6	99
6	Ι	1.5	1.05	neat	rt	1	99
7	Ι	1	1.05	neat	rt	1	98
8	Ι	0.5	1.05	neat	rt	1	75
9	Ι	1.5	1.05	benzene	rt	6	99
10	Ι	1.5	1.05	toluene	rt	6	99
11	Ι	1.5	1.05	THF	rt	6	99
12	III	1.5	1.05	neat	rt	6	97
13	Cat. II	1.5	1.05	neat	rt	6	99
14	Cat. IV	1.5	1.05	neat	rt	6	97

Synthesis, Analytical Data, and NMR spectra (¹H, ¹³C{¹H}, ¹¹B NMR) of Stoichiometric Experiments.

Figure S1: ¹H NMR (400 MHz, 25 °C, C₆D₆) spectrum of compound II.

Figure S2: ${}^{13}C{}^{1}H$ NMR (100 MHz, 25 °C, C₆D₆) spectrum of compound II.

 $\begin{array}{c} 7.24\\ 7.15\\ 7.09\\ 6.97\\ 6.697\\ 6.697\\ 6.697\\ 6.697\\ 6.697\\ 6.697\\ 6.697\\ 6.697\\ 6.697\\ 6.697\\ 6.697\\ 6.697\\ 6.697\\ 7.226\\ 7.226\\ 7.216\\ 7.216\\ 7.216\\ 7.226\\$

Figure S3: ¹H NMR (400 MHz, 25 °C, *d*₈-toluene) spectrum of compound II.

Figure S4: ${}^{13}C{}^{1}H$ NMR (100 MHz, 25 °C, d_8 -toluene) spectrum of compound II.

The reaction between zinc alkynyl II and HBpin {NMR-Scale}: The addition of HBpin (4.06 μ L, 0.028 mmol) to a J. Young valve NMR tube containing a solution of compound II (0.014 mmol) in *d*₈-toluene at room temperature after 30 minutes resulted in the formation of compounds I and 2a with a 30% yield was observed by multinuclear NMR spectroscopy. ¹H and ¹¹B NMR spectroscopy revealed that the reaction had reached an equilibrium, best evidenced by the integration of resonance for Bpin moieties of 2a and HBpin. Extended heating up to 24 h at 80 °C showed no change in the relative ratio of 2a and II, suggesting that the equilibrium position had already been reached before heating. NMR Yield: (30%).

Figure S5: ¹H NMR (400 MHz, 25 °C, *d*₈-toluene) spectrum of compounds [L¹ZnH]₂ & 2a.

Figure S6: ¹³C{¹H} NMR (100 MHz, 25 °C, d_8 -toluene) spectrum of compounds [L¹ZnH]₂ & 2a.

Figure S7: ¹¹B NMR (128 MHz, 25 °C, d_8 -toluene) spectrum of compounds [L¹ZnH]₂ & 2a. A doublet peak at δ 27.76 – 29.12 ppm arises from free HBpin.

The reaction between zinc hydride I and 2a {NMR-Scale}: The addition of **2a** (6.5 mg, 0.028 mmol) to a solution of complex **I** (0.020 g, 25 °C, 0.014 mmol) in *d*₈-toluene in a J. Young valve NMR tube after 1 h at 60 °C resulted in the formation of compound **II**, and HBpin with 70% yield was observed by ¹H and ¹¹B NMR spectroscopy. After 24 h at room temperature, no change was observed in the reaction mixture. ¹H and ¹¹B NMR spectroscopy revealed that the reaction reached an equilibrium, best evidenced by the integration of resonance for Bpin moieties of **2a** and compound **II**. Extended heating up to 24 h at 80 °C showed no change in the relative ratio of **2a** and **II**, suggesting that the equilibrium position had already been reached before heating. NMR Yield: (70%).

Figure S8: ¹H NMR (400 MHz, 25 °C, *d*₈-toluene) spectrum of compounds II & 2HBpin.

Figure S9: ¹³C{¹H} NMR (100 MHz, 25 °C, d_8 -toluene) spectrum of compounds **II** & 2HBpin.

Figure S10: ¹¹B NMR (128 MHz, 25 °C, d_8 -toluene) spectrum of compounds **II** & 2HBpin. A doublet peak at δ 27.74 – 29.10 ppm arises from free HBpin.

Synthesis of compound II and 2a {NMR-Scale}: The addition of phenylacetylene (3.07 μL, 0.028 mmol) to a J. Young valve NMR tube containing a solution of compound **I** and **2a** (30%) in *d*₈-toluene at room temperature after 15 minutes resulted in the complete formation of compound **II** and **2a** was observed by ¹H and ¹¹B NMR spectroscopy. The above study indicates that once 30% compound **2a** and **I** was formed, it immediately reacted with one additional equivalent of phenylacetylene to form a quantitative amount of product **2a** and compound **II**. It stops the equilibrium reaction between compounds **II** and **2a**. NMR Yield: (>99%). ¹H NMR (400 MHz, *d*₈-toluene) δ 7.34 – 7.32 (m, 4H), 7.19 – 7.18 (m, 3H), 7.10 – 7.03 (m, 14H), 6.92 – 6.81 (m, 15H), 6.61 – 6.59 (d, ³*J*_{HH} = 9.6 Hz, 8H), 5.05 (s, 4H), 3.14 – 3.05 (m, 8H), 2.76 – 2.65 (m, 8H), 2.39 – 2.29 (m, 8H), 2.19 – 2.11 (m, 8H), 1.38 (t, ³*J*_{HH} = 7.4 Hz, 24H), 1.03 (s, 24H), 0.95 (t, ³*J*_{HH} = 7.6 Hz, 24H). ¹³C{¹H} NMR (101 MHz, *d*₈-toluene) δ 157.5, 141.1, 139.0, 135.0, 132.3, 131.9, 131.8, 128.7, 128.3, 128.0, 128.0, 126.6, 126.4, 126.3, 125.9, 125.3, 83.5, 77.2, 24.9, 24.3, 24.2, 14.4, 14.2. ¹¹B NMR (128 MHz, *d*₈-toluene) δ 24.71.

Figure S11: ¹H NMR (400 MHz, 25 °C, *d*₈-toluene) spectrum of compounds II & 2a.

Figure S12: ${}^{13}C{}^{1}H$ NMR (100 MHz, 25 °C, d_8 -toluene) spectrum of compounds II & 2a.

Figure S13: ¹¹B NMR (128 MHz, 25 °C, *d*₈-toluene) spectrum of compounds II & 2a.

The reaction between zinc hydride I, phenylacetylene, and compound 2a {NMR-Scale}: In a J. Young valve NMR tube (0.020 g, 25 °C, 0.014 mmol) complex I, (6.5 mg, 0.028 mmol) of **2a**, and (3.07 µL, 0.028 mmol) of phenylacetylene were added successively in d_8 -toluene. Reaction progress was monitored by ¹H NMR analyses, which confirmed that at room temperature after 20 minutes, the complete formation of compound II with the liberation of H₂ gas and unreacted compound **2a** was observed by ¹H and ¹¹B NMR spectroscopy. The above study indicates the exclusive formation of compound II with a quantitative yield, and compound **2a** was untouched. It again revealed that the presence of phenylacetylene stopped the equilibrium reaction between compounds I and **2a**. NMR Yield: (>99%). ¹H NMR (400 MHz, d_8 -toluene) δ 7.34 – 7.32 (m, 4H), 7.22 – 7.15 (m, 3H), 7.10 – 7.02 (m, 14H), 6.92 – 6.81 (m, 15H), 6.61 – 6.59 (d, ³*J*_{HH} = 9.5 Hz, 8H), 5.05 (s, 4H), 3.14 – 3.05 (m, 8H), 2.75 – 2.66 (m, 8H), 2.39 – 2.29 (m, 8H), 2.19 – 2.11 (m, 8H), 1.38 (t, ³*J*_{HH} = 7.5 Hz, 24H), 1.03 (s, 24H), 0.95 (t, ³*J*_{HH} = 7.5 Hz, 24H). ¹³C{¹H} NMR (101 MHz, d_8 -toluene) δ 157.5, 141.1, 139.0, 135.0, 132.3, 131.9, 131.8, 128.7, 128.3, 128.0, 128.0, 126.7, 126.3, 126.0, 125.3, 101.6, 83.5, 77.2, 24.9, 24.3, 24.2, 14.4, 14.2. ¹¹B NMR (128 MHz, d_8 -toluene) δ 24.69.

Figure S14: ¹H NMR (400 MHz, 25 °C, *d*₈-toluene) spectrum of compounds II & 2a.

Figure S15: ${}^{13}C{}^{1}H$ NMR (100 MHz, 25 °C, d_8 -toluene) spectrum of compounds II & 2a.

Figure S16: ¹¹B NMR (128 MHz, 25 °C, *d*₈-toluene) spectrum of compounds II & 2a.

Figure S17: ¹H NMR (400 MHz, 25 °C, CDCl₃) spectrum of compound [L²ZnI]₂.

Figure S19: ¹H NMR (700 MHz, 25 °C, *d*₈-toluene) spectrum of compound III.

Figure S20: ${}^{13}C{}^{1}H$ NMR (176 MHz, 25 °C, d_8 -toluene) spectrum of compound III.

Figure S21: ¹H NMR (400 MHz, 25 °C, C₆D₆) spectrum of compound IV.

Figure S22: ${}^{13}C{}^{1}H$ NMR (100 MHz, 25 °C, C₆D₆) spectrum of compound IV.

Figure S23: ¹H NMR (700 MHz, 25 °C, *d*₈-toluene) spectrum of compound IV.

Figure S24: ¹³C{¹H} NMR (176 MHz, 25 °C, *d*₈-toluene) spectrum of compound **IV**. **The reaction between zinc alkynyl IV and HBpin {NMR-Scale}:** The addition of HBpin (6.81 μL, 0.047 mmol) to a J. Young valve NMR tube containing a solution of compound **IV** (0.023 mmol) in *d*₈-toluene at room temperature after 30 min. resulted in the formation of compounds **III** and **2a**, with a 25% yield observed by multinuclear NMR spectroscopy. ¹H and ¹¹B NMR spectroscopy revealed that the reaction has reached an equilibrium best evident by the integration of resonance for Bpin moieties of **2a** and HBpin. Extended heating up to 24 h at 80 °C showed no change in the relative ratio of **2a** and **IV**, suggesting that the equilibrium position had already been reached before heating. NMR Yield: (25%).

Figure S25: ¹H NMR (700 MHz, 25 °C, d_8 -toluene) spectrum of compounds [L²ZnH]₂ & 2a.

Figure S26: ¹³C{¹H} NMR (176 MHz, 25 °C, d_8 -toluene) spectrum of compounds [L²ZnH]₂ & 2a.

Figure S27: ¹¹B NMR (128 MHz, 25 °C, d_8 -toluene) spectrum of compounds [L²ZnH]₂ & **2a**. A doublet peak at δ 27.78 – 29.13 ppm arises from free HBpin.

The reaction between zinc hydride III and 2a {NMR-Scale}: The addition of **2a** (10.71 mg, 0.047 mmol) to a solution of complex **III** (0.020 g, 25 °C, 0.023 mmol) in *d*₈-toluene in a J. Young valve NMR tube after 1h at 60 °C resulted in the formation of compound **IV** and HBpin with 75% yield observed by multinuclear NMR spectroscopy. ¹H and ¹¹B NMR spectroscopy revealed that the reaction has reached an equilibrium best evident by the integration of resonance for Bpin moieties of **2a** and **IV**. Extended heating up to 24 h at 80 °C showed no change in the relative ratio of **2a** and **IV**, suggesting that the equilibrium position had already been reached before heating. NMR Yield: (75%).

Figure S28: ¹H NMR (400 MHz, 25 °C, *d*₈-toluene) spectrum of compounds IV & 2HBpin.

Figure S29: ¹³C{¹H} NMR (100 MHz, 25 °C, d_8 -toluene) spectrum of compounds **IV** & 2HBpin.

Figure S30: ¹¹B NMR (128 MHz, 25 °C, d_8 -toluene) spectrum of compounds **IV** & 2HBpin. A doublet peak at δ 27.77 – 29.13 ppm arises from free HBpin.

Synthesis of compound IV and 2a {NMR-Scale}: The addition of phenylacetylene (5.15 µL, 0.047 mmol) to a J. Young valve NMR tube containing a solution of compound III and 2a (25%) in d_8 -toluene at room temperature after 20 min. resulted in the complete formation of compounds IV and 2a was observed by ¹H and ¹¹B NMR spectroscopy. The above study indicates that once 25% of compound III and 2a were formed, it immediately reacted with one additional equivalent of phenylacetylene to form a quantitative amount of product 2a and compound IV. It stops the equilibrium reaction between compounds IV and 2a. NMR Yield: (>99%). ¹H NMR (700 MHz, d_8 -toluene) δ 7.34 – 7.33 (m, 4H), 7.14 – 7.13 (m, 4H), 7.05 – 7.02 (m, 12H), 6.92 (t, ³J_{HH} = 7.1 Hz, 3H), 6.88 (t, ³J_{HH} = 7.1 Hz, 3H), 6.81 – 6.79 (m, 6H), 4.92 (s, 2H), 2.63 – 2.57 (m, 8H), 2.49 – 2.44 (m, 8H), 1.58 (s, 12 H), 1.21 (t, ³J_{HH} = 7.3 Hz, 24H), 1.04 (s, 24H). ¹³C{¹H} NMR (176 MHz, d_8 -toluene) δ 168.1, 145.5, 136.8, 132.2, 131.9,

131.8, 128.8, 128.0, 128.0, 126.4, 125.3, 122.4, 95.4, 83.5, 77.3, 29.9, 24.2, 22.8, 14.3. ¹¹B NMR (128 MHz, C₆D₆) δ 24.38.

Figure S31: ¹H NMR (700 MHz, 25 °C, *d*₈-toluene) spectrum of compounds IV & 2a.

Figure S32: ${}^{13}C{}^{1}H$ NMR (176 MHz, 25 °C, d_8 -toluene) spectrum of compounds IV & 2a.

Figure S33: ¹¹B NMR (128 MHz, 25 °C, C₆D₆) spectrum of compounds IV & 2a.

The reaction between zinc hydride III, phenylacetylene, and compound 2a {NMR-Scale}:

In a J. Young valve NMR tube (0.020 g, 25 °C, 0.023 mmol) complex **I**, (10.71 mg, 0.047 mmol) of **2a**, and (5.15 µL, 0.047 mmol) of phenylacetylene were added successively in d_8 -toluene. Reaction progress was monitored by ¹H NMR analyses, which confirmed at room temperature after 25 min complete formation of compound **IV** with the liberation of H₂ gas, and unreacted compound **2a** was observed by ¹H and ¹¹B NMR spectroscopy. The above study indicates that the exclusive formation of compound **IV** with a quantitative yield and compound **2a** was untouched. It again revealed that phenylacetylene's presence stops the equilibrium reaction between compounds **III** and **2a**. NMR Yield: (>99%). ¹H NMR (700 MHz, d_8 -toluene) δ 7.34 – 7.33 (m, 4H), 7.14 – 7.13 (m, 4H), 7.05 – 7.02 (m, 12H), 6.92 (t, ³*J*_{HH} = 7.0 Hz, 3H), 6.88 (t, ³*J*_{HH} = 7.2 Hz, 3H), 6.81 – 6.78 (m, 6H), 4.92 (s, 2H), 2.63 – 2.57 (m, 8H), 2.49 – 2.44 (m, 8H), 1.58 (s, 12 H), 1.21 (t, ³*J*_{HH} = 7.3 Hz, 24H), 1.04 (s, 24H). ¹³C{¹H} NMR (176 MHz, d_8 -toluene) δ 168.1, 145.5, 136.8, 132.3, 131.9, 131.8, 128.8, 128.0, 128.0, 126.4, 125.4, 122.4, 95.4, 83.5, 77.3, 24.6, 24.2, 22.8, 14.3. ¹¹B NMR (128 MHz, d_8 -toluene) δ 24.70.

Figure S34: ¹H NMR (700 MHz, 25 °C, *d*₈-toluene) spectrum of compounds IV & 2a.

Figure S35: ${}^{13}C{}^{1}H$ NMR (176 MHz, 25 °C, d_8 -toluene) spectrum of compounds IV & 2a.

Figure S36: ¹¹B NMR (128 MHz, 25 °C, *d*₈-toluene) spectrum of compounds **IV & 2a**. **Scheme S1. Stoichiometric Experiments for Dehydroborylation of Terminal Alkynes**

Figure S37: ¹H NMR (400 MHz, 25 °C, C₆D₆) spectrum of compound II'.

Figure S38: ${}^{13}C{}^{1}H$ NMR (100 MHz, 25 °C, C₆D₆) spectrum of compound II'.

Figure S39: ${}^{19}F{}^{1}H$ NMR (377 MHz, 25 °C, C₆D₆) spectrum of compound II'.

The reaction between zinc alkynyl II' and HBpin {NMR-Scale}: The addition of HBpin (4.06 μ L, 0.028 mmol) to a J. Young valve NMR tube containing a solution of compound II' (0.014 mmol) in d_8 -toluene at room temperature after 30 minutes resulted in the formation of compounds I and 2m with a 20% yield were observed by multinuclear NMR spectroscopy. ¹H and ¹¹B NMR spectroscopy revealed that the reaction had reached an equilibrium, best evidenced by the integration of resonance for Bpin moieties of 2m and HBpin. Extended heating up to 24 h at 80 °C showed no change in the relative ratio of 2m and II', suggesting that the equilibrium position had already been reached before heating. NMR Yield: (20%).

Figure 40: ¹H NMR (400 MHz, 25 °C, C_6D_6) spectrum of compounds [L¹ZnH]₂ & 2m.

Figure S41: ¹³C{¹H} NMR (100 MHz, 25 °C, C₆D₆) spectrum of compounds $[L^1ZnH]_2 \& 2m$.

Figure S42: ¹¹B NMR (128 MHz, 25 °C, C₆D₆) spectrum of compounds $[L^1ZnH]_2 \& 2m$. A doublet peak at δ 27.82 – 29.18 ppm arises from free HBpin.

Figure S43: ¹⁹F{¹H} NMR (377 MHz, 25 °C, C₆D₆) spectrum of compounds [L¹ZnH]₂ & 2m.

Synthesis of compound II' and 2m {NMR-Scale}: The addition of 4-(trifluoromethyl)phenylacetylene (1m) (4.5 µL, 0.028 mmol) to a J. Young valve NMR tube containing a solution of compound I and 2m (20%) in d_8 -toluene at room temperature after 15 minutes resulted in the complete formation of compound **II' and 2m** was observed by ¹H and ¹¹B NMR spectroscopy. The above study indicates that once 20% compound **2m** and **I** was formed, additional it immediately reacted with one equivalent of 4-(trifluoromethyl)phenylacetylene to form a quantitative amount of product 2m and compound II'. It stops the equilibrium reaction between compounds or II' and 2m. NMR Yield: (>99%). ¹H NMR (400 MHz, C₆D₆) δ 7.12 – 7.07 (m, 16H), 6.99 – 6.89 (m, 16H), 6.65 – 6.63 (d, ³J_{HH} = 9.6 Hz, 8H), 5.07 (s, 4H), 3.16 - 3.07 (m, 8H), 2.75 - 2.66 (m, 8H), 2.39 - 2.30 (m, 8H), 2.20 - 2.11 (m, 8H), 1.39 (t, ${}^{3}J_{HH} = 7.4$ Hz, 24H), 1.01 (s, 24H), 0.96 (t, ${}^{3}J_{HH} = 7.6$ Hz, 24H). ¹³C{¹H} NMR (101 MHz, C₆D₆) δ 157.6, 141.7, 141.0, 139.0, 134.9, 132.4, 131.9, 126.9, 126.5, 126.3, 126.2, 125.0, 125.0, 125.0, 124.9, 124.5, 124.5, 124.5, 124.4, 107.7, 105.4, 84.0, 24.9, 24.4, 24.3, 14.6, 14.2. ¹¹B NMR (128 MHz, C₆D₆) δ 24.60. ¹⁹F{¹H} NMR (377 MHz, C_6D_6) δ -62.42, -62.78.

Figure S44: ¹H NMR (400 MHz, 25 °C, C₆D₆) spectrum of compounds II' & 2m.

Figure S45: ${}^{13}C{}^{1}H$ NMR (100 MHz, 25 °C, C₆D₆) spectrum of compounds II' & 2m.

10 0 -10 f1 (ppm) -20 -30 90 80 50 40 30 20 -40 -50 -60 -70 70 60 -80

Figure S46: ¹¹B NMR (128 MHz, 25 °C, C₆D₆) spectrum of compounds II' & 2m.

Figure S47: ${}^{19}F{}^{1}H{}$ NMR (377 MHz, 25 °C, C₆D₆) spectrum of compounds II' & 2m.

Figure S48: ¹H NMR (400 MHz, 25 °C, C₆D₆) spectrum of compound IV'.

Figure S49: ${}^{13}C{}^{1}H$ NMR (400 MHz, 25 °C, C₆D₆) spectrum of compound IV'.

Figure S50: ${}^{19}F{}^{1}H{}$ NMR (377 MHz, 25 °C, C₆D₆) spectrum of compound IV'.

The reaction between zinc alkynyl IV' and HBpin {NMR-Scale}: The addition of HBpin (6.81 μ L, 0.047 mmol) to a J. Young valve NMR tube containing a solution of compound IV' (0.023 mmol) in C₆D₆ at room temperature after 30 minutes resulted in the formation of compounds **III** and **2m** with a 14% yield along with 1,1-diborylated alkenes product are confirmed by multinuclear NMR (¹H, ¹³C{¹H}, ¹¹B, ¹⁹F{¹H}). When prolongated the heating, the alkynylborates convert to the 1,1-diborylated alkenes are observed by ¹¹B NMR.

Figure S51: ¹H NMR (400 MHz, 25 °C, C_6D_6) spectrum of compounds [L²ZnH]₂ & 2m.

Figure S53: ¹¹B NMR (128 MHz, 25 °C, C₆D₆) spectrum of compounds $[L^2ZnH]_2 \& 2m$. A doublet peak at δ 27.78 – 29.14 ppm arises from free HBpin.

Figure S54: ¹⁹F{¹H} NMR (377 MHz, 25 °C, C₆D₆) spectrum of compounds [L²ZnH]₂ & 2m.

Figure S55: ${}^{19}F{}^{1}H$ NMR (377 MHz, 25 °C, C₆D₆) spectrum of [L¹ZnH]₂ & 2m Vs. $[L^2ZnH]_2 \& 2m.$

Figure S56: ¹H NMR spectrum of compound 2a (400 MHz, CDCl₃).

Figure S57: ¹³C{¹H} NMR spectrum of compound **2a** (100 MHz, CDCl₃).

Figure S58:¹¹B NMR spectrum of compound 2a (128 MHz, CDCl₃).

Figure S59: ¹H NMR spectrum of compound 2a (400 MHz, CDCl₃).

Figure S60: ¹³C{¹H} NMR spectrum of compound 2a (100 MHz, CDCl₃).

Figure S61:¹¹B NMR spectrum of compound 2a (128 MHz, CDCl₃).

Figure S62: ¹H NMR spectrum of compound 2a (400 MHz, CDCl₃). Mesitylene was used as an internal standard. * = unreacted compound 1a.

Figure S63: ¹³C{¹H} NMR spectrum of compound **2a** (100 MHz, CDCl₃). Mesitylene was used as an internal standard.

Figure S64: ¹H NMR spectrum of compound 2b (400 MHz, CDCl₃).

Figure S65: ¹³C{¹H} NMR spectrum of compound **2b** (100 MHz, CDCl₃).

Figure S66:¹¹B NMR spectrum of compound 2b (128 MHz, CDCl₃).

Figure S67: ¹H NMR spectrum of compound 2c (400 MHz, CDCl₃).

Figure S68: ¹³C{¹H} NMR spectrum of compound 2c (100 MHz, CDCl₃).

Figure S69:¹¹B NMR spectrum of compound 2c (128 MHz, CDCl₃).

Figure S70: ¹H NMR spectrum of compound **2c** (400 MHz, CDCl₃). Mesitylene was used as an internal standard. * = unreacted compound **1c**.

Figure S71: ¹³C{¹H} NMR spectrum of compound **2c** (100 MHz, CDCl₃). Mesitylene was used as an internal standard.

Figure S72:¹¹B NMR spectrum of compound **2c** (128 MHz, CDCl₃). Mesitylene was used as an internal standard.

Figure S73: ¹H NMR spectrum of compound 2d (400 MHz, CDCl₃).

Figure S74: ¹³C{¹H} NMR spectrum of compound 2d (100 MHz, CDCl₃).

Figure S75:¹¹B NMR spectrum of compound 2d (128 MHz, CDCl₃).

Figure S76: ¹H NMR spectrum of compound 2e (400 MHz, CDCl₃).

Figure S77: ¹³C{¹H} NMR spectrum of compound 2e (100 MHz, CDCl₃).

Figure S79: ¹H NMR spectrum of compound 2f (400 MHz, CDCl₃).

Figure S80: ¹³C{¹H} NMR spectrum of compound **2f** (100 MHz, CDCl₃).

Figure S81:¹¹B NMR spectrum of compound 2f (128 MHz, CDCl₃).

Figure S82: ¹H NMR spectrum of compound 2g (400 MHz, CDCl₃).

Figure S83: ${}^{13}C{}^{1}H$ NMR spectrum of compound 2g (100 MHz, CDCl₃).

Figure S84: ¹H NMR spectrum of compound 2h (400 MHz, CDCl₃).

Figure S85: ¹³C{¹H} NMR spectrum of compound **2h** (100 MHz, CDCl₃).

Figure S86:¹¹B NMR spectrum of compound 2h (128 MHz, CDCl₃).

Figure S87: ¹H NMR spectrum of compound 2i (400 MHz, CDCl₃).

Figure S89:¹¹B NMR spectrum of compound 2i (128 MHz, CDCl₃).

Figure S91: ¹³C{¹H} NMR spectrum of compound 2j (100 MHz, CDCl₃).

Figure S92:¹¹B NMR spectrum of compound 2j (128 MHz, CDCl₃).

Figure S93: ¹H NMR spectrum of compound 2k (400 MHz, CDCl₃).

Figure S94: ¹³C{¹H} NMR spectrum of compound 2k (100 MHz, CDCl₃).

Figure S95: ¹¹B{¹H} NMR spectrum of compound **2k** (128 MHz, CDCl₃). A peak observed at δ 27.28 ppm arises from free HBpin.

Figure S96: ¹H NMR spectrum of compound 2l (400 MHz, CDCl₃).

Figure S97: ¹³C{¹H} NMR spectrum of compound 2l (100 MHz, CDCl₃).

Figure S98:¹¹B NMR spectrum of compound 2l (128 MHz, CDCl₃).

Figure S99: ¹H NMR spectrum of compound 2m (400 MHz, CDCl₃).

Figure S100: ¹³C{¹H} NMR spectrum of compound 2m (100 MHz, CDCl₃).

Figure S101:¹¹B NMR spectrum of compound 2m (128 MHz, CDCl₃).

Figure S102: ¹H NMR spectrum of compound 2n (400 MHz, CDCl₃). * = unreacted compound 1n.

Figure S103: ¹H NMR spectrum of compound 20 (400 MHz, CDCl₃).

Figure S104: ¹³C{¹H} NMR spectrum of compound 20 (100 MHz, CDCl₃).

Figure S105:¹¹B NMR spectrum of compound 20 (128 MHz, CDCl₃).

Figure S106: ¹H NMR spectrum of compound 2p (400 MHz, CDCl₃).

Figure S107: ¹³C{¹H} NMR spectrum of compound 2p (100 MHz, CDCl₃).

Figure S108:¹¹B NMR spectrum of compound 2p (128 MHz, CDCl₃).

Figure S109: ¹H NMR spectrum of compound 2q (400 MHz, CDCl₃).

Figure S110: ¹³C{¹H} NMR spectrum of compound 2q (100 MHz, CDCl₃).

Figure S111: ¹¹B{¹H} NMR spectrum of compound **2q** (128 MHz, CDCl₃). A peak observed at δ 27.07 ppm arises from free HBpin.

Figure S112: ¹H NMR spectrum of compound 2r (400 MHz, CDCl₃).

Figure S113: ¹³C{¹H} NMR spectrum of compound **2r** (100 MHz, CDCl₃).

Figure S114: ¹H NMR spectrum of compound 2s (400 MHz, CDCl₃).

Figure S115: ¹³C{¹H} NMR spectrum of compound 2s (100 MHz, CDCl₃).

Figure S116: ¹H NMR spectrum of compound 2t (400 MHz, CDCl₃).

Figure S117: ¹³C{¹H} NMR spectrum of compound **2t** (100 MHz, CDCl₃).

Figure S118: ¹H NMR spectrum of compound 2u (400 MHz, CDCl₃).

Figure S119: ¹³C{¹H} NMR spectrum of compound 2u (100 MHz, CDCl₃).

Figure S121: ¹H NMR spectrum of compound 2v (400 MHz, CDCl₃).

Figure S122: ¹³C{¹H} NMR spectrum of compound 2v (100 MHz, CDCl₃).

Figure S123:¹¹B NMR spectrum of compound 2v (128 MHz, CDCl₃).

Figure S124: ¹H NMR spectrum of compound 2w (400 MHz, CDCl₃).

Figure S125: ¹³C{¹H} NMR spectrum of compound 2w (100 MHz, CDCl₃).

Figure S126:¹¹B NMR spectrum of compound 2w (128 MHz, CDCl₃).

Figure S127: ¹H NMR spectrum of compound 2x (400 MHz, CDCl₃).

Figure S128: ¹³C{¹H} NMR spectrum of compound 2x (100 MHz, CDCl₃).

Figure S129:¹¹B NMR spectrum of compound 2x (128 MHz, CDCl₃).

Figure S130: ¹H NMR spectrum of compound 2y (400 MHz, CDCl₃).

Figure S131: ¹³C{¹H} NMR spectrum of compound 2y (100 MHz, CDCl₃).

Figure S132: ¹¹B NMR spectrum of compound 2y (128 MHz, CDCl₃).

Figure S133: ¹H NMR spectrum of compound 2z (400 MHz, CDCl₃).

Figure S134: ¹³C{¹H} NMR spectrum of compound 2z (100 MHz, CDCl₃).

Figure S135: ¹¹B{¹H} NMR spectrum of compound **2z** (128 MHz, CDCl₃).

Figure S136: ¹H NMR spectrum of compound 2aa (400 MHz, CDCl₃).

Figure S137: ¹³C{¹H} NMR spectrum of compound 2aa (100 MHz, CDCl₃).

Figure S138:¹¹B NMR spectrum of compound **2aa** (128 MHz, CDCl₃). A doublet peak at δ 27.49-28.86 ppm arises from free HBpin.

Figure S139: ¹H NMR spectrum of compound 2ab (400 MHz, CDCl₃).

Figure S140: ¹³C{¹H} NMR spectrum of compound 2ab (100 MHz, CDCl₃).

Figure S141:¹¹B NMR spectrum of compound 2ab (128 MHz, CDCl₃).

Figure S142: ¹H NMR spectrum of compound 2ac (400 MHz, CDCl₃).

Figure S143: ¹³C{¹H} NMR spectrum of compound 2ac (100 MHz, CDCl₃).

Figure S144: ¹¹B{¹H} NMR spectrum of compound 2ac (128 MHz, CDCl₃).

Figure S145: ¹H NMR spectrum of compound 2ad (400 MHz, CDCl₃).

Figure S146: ¹³C{¹H} NMR spectrum of compound 2ad (100 MHz, CDCl₃).

Figure S147:¹¹B NMR spectrum of compound 2ad (128 MHz, CDCl₃).

Figure S148: ¹H NMR spectrum of compound 2a and unreacted styrene (400 MHz, CDCl₃).

Figure S149: ¹³C{¹H} NMR spectrum of compound **2a** and unreacted styrene (100 MHz, CDCl₃).

Figure S150:¹¹B NMR spectrum of compound 2a and unreacted styrene (128 MHz, CDCl₃).

Figure S151: ¹H NMR spectrum of compound **2a** and unreacted benzyl benzoate (400 MHz, CDCl₃).

Figure S152: ¹³C{¹H} NMR spectrum of compound **2a** and unreacted benzyl benzoate (100 MHz, CDCl₃).

Figure S153: ¹H NMR spectrum of compound 2a and unreacted pyridine (400 MHz, CDCl₃).

Figure S154: ¹H NMR spectrum of compound **2x** and unreacted 1-pentyl isocyanide (400 MHz, CDCl₃).

Figure S155: ¹³C{¹H} NMR spectrum of compound **2x** and unreacted 1-pentyl isocyanide (100 MHz, CDCl₃).

Figure S156:¹¹B NMR spectrum of compound **2x** and unreacted 1-pentyl isocyanide (128 MHz, CDCl₃).

X-ray Crystallographic Data of II and IV

X-ray Crystallography

The single crystals of compounds **II** and **IV** were crystallized from Benzene at rt as colorless blocks after 2 d. The crystal data of compounds **II** and **IV** were collected on a Rigaku Oxford diffractometer with graphite-monochromated Cu-K α radiation ($\lambda = 1.54184$ Å) and Mo-K α radiation ($\lambda = 0.71073$ Å) respectively at 100 K. Selected data collection parameters, and other crystallographic results are summarized in Table S2. The structure was determined using direct methods employed in *ShelXT*,¹ *OleX*,² and refinement was carried out using least-square minimization implemented in *ShelXL*.³ All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atom positions were fixed geometrically in idealized positions and were refined using a riding model.

Figure 157. Molecular structure of **II**. The thermal ellipsoids are shown at 50% probability, and all the hydrogen atoms (except for H(4), H(5)) and ethyl groups have been removed for clarity. Selected bond lengths (Å) and angles (deg), For **II**: Zn1-N1 1.9612(17), Zn1-N2 1.9539(16), Zn1-C1 2.026(2), Zn1-C1' 2.316(2), Zn1-Zn1' 2.8705(5), C1-C2 1.167(3); N1-Zn1-N2 94.82(7), N1-Zn1-C1 115.44(7), N2-Zn1-C1 124.65(8), C1-Zn1-C1' 97.52(8), Zn1-C1-Zn1' 82.48(8).

Figure 158. Molecular structure of **IV**. The thermal ellipsoids are shown at 50% probability, and all the hydrogen atoms have been removed for clarity. Selected bond lengths (Å) and angles (deg), For **II**: Zn1-N1 1.984(4), Zn1-N2 1.988(4), Zn1-C1 1.979(5), C1-C2 1.213(7); N1-Zn1-N2 97.20(16), N1-Zn1-C1 119.02(19), N2-Zn1-C1 123.33(18).

Compound	п	IV
Empirical Formula	$C_{100}H_{118}N_{10}Zn_2 \ 2 \ (C_6H_6)$	$C_{66}H_{76}N_4Zn_2$
CCDC	2177018	2177019
Molecular mass	1746.99	1056.16
Temperature (K)	100	100
Wavelength (Å)	1.54184	0.71073
Size(mm)	0.2×0.18×0.17	0.2×0.18×0.17
Crystal system	triclinic	monoclinic
Space group	P -1	P2 ₁ /c
a (Å)	12.0811(3)	17.8516(6)
<i>b</i> (Å)	13.0427(3)	18.4478(7)
c (Å)	16.7425(4)	16.8605(5)
α (deg)°	83.465(2)	90
$\beta (deg)^{\circ}$	86.107(2)	94.032(3)
γ (deg)°	63.721(2)	90
Volume (Å ³)	2349.64(10)	5538.8(3)
Z	1	4
Calculated density (g/cm ³)	1.235	1.2664
Absorption coefficient	1.041	0.911
(mm ⁻¹)		
F(000)	932.0	2243.1
Theta range for data	7.592 to 136.478	6.8 to 50.7
collection (deg)°		
Limiting indices	$-14 \leq h \leq 14, \text{-}15 \leq k \leq 15, \text{-}20 \leq l \leq$	$-25 \le h \le 23, -25 \le k \le 23, -23 \le l \le$
	19	23
Reflections collected	34507	47199
Independent reflections	8567 [$R_{int} = 0.0358$, $R_{sigma} = 0.0252$]	10002 [$R_{int} = 0.0776$, $R_{sigma} =$
		0.0828]
Completeness to theta	99 %	99 %
Absorption correction	Empirical	Empirical
Data/restraints/parameters	8567 / 7 / 567	10002 / 0 / 661
Goodness – of–fit on F 2	1.016	1.161
Final R indices [I>2	$R_1 = 0.0452, wR_2 = 0.1218$	$R_1 = 0.0600, wR_2 = 0.1655$
sigma(I)]		

 Table S2. Crystallographic Data and Refinement Parameters for Compounds II and IV.

REFERENCES

- Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. C. 2015, 71, 3–8.
- Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H.
 OLEX₂: a complete structure solution, refinement, and analysis program. *J. Appl. Crystallogr.* 2009, 42, 339-341.
- (3) (a) Sheldrick, G. M. A short history of SHELX. *Acta Crystallogr., Sect. A: Found. Crystallogr.* 2008, 64, 112-122. (b) Sheldrick, G. M. SHELXT - Integrated space-group and crystal-structure determination. *Acta Crystallogr., Sect. A: Found. Adv.* 2015, 71, 3-8.