Supplementary information

Syntheses, structural characterization and cytotoxicity assessment of novel Mn(II) and Zn(II) complexes of aroyl–hydrazone Schiff base ligands

Masrat Bashir^a, Aijaz A. Dar^b, Imtiyaz Yousuf^{a*}

T•41

*Corresponding author *E-mail address*: <u>imtiyazchem@gmail.com</u>. (I. Yousuf) ^aDepartment of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India. ^bDepartment of Chemistry, University of Kashmir, Hazratbal, Srinagar 190 006, J&K, India.

LIST OF TABLES
Title Page No.
Table S1: Crystallographic data and structure refinement details of L1
Table S2. DFT calculated geometrical parameters of L1 S4
Table S3. DFT calculated geometrical parameters of complex 1
Table S4. DFT calculated geometrical parameters of complex 2 S5
Table S5. Energy of various FMOs of L1, complex 1 and complex 2
Table S6. Thermodynamic and reactivity parameters of L1, complex 1 and complex 2S6
Table S7. Cathodic and Anodic potiential and current for complexes 1 & 2 S6
Table S8. DPPH radical scavanging activity of ligand L1, complex 1 and complex 2
Table S9. Antibacterial activity of ligand L1 and its metal complexes 1 and 2
Table S10: Minimum inhibition concentration values of L1 and complexes 1 & 2
Table S11. Percent cell viability of L1 and complexes 1 & 2 against A549
Table S12. Percent cell viability of L1 and complexes 1 & 2 against MDA-MB-231S8
Table S13: Comparison table of IC50 values of complex 2

LIST OF FIGURES

n

ът

Figure S1. Solution stability studies of complexes 1 & 2	rage No.
Figure S2. Comparative UV–vis spectra of ligand (L1) and complexes 1 & 2	S9
Figure S3. FTIR spectra of ligand L1 and complexes 1 & 2	S10
Figure S4. ¹ HNMR spectra of ligand L1	S10

Figure S5. ¹³ CNMR spectra of ligand L1	S11
Figure S6. ¹ HNMR spectra of complex 2	S 11
Figure S7. ¹³ CNMR spectra of complex 2	S11
Figure S8. EPR spectra of complex 1	S12
Figure S9. Single XRD structure of ligand L1	S12
Figure S10. Single XRD image illustrating dihedral angle between two planes	S12
Figure S11. FMOs of ligand L1 generated at B3LYP functional	S13
Figure S12. FMOs of complex 1 generated at B3LYP functional	S13
Figure S13. FMOs of complex 2 generated at B3LYP functional	S14
Figure S14. 3D Hirshfeld surface mapping of L1	S14
Figure S15. 3D Hirshfeld surface mapping of complex 2	S14
Figure S16. 2D fingerprint plots of L1 and complexes 1 & 2	S15
Figure S17. Emission spectra of complexes 1 & 2	S15
Figure S18. Emission spectra of EB–DNA system recorded in Tris-HCl buffer	S16
Figure S19. Cyclic voltammogram curves of complexes 1 and 2	S16
Figure S20. CD spectra of ct-DNA of complexes 1 and 2	S16
Figure S21. Emission spectra of BSA of complex 1 and 2	S17
Figure S22. CD spectrum of BSA alone in the presence and absence complex 1 and 2	S17
Figure S23. Molecular docked structure of L1 with DNA	S18
Figure S24. Molecular docked structure of complex 2 with DNA	S18
Figure S25. Molecular docked structure of L1 with BSA	S19
Figure S26. Molecular docked structure of complex 1 with BSA	S19
Figure S27. Antibacterial action of control, L1 and complexes 1 & 2	S20
References	S20

TABLES

Parameters	L1
Empirical formula	C ₁₅ H ₁₂ N ₄ O
CCDC No.	2191272
Formula weight	282.30
Temperature/K	293
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	7.1579(1)
b/Å	25.1674(3)
c/Å	7.9414(1)
α/°	90
β/°	104.060(1)
$\gamma/^{\circ}$	90
Volume/Å ³	1387.75(3)
Ζ	4
$\rho_{calc}g/cm^3$	1.351
μ/mm ⁻¹	0.766
F(000)	594.0
Crystal size/mm ³	0.28 imes 0.21 imes 0.16
Radiation	Cu Ka (λ = 1.54184)
2Θ range for data collection/°	7.02 to 136.06
Index ranges	$-6 \le h \le 8, -30 \le k \le 30, -9 \le l \le 9$
Reflections collected	11590
Independent reflections	2532 $[R_{int} = 0.0376, R_{sigma} = 0.0209]$
Data/restraints/parameters	2532/0/194
Goodness-of-fit on F ²	1.039
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0410, wR_2 = 0.1184$
Final R indexes [all data]	$R_1 = 0.0434, wR_2 = 0.1206$
Largest diff. peak/hole/eÅ ⁻³	0.20/-0.18

 Table S1: Crystallographic data and structure refinement details of L1.

^{*a*}GoF is defined as $\{\Sigma[w(F_o^2 - F_c^2)]/(n - P)\}^{1/2}$ where n is the number of data and p is the number of parameters. ${}^{b}R = \{\Sigma||F_o| - |F_c||/\Sigma|F_o|, wR^2 = \{\Sigma w(F_o^2 - F_c^2)^2/\Sigma w(F_o^2)_2\}^{1/2}$.

		Bond	l angles (°)		
Atom-Atom-A	tom	Experimental		Calculated	
C12-N13-C14		109.02(11)		109.05	
C10-N9-N8		114.27(12)	-	114.30	
C1-N8-N9		119.02(12)	-	119.09	
C19-C14-N13		107.83(12)		107.89	
C4-C14-N13		129.80(12)		129.83	
C4-C14-C19		122.37(13)		122.39	
C11-C19-C14		106.48(12)		106.48	
C18-C19-C14		118.79(12)		118.79	
C18-C19-C11		134.69(12)		134.60	
C12-C11-C19		109.02(11)		109.05	
		Bond leng	th (Å)		
Atom-Atom	Experimental	Calculated	Atom-Atom	Experimental	Calculated
	values	values		values	values
N13-C14	1.3790(18)	1.378	C14-C19	1.4097(18)	1.410
N13-C12	1.3510(19)	1.349	C14-C4	1.3916(19)	1.396
O7-C1	1.2244(18)	1.223	C19-C11	1.4395(19)	1.440
N9-N8	1.3952(16)	1.395	C14-C4	1.3988(19)	1.398
N9-C10	1.2783(19)	1.279	C19-C11	1.4383(19)	1.438
N8-C1	1.3380(19)	1.339	C19-C18	1.4097(18)	1.409

Table S2: DFT calculated geometrical parameters of L1 in comparison to experimental parameters (sXRD).

Table S3: DFT calculated geometrical parameters of complex 1 in comparison to experimental parameters (sXRD).

Bond angles (°)						
Atom-Atom-	Atom Experi	mental	Calcul	ated		
O2Mn1O1	99.55(15	5)	99.57	.57		
O3Mn1O1	89.45(15	5)	89.44			
O3Mn1O1	168.77(1	15)	168.75			
O3Mn1O2	90.58(10	5)	90.60			
O3Mn1O2	169.83(1	[4]	169.83			
N3Mn1O1	78.76(15	5)	78.78			
N3Mn1O2	90.90(15	5)	90.96			
N3Mn1O3	96.36(15	5)	96.39			
N3Mn1O3	95.51(15	5)	95.54			
N7Mn1O1	90.91(15	5)	90.93			
N7Mn1O2	78.39(16	5)	78.38			
N7Mn1O3	95.91(15	5)	95.97			
N7Mn1O3	96.88(16	5)	96.79			
N7Mn1N3	163.78(1	19)	163.79			
		Bond dis	stances (Å)			
Atom-Atom	Experimental	Calculated	Atom-Atom	Experimental	Calculated	
	values	values		values	values	
Mn1-O1	1.952(3)	1.953	O1-C6	1.308(5)	1.305	
Mn1-O3	1.969(4)	1.958	O2-C21	1.306(5)	1.297	
Mn1-O3	1.831(4)	1.836	N1-C1	1.333(11)	1.332	
Mn1-N3	1.820(3)	1.822	N1-C5	1.321(9)	1.329	
Mn1-N7	1.987(4)	1.984	N2-N3	1.393(6)	1.395	

Bond angles (°)					
Atom-Atom	n-Atom	Experimental		Calculated	
O1-Zn1-	O1-Zn1-O1			180.00	
N1-Zn1-	I-Zn1-O1 101.2			101.28	
N1-Zn1-O1		78.77(17)		78.79	
N1-Zn1-	-N1	180.0		180.0	
N1-Zn1-	-01	88.36(17)		88.36	
N2-Zn1-	-01	91.64(17)		91.64	
N2-Zn1-	-01	91.64(17)		91.66	
N1-Zn1-O1		88.36(17)		88.38	
		Bond dist	ances (Å)		
Atom-Atom	Experimental	Calculated	Atom-Atom	Experimental	Calculated
	values	values		values	values
Zn1-O1	2.060(4)	2.062	N2-N5	1.401(11)	1.401
Zn1-O1	2.060(4)	2.120	N2-C4	1.03(4)	1.032
Zn1-N1	2.069(5)	2.072	N2-C3	1.24(4)	1.233
Zn1-N1	2.069(5)	2.069	O1-C18	1.268(6)	1.261
Zn1-N2	2.343(5)	2.340	N1-N2	1.410(6)	1.414
Zn1-N2	2.343(5)	2.344	N1-C15	1.269(8)	1.272

Table S4: DFT calculated geometrical parameters of complex **2** in comparison to experimental parameters (sXRD).

 Table S5: Energy of various FMOs of L1, complex 1 and complex 2 and their respective HOMO-LUMO energy gaps.

		L1		
FMO's	Energy (eV)	FMO's	Energy (eV)	ΔΕ
НОМО	-3.679	LUMO	-1.563	2.116
HOMO-1	-3.373	LUMO+1	-0.854	2.519
НОМО-2	-3.701	LUMO+2	-0.522	3.179
НОМО-3	-3.922	LUMO+3	-0.196	3.726
HOMO-4	-4.038	LUMO+4	-0.548	3.490
		Complex 1		
HOMO	-4.243	LUMO	-2.805	1.438
HOMO-1	-4.386	LUMO+1	-2.627	1.759
HOMO-2	-4.585	LUMO+2	-2.061	2.524
HOMO-3	-4.890	LUMO+3	-1.974	2.916
HOMO-4	-5.217	LUMO+4	-1.587	3.630
		Complex 2		
HOMO	-3.929	LUMO	-2.677	1.252
HOMO-1	-3.994	LUMO+1	-2.630	1.364
HOMO–2	-4.147	LUMO+2	-2.100	2.047
HOMO 3	-4.569	LUMO+3	-1.733	2.836
HOMO 4	-4.742	LUMO+4	-1.698	3.044

Parameters	L1	Complex 1	Complex 2
LUMO energy (eV)	-1.563	-2.805	-2.677
HOMO energy (eV)	-3.679	-4.243	-3.929
LUMO-HOMO	2.116	1.438	1.252
χ(eV)	2.621	3.524	3.303
μ(eV)	-2.621	-3.524	-3.303
η(eV)	1.058	0.719	0.626
ω(eV)	3.247	8.636	8.714

Table S6: Thermodynamic and reactivity parameters of L1 and complexes 1 & 2 by usingB3LYP hybrid functional.

Table S7: Electrode (cathode and anode) potiential (mV) and current (A) for the redox couples of complexes 1 & 2 with ct-DNA in 5mM Tris-buffer solution (pH 7.3) at a scan rate of 100mV s^{-1}

Complexes	Complex Alone		Complex + ct-DNA			
	Potential (mV)	Current (A)	Potential (mV)	Current (A)	⁻ ΔE _{pa}	ΔE _{pc}
1	$\begin{array}{l} E_{pa} = 596 \\ E_{pc} = 620 \\ E_{1/2} = 608 \\ \Delta E_{p} = -24 \end{array}$	$\begin{split} I_{pa} &= 1.036 \times 10^{\text{-5}} \\ I_{pc} &= -1.370 \times 10^{\text{-5}} \\ I_{pa} / I_{pc} &= 0.756 \end{split}$	$\begin{array}{l} E_{pa} = 535 \\ E_{pc} = 582 \\ E_{1/2} = 559 \\ \Delta E_{p} = -47 \end{array}$	$\begin{split} I_{pa} &= 1.838 \times 10^{-5} \\ I_{pc} &= -1.556 \times 10^{-5} \\ I_{pa}/I_{pc} &= 1.18 \end{split}$	-61	-38
2	$E_{pa} = 650 E_{pc} = 614 E_{1/2} = 632 \Delta E_{p} = -36$	$\begin{split} I_{pa} &= 0.906 \times 10^{\text{-5}} \\ I_{pc} &= -1.094 \times 10^{\text{-5}} \\ I_{pa} / I_{pc} &= 0.828 \end{split}$	$\begin{array}{l} E_{pa} = 618 \\ E_{pc} = 603 \\ E_{1/2} = 611 \\ \Delta E_{p} = -15 \end{array}$	$\begin{split} I_{pa} &= 1.007 \times 10^{\text{-5}} \\ I_{pc} &= -1.352 \times 10^{\text{-5}} \\ I_{pa} / I_{pc} &= 0.744 \end{split}$	-32	-11

Table S8: DPPH radical scavanging activity of ligand L1 and complexes 1 & 2 along with
standard ascorbic acid (AA) at different concentrations ($\lambda_{max} = 517$ nm). Data represent mean
\pm SEM of at least three independent experiments (n \geq 3)

Conc.	% Inhibition				
-	AA	L1	Complex 1	Complex 2	
5μΜ	20.48	4.43	18.03	11.59	
10µM	32.55	8.64	24.69	16.64	
15µM	43.65	13.67	31.03	21.02	
20µM	51.02	19.66	44.88	36.55	
25µM	60.69	25.43	57.99	47.54	
30µM	67.64	35.54	63.95	56.65	
35 µM	80.59	49.66	78.14	61.44	
IC ₅₀ μM	19.95	36.09	21.73	28.60	

0 0	Max. inhibition zone, x ± SD (mm)				
Compounds	Gram-positive		Gram-negative		
	S. aureus	B. subtilis	E. coli	P. aeruginosa	
L1	6 ±0.32	9 ±0.70	4 ± 0.43	5 ± 0.72	
Complex 1	9 ± 0.64	11 ± 0.33	3 ± 0.71	7 ± 0.63	
Complex 2	16 ± 0.40	13 ± 0.31	6 ± 0.64	9± 0.21	

 Table S9: Antibacterial activity of ligand L1 and complexes 1 & 2 against gram positive and gram-negative bacteria.

Table S10: Minimum inhibition concentration values of L1 and complexes 1 & 2 aga	inst gram
positive and gram-negative bacteria.	_

Compounds	Minimum inhibitory concentration (MIC) in mM			
	S. aureus	B. subtilis	E. coli	P. aeruginosa
L1	7.2	6.8	7.8	7.0
Complex 1	5.5	5.9	8.2	6.5
Complex 2	3.8	5.2	7.4	6.9

Table S11: Percent cell viability of A549 (lung cancer) cell line in a dose dependent manner when treated with L1 and complexes 1 & 2 along with control (DMSO). A one-way analysis of variance (ANOVA) was used to calculate the data, and then the Dunnet's multiple comparison test was performed. Data represent mean \pm SEM of three independent trials (n \geq 3); *p, **p, ***p < 0.05, 0.01, and 0.001 *vs* control group.

<u>Samnle</u>	$\frac{\mathbf{p} \cdot 0 \cdot 0 \cdot 0}{\mathbf{Conc}} (\mathbf{u} \mathbf{M})$	1	<u>2</u>	3	% Cell viability
Sumple	Control	106 210	07 500	00 577	101 101
		100.219	107.070	114.0(7	101.101
	<u> </u>	107.034	107.970	114.86/	109.957
	2.5	116.496	116.496	112.235	115.075
L1	5	116.935	112.549	113.865	114.449
	10	117.311	113.927	114.303	115.180
	20	126.084	116.371	112.674	118.376
	Control	106.219	97.509	99.577	101.101
	1	119.818	112.486	117.875	116.726
	2.5	117.875	120.282	115.932	118.029
Complex 1	5	112.737	116.935	103.713	111.128
	10	113.614	111.797	103.023	109.478
	20	87.169	79.711	76.390	81.090
	Control	106.509	100.598	97.642	101.583
	2.5	113.687	114.637	110.520	112.948
	5	76.002	77.797	80.752	78.850
Complex 2	10	59.007	65.974	80.964	51.981
	20	46.023	45.812	41.907	44.580

Table S12: Percent cell viability of MDA–MB–231 (triple negative breast cancer) cell line in a dose dependent manner when treated with L1 and complexes 1 & 2 along with control (DMSO). A one–way analysis of variance (ANOVA) was used to calculate the data, and then the Dunnet's multiple comparison test was performed. Data represent mean \pm SEM of three independent trials (n \geq 3); *p, **p, ***p < 0.05, 0.01, and 0.001 *vs* control group.

Sample	Conc. (µM)	1	2	3	% Cell viability
	Control	103.181	101.616	96.920	100.572
	5	98.621	96.647	113.731	102.999
L1	10	93.312	104.066	103.250	100.209
	20	102.501	101.412	101.003	101.638
	Control	103.181	101.616	96.920	100.572
	5	103.522	101.480	101.684	102.228
Complex 1	10	93.380	92.632	92.972	92.994
	20	85.689	80.313	75.975	80.659
	Control	103.181	101.616	96.920	100.572
	5	104.611	103.590	104.407	104.202
Complex 2	10	98.009	100.459	98.281	98.916
	20	72.962	80.517	73.711	75.73

Table S13: Comparison table of IC_{50} values of complex **2** with some previously reported zinc hydrazone Schiff base complexes against A549 cancer cell line.

S. No	Compound	IC ₅₀ (µM)	Reference	
1	Complex 2	17.54	Present work	
2	$[Zn(L^1)Cl_2].2H_2O$	125.0	S1	
3	$[Zn(L^2)Cl_2]$	103.8	S1	
4	$[Zn(L^3)Cl_2]$	188.2	S1	
5	[ZnL ⁵]	18.2	S2	
6	$[ZnL^{4}(N_{3})_{2}]$	~400.0	S3	
7	Cisplatin	30 ± 5.0	S4	
Where L^1 , L^2 , L^3 , L^4 and L^5 are hydrazone–based Schiff base ligands				

Figures

Figure S1 Solution stability studies of (a) complex 1 & (b) complex 2 at varied time intervals using UV–vis spectroscopy.

Figure S2 Comparative UV–vis spectra of ligand (L1) and complexes 1 & 2.

Figure S4 ¹HNMR spectra of ligand L1, (a) full view and (b) close view.

Figure S7 ¹³CNMR of complex 2, (a) full view and (b) close view.

Figure S8 EPR spectra of complex 1 at (a) RT and (b) LNT.

Figure S9 Single crystal-XRD structure of Schiff base ligand L1.

Figure S10 (a) Single XRD image illustrating dihedral angle between two planes and (b) perspective view of a space filled model of complex **2** along 2D network.

Figure S11 FMOs of ligand L1 generated at B3LYP functional.

Figure S12 FMOs of complex 1 generated at B3LYP functional.

Figure S13 FMOs of complex 2 generated at B3LYP functional.

Figure S14 3D Hirshfeld surface mapping of L1 (a) d_{norm} , (b) d_e (c) d_i and (d) shape index

Figure S15 3D Hirshfeld surface of an asymmetric unit of complex 2 (a) d_{norm} , (b) d_e (c) d_i (d) shape index and (e) curvedness.

Figure S16 2D fingerprint plots of (a) L1, (b) complex 1 and (c) complex 2, illustrating the major contributions of various molecular contacts to the total Hirshfeld surface.

Figure S17 Emission spectra of (a) complex 1 and (b) complex 2 in presence of increasing aliquots of ct-DNA. [complex 1] = [complex 2] = 3×10^{-6} M, [DNA] = $0.1-0.5 \times 10^{-5}$ M

Figure S18 Emission spectra of EB–DNA system recorded in Tris-HCl buffer at pH = 7.3 (a) in presence of complex **1** (b) in presence of complex **2**. [EB] = $[DNA] = 2 \times 10^{-6} \text{ M}$.

Figure S19 Cyclic voltammogram curves of complexes (a) complex 1 and (b) complex 2 in presence of ct-DNA in Tris HCl buffer of pH=7.3. [Complex 1] = [Complex 2] = 3×10^{-6} M, [DNA] $0.3-0.6 \times 10^{-5}$ M. Scan rate = 100 mVs^{-1} .

Figure S20 CD spectra of ct-DNA (red), (a) ct-DNA + complex 1 (blue) and (b) ct-DNA + complex 2 (blue) in Tris-HCl buffer (pH=7.3). [DNA] = 0.4×10^{-5} M and [complex 1] = [complex 2] = 2×10^{-5} M.

Figure S21 Emission spectra of BSA in the presence and absence of (a) complex 1 and (b) complex 2. Arrows indicate quenching of emission maxima in presence of complexes 1 & 2. [BSA]= 3×10^{-5} M, [complex 1] = [complex 2] = $0.1-0.6 \times 10^{-5}$ M.

Figure S22 CD spectrum of BSA alone (dotted line) in the presence and absence of (a) complex 1 (red) and (b) complex 2 (blue). [BSA] = 3×10^{-6} M and [complex] = 0.2×10^{-5} M.

Figure S23 Molecular docked structure of L1 (a) fitted inside the DNA dodecamer duplex of sequence d(CGCGAATTCGCG)₂ (PDB ID: 1BNA); (b) ligand nucleotide interaction in 3D view (c) interaction with different nucleotides in 2D view.

Figure S24 Molecular docked structure of complex **2** (a) fitted inside the DNA dodecamer duplex of sequence d(CGCGAATTCGCG)2 (PDB ID: 1BNA); (b) ligand nucleotide interaction (c) interaction with different nucleotides in 2D view.

Figure S25 (a) Molecular docked model poses of L1 located within the hydrophobic pocket in subdomain IIA of BSA stabilized by intricate hydrogen bonding interactions and van der walls forces, (b) interaction of L1 with amino acid residues showed in 3D view and (c) interaction of L1 with amino acid residues showed in 2D view.

Figure S26 (a) Molecular docked model of complex **1** located within the hydrophobic pocket in subdomain IIA of BSA stabilized by intricate hydrogen bonding interactions and van der walls forces, (b) interaction of complex **1** with amino acid residues showed in 3D view and (c) interaction of complex **1** with amino acid residues showed in 2D view.

Figure S27. Comparative antibacterial action of control (solvent), ligand (L1) and complexes 1 & 2 against (a & b) gram positive (*S. aureus* and *B. subtilis*) and (c & d) gram-negative (*E. coli* and *P. aeruginosa*) bacterial strains.

References

- (S1) Dasgupta, S.; Karim, S.; Banerjee, S.; Saha, M.; Saha, K. D.; Das, D. Designing of novel zinc (II) Schiff base complexes having acyl hydrazone linkage: study of phosphatase and anti-cancer activities. *Dalton Trans.* 2020, 49, 1232–1240.
- (S2) Chang, H. Q.; Jia, L.; Xu, J.; Xu, Z. Q.; Chen, R. H.; Wu, W. N.; Bie, H. Y.; Zhu, T. F.; Ma, T. L.; Wang, Y. Syntheses, characterizations, antitumor activities and cell apoptosis induction of Cu (II), Zn (II) and Cd (II) complexes with hydrazone Schiff base derived from isonicotinohydrazide. *Inorg. Chem. Commun.* 2015, 57, 8–10.
- (S3) Stevanovic, N.; Zlatar, M.; Novaković, I.; Pevec, A.; Radanović, D.; Matić, I. Z.; Crnogorac, M. D.; Stanojković, T.; Vujcic, M.; Gruden, M.; Sladic, D.; Anđelkovic, Iztok T. K.; Cobeljic, B. (). Cu (II), Mn (II) and Zn (II) complexes of hydrazones with a quaternary ammonium moiety: synthesis, experimental and theoretical characterization and cytotoxic activity. *Dalton Trans.* 2022, 51, 185–196.
- (S4) Baharuddin, P.; Satar, N.; Fakiruddin, K. S.; Zakaria, N.; Lim, M. N.; Yusoff, N. M.; Zakaria, Z.; Yahaya, B. H. Curcumin improves the efficacy of cisplatin by targeting cancer stem-like cells through p21 and cyclin D1-mediated tumour cell inhibition in non-small cell lung cancer cell lines. *Oncol. Rep.* 2016, 35, 13–25.