Supplementary Information

Selective hydrogenation via precise hydrogen bond interactions on catalytic scaffolds

Song Shi^{1,2§}, Piaoping Yang^{1§}, Chaochao Dun³, Weiqing Zheng¹, Jeffrey J. Urban³, Dionisios G. Vlachos¹*

¹ Department of Chemical and Biomolecular Engineering and Catalysis Center for Energy Innovation (CCEI), University of Delaware, Newark, DE 19716, USA.

² State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.

³The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley, CA 94720(USA)

[§] These authors contributed equally.

✉ email: vlachos@udel.edu

Table of contents

Figure S1. Wettability difference of support with different functional groups. HCP distribution difference on water and water contact angles. a) HCP-OH, b) HCP-CH₃.

Figure S2. Pore structure comparison of different catalytic materials.

N² adsorption-desorption isotherms at 77 K. a) Ir-HCP-OH, b) HCP-OH,

c) Ir-HCP-CH₃, d) HCP-CH₃.

Figure S3. Ir particle size. TEM images and particle size distribution of a) Ir-HCP-OH and b) Ir-HCP-CH3.

Figure S4. Crystallinity of supports. XRD patterns of a) HCP-CH₃ and b) HCP-OH.

Figure S5. Thermal stability of the two catalysts. TGA curves of HCP-

OH and HCP-CH₃.

Figure S6. Kinetics and conditions for optimizing the reaction. a), Stir rate effect on rate with Ir-HCP-OH, b), catalyst amount effect with Ir-HCP-OH, c), hydrogen pressure effect with Ir-HCP-OH, d), Arrhenius plot of Ir-HCP-OH in furfural hydrogenation.

CH³ and Ir-HCP-OH. Reaction conditions: substrate, 1 mmol; catalyst, 40 mg; hexane, 10 mL; H2, 300 psi; 120 ℃.

Figure S8. Electronic state of Ir over different supports via XPS. Ir *4f* of Ir-HCP-CH₃ and Ir-HCP-OH.

Figure S9. Electronic state of Ir over different supports via CO adsorption. *In situ* CO adsorption Drifts-IR peaks over Ir-HCP-CH₃ and Ir-HCP-OH.

Figure S10. Microscopy characterization of Pd and Pt catalyst. TEM, HR-TEM and HAADF of a, Pd-HCP-CH3, b, Pd-HCP-OH, c, Pt-HCP-CH3, d, Pt-HCP-OH.

Figure S11. XPS spectra of the Pd and Pt catalysts, a) Pd-HCP-CH3, b)

Pd-HCP-OH, c) Pt-HCP-CH3, and d) Pt-HCP-OH.

Furtural	$Qmax$ (mmol/g)			
HCP-OH	1.95 ± 0.15	247 ± 32		
$HCP-CH3$	1.05 ± 0.19	82 ± 24		

Figure S12. Adsorption isotherm of furfural on different supports.

Results on HCP-OH and HCP-CH3. Qmax and K are the saturated adsorption amount and affinity constant based on a Langmuir fit.

Figure S13. Adsorption of toluene on HCP-OH and HCP-CH3. Qmax

and K are the saturated adsorption amount and affinity constant based on a Langmuir fit.

Figure S14. Interaction of furfural with different supports, using *in*

situ **Drifts IR adsorption.** a) HCP-OH and b) HCP-CH₃ after the Kubelka-

Munk (K-M) transformation.

Furfural on HCP-CH₃

Figure S15. Interaction of furfural with HCP-CH³ via *in situ* **Drifts-IR**

TPD experiments. Results on HCP-CH³ under different temperatures after

the K-M transformation.

Furfural on HCP-OH

Figure S16. Interaction of furfural with HCP-OH, using *in situ* **Drifts-**

IR TPD experiments. Drifts-IR of furfural on HCP-OH under different temperatures after the K-M transformation.

Figure S17. Interaction of furfural with different supports, using ATR-IR adsorption. a) HCP-OH and b) HCP-CH3. Black line refers to the pure liquid furfural and the red line to furfural adsorbed on catalyst. Peaks at 1670 cm⁻¹ are assigned to the carbonyl groups while those at 1018 cm⁻¹, 931 cm⁻¹ and 886 cm⁻¹ to the furan ring.

 $1/\Delta\delta = a \times 1/K \times 1/C + a$ equation S2

 $\Delta G = RT \ln(K)$ equation S3

Figure S18. Hydrogen bond measurement between furfural and phenol. Linear relationship between 1/Δδ and 1/C of furfural and phenol in CDCl3, and chemical shift of active H in phenol with the addition of furfural.

 $\Delta G = RT \ln(K)$ equation S3

Figure S19. Hydrogen bond measurement between 2-MF and phenol.

Linear relationship between $1/\Delta\delta$ and $1/C$ of 2-MF and phenol in CDCl₃, and chemical shift of active H in phenol with the addition of 2-MF.

Figure S20. Computational models. (a) OH and (b) CH₃ on graphene ribbons with armchair edges; (c) OH and (d) CH_3 on graphene ribbons with zigzag edges.

Figure S21. Optimized configurations of furfural adsorption over (a)

CH³ group and (b) OH group on armchair models.

Figure S22. Optimized configurations of the interaction between furfural and monomers. (a) Furfural and Phenol; (b) Furfural and Toluene.

 $d_{\text{TEM}}=2.3 \text{ nm}$
Loading: 0.2wt%

Figure S23. Particle size. TEM and particle size distribution of different

Ir loading catalysts.

Figure S24. Ir particles after reaction. TEM images of Ir-HCP-OH after

reaction.

Figure S25. Catalyst reusability of Ir-HCP-OH.

Figure S26. Hot filter experiment of furfural hydrogen with Ir-HCP-OH.

Figure S27.Ketone adsorption difference over different zeolites. *In situ*

FT-IR of cyclopentanone, cyclohexanone, and cycloheptanone adsorption on Si-Beta and Si-ZSM-5 and corresponding TPD results.

Figure S28. Surface hydroxy difference of Si-Beta and Si-ZSM-5.

Drifts-IR after K-M transformation. Peaks at 3780 cm⁻¹ assigned to isolated silanol and the broad peaks at 3500 cm^{-1} to the silanol nests.

Figure S29. Reaction networks for the reactions depicted in figures 2a,

2c, and 2d.

Sample	$SBET$ (m ² g ⁻ 1) a	D _{pore} $(nm)^b$	V pore $(cm3g-1)c$	$N (wt\%)^d$	$C (wt\%)^d$	$H(wt\%)^d$
HCP-CH ₃	720	2.8	0.49	0.71	76.33	6.76
HCP-OH	324	3.5	0.29	0.70	84.54	8.64
Ir-HCP-CH ₃	701	2.7	0.47	0.72	80.51	6.41
Ir-HCP-OH	253	3.8	0.24	0.77	78.90	6.78
Si-BETA	511	0.84	0.24			
$Si-ZSM-5$	334	0.80	0.15			

Table S1. Textural properties of HCP, Ir-HCP, Si-Beta, and ZSM-5.

^a Calculated with the multipoint BET equation. ^b Pore width calculated with the NLDFT model. ^c Total pore volume calculated at $P/P_0 = 0.99$. ^d Determined by elemental analysis.

Table S2. Adsorption area of cyclopentanone, cyclohexanone, and cycloheptanone on Si-Beta and Si-ZSM-5.

a, comparable area calculate

cyclopentanone:cyclohexanone:cycloheptanone = 1.23: 1:1.86

Table S3. Adsorption energies (E_{ads}) of furfural over OH group and CH₃

group on the zigzag model and armchair model.

Table S4. Comparation of recent works on furfural hydrogenation

modulation.

Supplementary Note 1

In order to test the universality of the H bond in other materials except the special designed POPs, we tested the adsorption of ketones on Si- Beta and Si-ZSM-5 using *in-situ* FT-IR (Figure S27). Three different ketones with different molecule size including cyclopentanone, cyclohexanone, and cycloheptanone were tested. Irrespective of the substrate, Si-Beta adsorbs almost 10× than Si-ZSM-5 (Table S2). Although the two zeolites differ in BET surface area, pore volume, and pore size (Table S1), these little differences cannot explain such a huge adsorption difference. DRIFTS-IR reveals a huge difference in the area around 3500 cm-1 (Figure S28), ascribed to Si-OH groups, implying many more OH groups in Si-Beta than Si-ZSM-5 that can hydrogen bond with the carbonyl groups. which can form the hydrogen bond between the carbonyl groups and the Si-OH. It is highly believed that this is the main reason for the huge adsorption difference. This experiment demonstrated weak interaction like H bond might widely existed in during the

Illustration of hydrogen bond formed between ketone and Si-OH in zeolite pores.

Supplementary References

1. Pang SH, Schoenbaum CA, Schwartz DK, Medlin JW. Effects of Thiol Modifiers on the Kinetics of Furfural Hydrogenation over Pd Catalysts. ACS Catalysis 4, 3123-3131 (2014).

2. Nakagawa Y, Takada K, Tamura M, Tomishige K. Total Hydrogenation of Furfural and 5-Hydroxymethylfurfural over Supported Pd–Ir Alloy Catalyst. ACS Catalysis 4, 2718-2726 (2014).

3. Cai Q-X, Wang J-G, Wang Y-G, Mei D. Mechanistic insights into the structure-dependent selectivity of catalytic furfural conversion on platinum catalysts. AIChE Journal 61, 3812-3824 (2015).

4. Rogers SM, et al. Tandem Site- and Size-Controlled Pd Nanoparticles for the Directed Hydrogenation of Furfural. ACS Catalysis 7, 2266-2274 (2017).

5. Deng Y, et al. Solvent Tunes the Selectivity of Hydrogenation Reaction over α-MoC Catalyst. Journal of the American Chemical Society 140, 14481-14489 (2018).

6. Zhang J, et al. Control of interfacial acid–metal catalysis with organic monolayers. Nature Catalysis 1, 148-155 (2018).

7. Wang S, Vorotnikov V, Vlachos DG. Coverage-Induced Conformational Effects on Activity and Selectivity: Hydrogenation and Decarbonylation of Furfural on Pd(111). ACS Catalysis 5, 104-112 (2015).