Supplementary Information

Selective hydrogenation via precise hydrogen bond interactions on catalytic scaffolds

Song Shi^{1,2§}, Piaoping Yang^{1§}, Chaochao Dun³, Weiqing Zheng¹, Jeffrey J. Urban³, Dionisios G. Vlachos¹*

¹ Department of Chemical and Biomolecular Engineering and Catalysis Center for Energy Innovation (CCEI), University of Delaware, Newark, DE 19716, USA.

² State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.

³ The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley, CA 94720(USA)

[§] These authors contributed equally.

🗹 email: vlachos@udel.edu

Table of contents

Figure S1. Wettability difference of support with different functional groups.	3
Figure S2. Pore structure comparison of different catalytic materials.	4
Figure S3. Ir particle size	5
Figure S4. Crystallinity of supports.	6
Figure S5. Thermal stability of the two catalysts.	7
Figure S6. Kinetics and conditions for optimizing the reaction.	8
Figure S7. Reaction of 2-methylfuran.	9
Figure S8. Electronic state of Ir over different supports via XPS	10
Figure S9. Electronic state of Ir over different supports via CO adsorption	11
Figure S10. Microscopy characterization of Pd and Pt catalyst.	12
Figure S11. XPS spectra of the Pd and Pt catalysts,	13
Figure S12. Adsorption isotherm of furfural on different supports.	14
Figure S13. Adsorption of toluene on HCP-OH and HCP-CH ₃	15
Figure S14. Interaction of furfural with different supports, using in situ Drifts IR adso	rption
	16
Figure S15. Interaction of furfural with HCP-CH ₃ via in situ Drifts-IR TPD experimen	te 17
	L3. 1/
Figure S16. Interaction of furfural with HCP-OH, using in situ Drifts-IR TPD experi	ments.
Figure S16. Interaction of furfural with HCP-OH, using <i>in situ</i> Drifts-IR TPD experi	ments. 18
Figure S16. Interaction of furfural with HCP-OH, using <i>in situ</i> Drifts-IR TPD experi Figure S17. Interaction of furfural with different supports, using ATR-IR adsorption.	ments. 18 19
Figure S16. Interaction of furfural with HCP-OH, using <i>in situ</i> Drifts-IR TPD experi Figure S17. Interaction of furfural with different supports, using ATR-IR adsorption Figure S18. Hydrogen bond measurement between furfural and phenol.	ments. 18 19 20
Figure S16. Interaction of furfural with HCP-OH, using <i>in situ</i> Drifts-IR TPD experi Figure S17. Interaction of furfural with different supports, using ATR-IR adsorption Figure S18. Hydrogen bond measurement between furfural and phenol Figure S19. Hydrogen bond measurement between 2-MF and phenol	ments. 18 19 20 21
Figure S16. Interaction of furfural with HCP-OH, using <i>in situ</i> Drifts-IR TPD experi Figure S17. Interaction of furfural with different supports, using ATR-IR adsorption Figure S18. Hydrogen bond measurement between furfural and phenol. Figure S19. Hydrogen bond measurement between 2-MF and phenol. Figure S20. Computational models.	ments. 18 19 20 21 22
Figure S16. Interaction of furfural with HCP-OH, using <i>in situ</i> Drifts-IR TPD experi Figure S17. Interaction of furfural with different supports, using ATR-IR adsorption Figure S18. Hydrogen bond measurement between furfural and phenol Figure S19. Hydrogen bond measurement between 2-MF and phenol. Figure S20. Computational models Figure S21. Optimized configurations of furfural adsorption	ments. 18 19 20 21 22 23
Figure S16. Interaction of furfural with HCP-OH, using <i>in situ</i> Drifts-IR TPD experi Figure S17. Interaction of furfural with different supports, using ATR-IR adsorption. Figure S18. Hydrogen bond measurement between furfural and phenol. Figure S19. Hydrogen bond measurement between 2-MF and phenol. Figure S20. Computational models. Figure S21. Optimized configurations of furfural adsorption Figure S22. Optimized configurations of the interaction between furfural and monome	ments. 18 19 20 21 22 23 rs24
Figure S16. Interaction of furfural with HCP-OH, using <i>in situ</i> Drifts-IR TPD experi Figure S17. Interaction of furfural with different supports, using ATR-IR adsorption Figure S18. Hydrogen bond measurement between furfural and phenol Figure S19. Hydrogen bond measurement between 2-MF and phenol Figure S20. Computational models Figure S21. Optimized configurations of furfural adsorption Figure S22. Optimized configurations of the interaction between furfural and monome Figure S23. Particle size	ments. 18 20 21 22 23 rs24 27
Figure S16. Interaction of furfural with HCP-OH, using <i>in situ</i> Drifts-IR TPD experi Figure S17. Interaction of furfural with different supports, using ATR-IR adsorption. Figure S18. Hydrogen bond measurement between furfural and phenol. Figure S19. Hydrogen bond measurement between 2-MF and phenol. Figure S20. Computational models. Figure S21. Optimized configurations of furfural adsorption Figure S22. Optimized configurations of the interaction between furfural and monome Figure S23. Particle size. Figure S24. Ir particles after reaction.	ments. 18 19 20 21 22 23 rs24 27 28
Figure S16. Interaction of furfural with HCP-OH, using <i>in situ</i> Drifts-IR TPD experi Figure S17. Interaction of furfural with different supports, using ATR-IR adsorption Figure S18. Hydrogen bond measurement between furfural and phenol. Figure S19. Hydrogen bond measurement between 2-MF and phenol. Figure S20. Computational models. Figure S21. Optimized configurations of furfural adsorption Figure S22. Optimized configurations of the interaction between furfural and monome Figure S23. Particle size. Figure S24. Ir particles after reaction. Figure S25. Catalyst reusability of Ir-HCP-OH.	ments. 18 19 20 21 22 23 rs24 27 28 28

Figure S27. Ketone adsorption difference over different zeolites.	30
Figure S28. Surface hydroxy difference of Si-Beta and Si-ZSM-5	31
Figure S29. Reaction networks for the reactions depicted in figures 2a, 2c, and 2d	32
Table S1. Textural properties of HCP, Ir-HCP, Si-Beta, and ZSM-5.	33
Table S2. Adsorption area of cyclopentanone, cyclohexanone, and cycloheptanone on Si-B	eta and
Si-ZSM-5	33
Table S3. Adsorption energies (E_{ads}) of furfural over OH group and CH ₃ group on the zigzag	g model
and armchair model	34
Table S4. Comparation of recent works on furfural hydrogenation modulation.	34
Supplementary Note 1	35

Figure S1. Wettability difference of support with different functional groups. HCP distribution difference on water and water contact angles. a) HCP-OH, b) HCP-CH₃.

Figure S2. Pore structure comparison of different catalytic materials.

N₂ adsorption-desorption isotherms at 77 K. a) Ir-HCP-OH, b) HCP-OH,

c) Ir-HCP-CH₃, d) HCP-CH₃.

Figure S3. Ir particle size. TEM images and particle size distribution of a) Ir-HCP-OH and b) Ir-HCP-CH₃.

Figure S4. Crystallinity of supports. XRD patterns of a) HCP-CH₃ and b) HCP-OH.

Figure S5. Thermal stability of the two catalysts. TGA curves of HCP-

OH and HCP-CH₃.

Figure S6. Kinetics and conditions for optimizing the reaction. a), Stir rate effect on rate with Ir-HCP-OH, b), catalyst amount effect with Ir-HCP-OH, c), hydrogen pressure effect with Ir-HCP-OH, d), Arrhenius plot of Ir-HCP-OH in furfural hydrogenation.

CH₃ and Ir-HCP-OH. Reaction conditions: substrate, 1 mmol; catalyst, 40 mg; hexane, 10 mL; H₂, 300 psi; 120 °C.

Figure S8. Electronic state of Ir over different supports via XPS. Ir *4f* of Ir-HCP-CH₃ and Ir-HCP-OH.

Figure S9. Electronic state of Ir over different supports via CO adsorption. *In situ* CO adsorption Drifts-IR peaks over Ir-HCP-CH₃ and Ir-HCP-OH.

Figure S10. Microscopy characterization of Pd and Pt catalyst. TEM, HR-TEM and HAADF of a, Pd-HCP-CH₃, b, Pd-HCP-OH, c, Pt-HCP-CH₃, d, Pt-HCP-OH.

Figure S11. XPS spectra of the Pd and Pt catalysts, a) Pd-HCP-CH₃, b)

Pd-HCP-OH, c) Pt-HCP-CH₃, and d) Pt-HCP-OH.

Furfural	Qmax (mmol/g)	K	
НСР-ОН	1.95 ± 0.15	247±32	
HCP-CH ₃	1.05 ± 0.19	82±24	

Figure S12. Adsorption isotherm of furfural on different supports.

Results on HCP-OH and HCP-CH₃. Q_{max} and K are the saturated adsorption amount and affinity constant based on a Langmuir fit.

Figure S13. Adsorption of toluene on HCP-OH and HCP-CH₃. Q_{max}

and K are the saturated adsorption amount and affinity constant based on a Langmuir fit.

Figure S14. Interaction of furfural with different supports, using *in*

situ Drifts IR adsorption. a) HCP-OH and b) HCP-CH₃ after the Kubelka-

Munk (K-M) transformation.

Furfural on HCP-CH₃

Figure S15. Interaction of furfural with HCP-CH₃ via *in situ* Drifts-IR

TPD experiments. Results on HCP-CH₃ under different temperatures after

the K-M transformation.

Furfural on HCP-OH

Figure S16. Interaction of furfural with HCP-OH, using in situ Drifts-

IR TPD experiments. Drifts-IR of furfural on HCP-OH under different temperatures after the K-M transformation.

Figure S17. Interaction of furfural with different supports, using ATR-IR adsorption. a) HCP-OH and b) HCP-CH₃. Black line refers to the pure liquid furfural and the red line to furfural adsorbed on catalyst. Peaks at 1670 cm⁻¹ are assigned to the carbonyl groups while those at 1018 cm⁻¹, 931 cm⁻¹ and 886 cm⁻¹ to the furan ring.

 $1/\Delta \delta = a \times 1/K \times 1/C + a$

equation S2

 $\Delta G=-RTln(K)$

equation S3

Figure S18. Hydrogen bond measurement between furfural and phenol. Linear relationship between $1/\Delta\delta$ and 1/C of furfural and phenol in CDCl₃, and chemical shift of active H in phenol with the addition of furfural.

	00				
	70 -			_	
~	60 -				
hpun	50 -				
	40 -				
	30 -	_			
	20 -	•		<u> </u>	
		4 6	8 10 12 1/C (1/	2 14 16 18 20)
			1/C (1/	liloi)	
		-	Ratio		δ (ppm)
		-	Ratio 0:1	∆δ (ppm)	δ (ppm) 4.5579
		-	Ratio 0:1 1:1	<u>∆δ (ppm)</u> 0.0136	δ (ppm) 4.5579 4.5715
		_	Ratio 0:1 1:1 2:1	∆δ (ppm) 0.0136 0.0264	δ (ppm) 4.5579 4.5715 4.5843
		-	Ratio 0:1 1:1 2:1 3:1	<u>∆δ (ppm)</u> 0.0136 0.0264 0.0377	<u>δ</u> (ppm) 4.5579 4.5715 4.5843 4.5956
		-	Ratio 0:1 1:1 2:1 3:1 4:1	<u>∆δ (ppm)</u> 0.0136 0.0264 0.0377 0.0452	δ (ppm) 4.5579 4.5715 4.5843 4.5956 4.6031

$1/\Delta \delta = a \times$	1/K ×	1/C + a
------------------------------	-------	---------

equation S2

 ΔG =-RTln(K)

equation S3

Figure S19. Hydrogen bond measurement between 2-MF and phenol.

Linear relationship between $1/\Delta\delta$ and 1/C of 2-MF and phenol in CDCl₃, and chemical shift of active H in phenol with the addition of 2-MF.

Figure S20. Computational models. (a) OH and (b) CH₃ on graphene ribbons with armchair edges; (c) OH and (d) CH₃ on graphene ribbons with zigzag edges.

Figure S21. Optimized configurations of furfural adsorption over (a)

CH₃ group and (b) OH group on armchair models.

Figure S22. Optimized configurations of the interaction between furfural and monomers. (a) Furfural and Phenol; (b) Furfural and Toluene.

d_{TEM}=2.3 nm Loading: 0.2wt%

d_{TEM}=3.0 nm Loading: 0.5 wt%

Figure S23. Particle size. TEM and particle size distribution of different

Ir loading catalysts.

Figure S24. Ir particles after reaction. TEM images of Ir-HCP-OH after

reaction.

Figure S25. Catalyst reusability of Ir-HCP-OH.

Figure S26. Hot filter experiment of furfural hydrogen with Ir-HCP-OH.

Figure S27. Ketone adsorption difference over different zeolites. In situ

FT-IR of cyclopentanone, cyclohexanone, and cycloheptanone adsorption on Si-Beta and Si-ZSM-5 and corresponding TPD results.

Figure S28. Surface hydroxy difference of Si-Beta and Si-ZSM-5.

Drifts-IR after K-M transformation. Peaks at 3780 cm⁻¹ assigned to isolated silanol and the broad peaks at 3500 cm⁻¹ to the silanol nests.

Figure S29. Reaction networks for the reactions depicted in figures 2a,

2c, and 2d.

Sample	Sbet (m ² g ⁻ ¹) ^a	D _{pore} (nm) ^b	V _{pore} (cm ³ g ⁻¹) ^c	N (wt%) ^d	C (wt%) ^d	H(wt%) ^d
HCP-CH ₃	720	2.8	0.49	0.71	76.33	6.76
НСР-ОН	324	3.5	0.29	0.70	84.54	8.64
Ir-HCP-CH3	701	2.7	0.47	0.72	80.51	6.41
Ir-HCP-OH	253	3.8	0.24	0.77	78.90	6.78
Si-BETA	511	0.84	0.24	-	-	-
Si-ZSM-5	334	0.80	0.15	-	-	-

Table S1. Textural properties of HCP, Ir-HCP, Si-Beta, and ZSM-5.

^a Calculated with the multipoint BET equation. ^b Pore width calculated with the NLDFT model. ^c Total pore volume calculated at $P/P_0 = 0.99$. ^d Determined by elemental analysis.

Table S2. Adsorption area of cyclopentanone, cyclohexanone, andcycloheptanone on Si-Beta and Si-ZSM-5.

	Area (cm ⁻¹)			Cor	nparable A	rea ^a
	Cyclo- pentanone	Cyclo- hexanone	Cyclo- heptanone	Cyclo- pentanone	Cyclo- hexanone	Cyclo- heptanone
Si-Beta	74.84	84.4	89.6	92.8	84.4	166.7
Si-ZSM-5	9.46	7.55	2.15	11.73	7.55	3.99

a, comparable area calculate

cyclopentanone:cyclohexanone:cycloheptanone = 1.23: 1:1.86

Table S3. Adsorption energies (E_{ads}) of furfural over OH group and CH₃

Eads of furfural	Zigzag model	Armchair model
OH group	-0.40 eV	-0.47 eV
CH ₃ group	-0.33 eV	-0.31 eV

group on the zigzag model and armchair model.

Table S4. Comparation of recent works on furfural hydrogenation

modulation.

Entry	Catalyst	Active site	Main products	Method to modulate catalytic performance	Method	Ref.
1	OH functional HCPs supported Ir	Ir	Furfural alcohol	Hydrogen bond interaction	Experiment + DFT	This work
2	Organic modified Pd/TiO ₂	Pd	Furfural alcohol	Surface active site modulation	Experiment	1
3	Co-impregnation of Pd and Ir on SiO ₂	Ir,Pd	Furfural alcohol and tetrahydrofurfuryl alcohol	Metal alloy method	Experiment	2
4	Pt(111), stepped Pt(211), and Pt55 cluster	Pt	Furfural alcohol and furan	Particle size	DFT	3
5	sol-immobilization Pd/TiO2	Pd	Furfural alcohol and tetrahydrofurfuryl alcohol	Particle size and active site	Experiment + DFT	4
6	α-MoC	α-MoC	Methyl furan	Solvent	Experiment + DFT	5
7	Phosphoric acid modified Pt/Al2O3	Pt	Methyl furan	Interfacial Metal- acid site	Experiment	6
8	Pd(111)	Pd	Furfuryl alcohol or furan	Hydrogen- coverage	DFT	7

Supplementary Note 1

In order to test the universality of the H bond in other materials except the special designed POPs, we tested the adsorption of ketones on Si- Beta and Si-ZSM-5 using *in-situ* FT-IR (Figure S27). Three different ketones with different molecule size including cyclopentanone, cyclohexanone, and cycloheptanone were tested. Irrespective of the substrate, Si-Beta adsorbs almost 10× than Si-ZSM-5 (Table S2). Although the two zeolites differ in BET surface area, pore volume, and pore size (Table S1), these little differences cannot explain such a huge adsorption difference. DRIFTS-IR reveals a huge difference in the area around 3500 cm⁻¹ (Figure S28), ascribed to Si-OH groups, implying many more OH groups in Si-Beta than Si-ZSM-5 that can hydrogen bond with the carbonyl groups. which can form the hydrogen bond between the carbonyl groups and the Si-OH. It is highly believed that this is the main reason for the huge adsorption difference. This experiment demonstrated weak interaction like H bond might widely existed in during the

Illustration of hydrogen bond formed between ketone and Si-OH in zeolite pores.

Supplementary References

1. Pang SH, Schoenbaum CA, Schwartz DK, Medlin JW. Effects of Thiol Modifiers on the Kinetics of Furfural Hydrogenation over Pd Catalysts. ACS Catalysis 4, 3123-3131 (2014).

 Nakagawa Y, Takada K, Tamura M, Tomishige K. Total Hydrogenation of Furfural and 5-Hydroxymethylfurfural over Supported Pd–Ir Alloy Catalyst. ACS Catalysis 4, 2718-2726 (2014).

3. Cai Q-X, Wang J-G, Wang Y-G, Mei D. Mechanistic insights into the structure-dependent selectivity of catalytic furfural conversion on platinum catalysts. AIChE Journal 61, 3812-3824 (2015).

4. Rogers SM, et al. Tandem Site- and Size-Controlled Pd Nanoparticles for the Directed Hydrogenation of Furfural. ACS Catalysis 7, 2266-2274 (2017).

5. Deng Y, et al. Solvent Tunes the Selectivity of Hydrogenation Reaction over α-MoC Catalyst. Journal of the American Chemical Society 140, 14481-14489 (2018).

6. Zhang J, et al. Control of interfacial acid-metal catalysis with organic monolayers. Nature Catalysis 1, 148-155 (2018).

 Wang S, Vorotnikov V, Vlachos DG. Coverage-Induced Conformational Effects on Activity and Selectivity: Hydrogenation and Decarbonylation of Furfural on Pd(111). ACS Catalysis 5, 104-112 (2015).