Supplementary Information

Biomolecular Condensates Formed by Designer Minimalistic Peptides

Avigail Baruch Leshem¹, Sian Sloan-Dennison², Tlalit Massarano¹, Shavit Ben-David¹, Duncan Graham², Karen Faulds², Hugo E. Gottlieb³, Jordan H. Chill*³ and Ayala Lampel*^{1,4-6}

¹Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

²Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K

³Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat Gan, 52900, Israel

⁴Center for Nanoscience and Nanotechnology Tel Aviv University, Tel Aviv 69978, Israel.

⁵Sagol Center for Regenerative Biotechnology Tel Aviv University, Tel Aviv 69978, Israel

⁶Center for the Physics and Chemistry of Living Systems Tel Aviv University, Tel Aviv 69978, Israel, Tel Aviv 69978, Israel.

*co-corresponding authors

email: Jordan.Chill@biu.ac.il; ayalalampel@tauex.tau.ac.il

Supplementary Figure 1. Phase diagram of the peptides as a function of peptide concentration and pH, in different buffers: citrate buffer for pH 3-7, tris buffer for pH 7-9, and ammonium bicarbonate buffer for pH 9-12. 0.2 M NaCl was added to all samples, measurements were obtained at room temperature. LLPS was not observed for WGR-2 and WGK. Values represent average pH of n=3 independent measurements, data are presented as mean values +/- SD. Source data are provided as a Source Data file.

Supplementary Figure 2. Turbidity assay of WGR-1 (10 mM) in citrate buffer (pH 6-7), Tris buffer (pH 6-10) and ammonium bicarbonate buffer (ABC, pH 9-10). Turbidity was monitored at λ =500 nm. Data are presented as mean values of n=3 +/- SD. Source data are provided as a Source Data file.

Supplementary Figure 3. Effect of Hofmeister series salts on peptide LLPS. Turbidity assay $(\lambda=500 \text{ nm})$ of WGR-1 (10 mM) as a function of pH with varying concentrations of either NaCl, KCl, Na₂HPO₄ or K₂HPO₄. Data are presented as mean values of n=3 +/- SD. Source data are provided as a Source Data file.

Supplementary Figure 4. Turbidity analysis of varying concentrations of WGR-1 in Tris buffer at pH 8 in the presence of 0.2 M NaCl. Red line indicates 0.5% of FITC-labeled peptide. Data are presented as mean values of n=3 +/- SD. Source data are provided as a Source Data file.

Supplementary Table 1.

Table 1. Apparent diffusion coefficients in the condensed and dilute phase								
	WGR-1	WGR-3	WGR-4	WGR-5				
D condensed phase (FRAP)	4.58E-14	5.53E-14	2.53E-14	1.41E-14				
Error	6.05E-15	2.88E-15	7.02E-15	4.71E-15				
D dilute phase (NMR)	1.91E-10	2.18E-10	2.23E-10	2.44E-10				
Error	0.11E-11	0.12E-11	0.12E-11	0.13E-11				

Supplementary Figure 5. a. Raman spectra of peptide droplet buffer control (background). **b.** Raman spectra of dried peptide droplets. Source data are provided as a Source Data file.

Supplementary Figure 6. a. Table of the 4 sequence variants designed to study the role of Trp in LLPS. **b.** Optical microscopy images of the peptides at 30 mM pH 11 with 0.2 M NaCl. No droplets were observed for all 4 peptides. Scale bars=50 μm.

Supplementary Figure 7. CD analysis of peptides at 1 mM with and without NaCl.

Supplementary Figure 8. a. Turbidity analysis of peptide LLPS at a concentration of 20 mM at varying pH values. WGR-10 contains a Pro/Gln substitution. Each point represents an average of n=3, data are presented as mean values +/- SD **b**. Optical microscopy images of peptides at 20 mM at pH 10. Scale bar=50 μm. Source data are provided as a Source Data file.

Supplementary Information - NMR analyses

Supplementary Table 2. pKa values of LLPS-promoting peptides.

Supplementary Table 2. pKa values of LLPS-promoting peptides.					
Peptide	pKa				
WGR-1	7.50 ± 0.01				
WGR-3	7.49 ± 0.01				
WGR-4	7.37 ± 0.01				
WGR-5	7.51 ± 0.01				

pKa values were determined by following the chemical shifts of Trp^1 - $H\alpha$ and Trp^1 - $H\beta$ at pH values of 6.0, 7.0, 7.5, 8.0 and 9.0. The 10 obtained chemical shifts were fitted to the Henderson-Hasselbach equation with the assumption that peak position is a weighted average of the two end-point chemical shifts; optimization parameters were the two end-point shifts (representing fully ionized and fully deionized forms of the N-terminal amino group of the peptide. Errors were determined by Monte Carlo simulations with a measurement error of 0.01 ppm for all chemical shifts. Data are presented as mean values +/- SD

Supplementary Table 3. Urea analysis.

Supplementary Table 3. Urea analysis.								
Peptide	Trp¹-Cα	Trp ⁹ -Cα	Pro ¹⁰ -Cα	Val ¹² -Cα	Val ¹² -Cα	Tyr/Phe14-		
				(maj.)	(min.)	Cα		
WGR-1	0.12	0.15	0.05	0.02	0.08	0.37		
WGR-2	0.13	0.20	ND^a	0.09	0.15	NA^b		
WGR-3	0.12	0.56	0.06	0.03	0.06	0.33		
WGR-5	0.13	0.07	0.04	0.02	0.07	0.36		

Values represent chemical shift changes (¹³C, ppm, on a 700 MHz spectrometer) for representative Cα nuclei along the peptide sequence upon addition of 8 M urea to the sample. All measurements were conducted at 3 mM peptide concentration and maintaining a constant sample volume and temperature (300 K). Values reflecting the intramolecular effect are underlined; the large effect of Phe14 upon Trp9 is in bold.

^apeak overlaps with the tris buffer peak

^bResidue 14 is absent in WGR-2

Supplementary Figure 9. 20 mM WGR-1 NMR data at pH 6, 285 K. Shown are spectra used for assignment of all residues of the peptide. **a.** 2D-COSY spectra in the H^{aro}-H^{ali} and H^N-H^{ali} region. **b.** Overlay of homonuclear 2D-TOCSY (black) and ROESY (blue) spectra in the H^{aro}-H^{ali} and H^N-H^{ali} region. **c.** Overlay of heteronuclear 2D-HMBC (black) and HMQC (blue) spectra in the aromatic region. **d.** The one-dimensional ¹H spectrum. **e.** The one-dimensional ¹³C spectrum.

Supplementary Figure 10. Assignment of Arg residues in WGR-1. Shown are spectra used for assignment of the Arg residues of the peptide. **a.** Overlay of homonuclear 2D-TOCSY (black) and COSY (red) spectra in the H^N-H^{ali} region with Arg regions and assignments highlighted. **b.** Overlay of the H^{ali}-H^{ali} region of the same spectra. **c.** Focus on the Arg(H^{γ},H^{δ}) region of the COSY spectrum. Left panel shows this region for WGR-1 (0 M NaCl, pH 6) and successive panels show comparisons of other peptides (blue) to the original peptide (grey). The WGR-2 spectrum demonstrates that upfield shifts are not the result of an interaction with the Y¹⁴ ring, and the WGR-P10Q spectrum (abolishing the cis/trans conformations) shows that the upfield shift represents a minor conformation (cis). The WGR(7-14, P10Q) spectrum (lacking the R³/R⁵ signals) demonstrates the assignment of R⁷.

Supplementary Figure 11. NMR determines the molecular mechanism of droplet formation in WGR-3. Region of the 2D- 1 H, 1 H-COSY spectrum showing the correlation between arginine H $^{\gamma}$ -H $^{\delta}$ protons for the WGR-3 peptide at 20 (black, LLPS) and 5 (red, non-LLPS) mM in 50 mM tris buffer pH 10 and 300 K. Changes are observed in the cross-peaks corresponding to Arg 7

Supplementary Table 4.

¹ H chemical shifts for WGR-1, 20 mM at pH 6, 285 K ^a											
Residue	¹ H ^N	$^1\mathrm{H}^lpha$	${}^1\mathbf{H}^{eta}$	¹ Η γ [ppm]	¹ Η ^δ [ppm]	¹ H ε	$^{1}\mathrm{H}^{^{\zeta2}}$	$^{1}\mathrm{H}^{\zeta3}$	$^1\mathrm{H}^{\mathrm{\eta}2}$		
	[ppm]	[ppm]	[ppm]	II [ppm]	II [ppiii]	[ppm]	[ppm]	[ppm]	[ppm]		
W_1	10.25	4.27	3.35,		7.30 (7.31)	7.59	7.50	7.16	7.23		
VV 1	(10.26) ^{b,c}	4.27	3.41	-							
R ₃ /R ₅	8.27/8.31	4.23	1.72	1.44	2.93/3.08	-	-	-	-		
R ₇	8.25	4.26	1.67	1.38	2.80	-	-	-	-		
	10.15	4.05	3.09,			7.61					
W 9	10.15	4.85	3.26	-	7.18 (7.20)	7.61	7.46	7.12	7.21		
	$(10.24)^{b}$	(4.53)	(3.18)			(7.46)					
		407		4.40	3.72, 3.39				-		
P ₁₀	-	4.35	2.15	(1.34)	(3.35, 3.07)	-	-				
	7.94	4.13	2.05	0.89, 0.88		-	-	-	-		
V ₁₂	(8.04)	(4.11)	(2.01)	(0.86, 0.83)	-						
	7. . . .	4.00	2.86,	7.00 (7.00)							
Y14	7.58	4.38	3.04	7.02 (7.03)	6.77	-	-	-	-		

^a Glycine residues were not determined due to spectral overlap

^b Chemical shift for ε1 position

^c Numbers in brackets represent the chemical shift for the minor isomer

Supplementary Table 5.

¹³ C chem	nical shifts	for WGI	R-1, 20 mN	I at pH 6,	285 K ^a					
D : J	¹³ C ^α	$^{13}\mathrm{C}^{\beta}$	13 C $^{\gamma}$	$^{13}C^{\delta 1}$	$^{13}\mathrm{C}^{\delta2}$	¹³ Cε2	¹³ Cε³	¹³ C ^{ζ2}	¹³ C ^{ζ3}	$^{13}\mathrm{C}^{\mathrm{\eta}2}$
Residue	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]
\mathbf{W}_1	56.85	30.88	110.08	128.81	130.07	139.77	121.53	115.49	122.93	125.55
***	55.73	29.81	112.08	128.05	130.23	139.51	121.55	115 40	122.02	125.46
\mathbf{W}_9	(56.74) ^b	(31.17)	(111.48)	(128.21)	(130.10)	(139.64)	(121.47)	115.43	122.93	(125.60)
P_{10}	64.29	32.62	(24.89)	51.50				-		
	(63.78)	(33.74)		(50.62)	-	-	-		-	-
			21.12,							
* 7	63.18	33.54	21.82							
V_{12}	(62.96)	(33.61)	(20.78,	-	-	-	-	-	-	-
			21.79)							
\mathbf{Y}_{14}	50.01	40.13	132.58	134.03	-	118.73	-	157.69		
	59.91							(157.72)	-	-

^a Glycines and arginines residues were not determined due to spectral overlap

 $^{^{\}mathbf{b}}$ Numbers in brackets represent the chemical shift for the minor isomer.