
 1 

 
 

 
 
 

Supplementary Materials for 
 

The vaquita is not doomed to extinction by inbreeding depression 
 

Jacqueline A. Robinson, Christopher C. Kyriazis, Sergio F. Nigenda-Morales, Annabel C. 
Beichman, Lorenzo Rojas-Bracho, Kelly M. Robertson, Michael C. Fontaine, Robert K. Wayne, 

Kirk E. Lohmueller, Barbara L. Taylor, and Phillip A. Morin 

 
correspondence to: jacqueline.robinson@ucsf.edu, ckyriazis@g.ucla.edu, 

lrojasbracho@gmail.com, barbara.taylor@noaa.gov, klohmueller@g.ucla.edu, 
phillip.morin@noaa.gov 

 
 
This PDF file includes: 
 

Materials and Methods 
Supplementary Text 
Figs. S1 to S21 
Tables S1 to S6 

 



 2 

Materials and Methods 

 
Samples and sequencing  

We obtained tissue samples of 19 vaquitas sampled from 1985-2017, spanning roughly 
three vaquita generations. The 12 samples from 1985-1993 included 10 adults and two fetuses, 
implying that this sample alone may span ~2 generations. Additionally, the animal captured, 
biopsied and released in 2017 was a juvenile, suggesting that this individual was born at least 30 
years after the oldest individuals in our dataset. Other sampled individuals that were fetuses or 
calves are noted in table S1.  

All samples except one (ID = z0186934) were obtained opportunistically from beach-cast 
or bycaught animals, and stored in salt-saturated 20% DMSO at -20°C. The single sample from a 
live individual was collected under veterinary care and all animal handling was conducted under 
permit no. SGPA/DGVS/07534/17. The skin biopsy sample was stored without preservative 
at -80°C. Samples were transferred internationally under MMPA and CITES permits. DNA was 
extracted using the PureGene or DNeasy Tissue kits (Qiagen), following the manufacturer’s 
recommendations, or using a salt/ethanol precipitation (29). DNA quality was checked by 
agarose gel electrophoresis and quantified using a Qubit-v3 fluorometer. Genomic libraries were 
prepared using the Swift Biosciences Inc. Accel-NGS single-strand 1S DNA Library Kit or using 
a blunt-end ligation method with double indexing (30, 31). Libraries were sequenced with 
Illumina HiSeq-X to generate 150 bp paired end reads.  
 
Variant calling and filtering 

We aligned vaquita whole genome sequence reads to the previously assembled vaquita 
reference genome (mPhoSin1.pri, GCF_008692025.1) (12) as follows. First, sequence reads 
were trimmed to remove low quality bases with BBDUK v38.72 
(http://sourceforge.net/projects/bbmap). We then used an adapted version of the Best Practices 
workflow for the Genome Analysis Toolkit v3 (GATK v3.8-1-0-gf15c1c3ef, (32)) to perform 
variant calling. Initial processing steps were carried out per-sample prior to joint genotype 
calling. First, we used Picard v2.20.3-0 (http://broadinstitute.github.io/picard) 
MarkIlluminaAdapters to flag any adapter sequence contamination, and then aligned reads to the 
vaquita reference genome with BWA MEM v0.7.17-r1188 (33). Duplicate reads were then 
flagged with Picard MarkDuplicates and indel realignment was performed with GATK 
RealignerTargetCreator and IndelRealigner. Next, we performed base quality score recalibration 
(BQSR) using a set of high confidence variant calls from within each individual for use as the set 
of "known variants" — a procedure referred to as "bootstrapping" for cases where no database of 
known variation exists. These variants were called using Bcftools v1.9 (34) mpileup/call/filter 
with the following requirements: reads mapped in proper pairs, minimum read mapping quality 
score of 20, minimum base quality score of 30, at least one forward and one reverse read 
supporting the alternate allele, and no more than one alternate allele. One round of recalibration 
was sufficient to equalize the reported and expected base quality score distributions. 

Genotype calling was performed in each individual with GATK HaplotypeCaller to 
produce gVCF files using the options -ERC BP_RESOLUTION -out_mode EMIT_ALL_SITES to 
call genotypes at all sites in the reference. We then generated joint VCF files by passing all 
individual gVCF files to GATK GenotypeGVCFs using the options allSites -stand_call_conf 0. 
These settings produced VCF files with genotypes at all sites in the genome, including invariant 
sites. We applied filters and masks to exclude low-quality genotypes from subsequent analyses. 
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Variants that were not bi-allelic SNPs were excluded. Variants failing recommended GATK hard 
filtering criteria (QD < 4, FS > 60, MQ < 40, MQRankSum < -12.5, ReadPosRankSum < -8, 
SOR > 3) were then filtered out, as well as sites with excess missingness (>25%) or excess 
heterozygosity (>75% of individuals heterozygous). Genotypes were filtered on a per-individual 
basis to exclude those with insufficient or excess read depth (<1/3x or >2x mean read depth for 
that individual). Individual genotypes were further filtered on the basis of allele balance (percent 
of reads carrying the reference allele out of total reads covering a site): homozygotes with >10% 
of reads carrying a different allele and heterozygotes with allele balance <20% or >80% were 
filtered out. We masked repetitive sequences identified with RepeatMasker v.open-4.0.9 (35) or 
Tandem Repeats Finder v4.09 (36). Finally, we masked regions of extreme SNP density (>0.01), 
which likely reflect technical artifacts, such as errors in the underlying assembly. Only data from 
the autosomes were used in our analyses. 
 
Estimation of recent vaquita abundance 

To estimate the trajectory of vaquita abundance in recent decades (as in Fig. 1A), we fit 
an exponential model consistent with point estimates from recent surveys (37–39). Specifically, 
our aim was to match the trend given by three abundance estimates from complete surveys of the 
vaquita distribution: an estimate of 567 in 1997 (37), an estimate of 245 in 2008 (38), and an 
estimate of 59 in 2015 (39). Based on these estimates, we fitted a model assuming two rates of 
decline. We assumed a constant exponential rate of decline for the period prior to 2012 that fit 
the 1997 and 2008 abundance estimates. Projecting this growth rate (lambda = 0.92) into the past 
resulted in reaching the population size estimated from genetic data (~5,000 vaquitas) by 
1972. The second rate of decline (lambda = 0.67) solved the exponential equation between the 
projected number in 2012 and the number in 2019 (~10). This simple model approximated the 
estimated abundances from recent surveys well (see Fig. 1A). 
 
Genomic diversity, runs of homozygosity, and relatedness 

We define heterozygosity as the proportion of all called genotypes within a single 
individual that are heterozygous. This value represents the average number of pairwise 
differences per site between homologous chromosomes within a single individual. As we 
generated VCF files that included invariant positions, the denominator includes all sites with 
called genotypes, including those that are invariant and match the reference. The distribution of 
genome-wide heterozygosity in vaquitas revealed two notable peaks with high diversity across 
many individuals: one at the end of Chromosome 2 in eight individuals, and one in the middle of 
Chromosome 18 in twelve individuals (fig. S1). The peak at the end of Chromosome 2 is a 150 
kb region containing one pseudogene, five orthologs of human immunoglobulin genes, and six 
unnamed genes. Several genes in this region have multiple stop codons, suggesting they are non-
functional or that the annotations contain errors. The immunoglobulin genes in this region are 
also highly paralogous, and an elevated proportion of sites in this region fail numerous quality 
filters. The peak on Chromosome 18 is a 300 kb region that contains three genes (FAM71A, 
OGT, CEP78) that, to our knowledge, have no clear significance for fitness. These peaks of 
heterozygosity may represent technical artifacts rather than genuine signals of high germline 
diversity. 

We identified runs of homozygosity (ROH) ≥ 1 Mb with three methods: the --homozyg 
function in Plink v1.90b6.12 (40), the --LROH function in Vcftools v0.1.16, (41), and the roh 
function in Bcftools v1.10.2 (42). Plink and Vcftools were run with default parameters. VCF 
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files containing all genotyped sites were provided for Plink, whereas files containing just variant 
sites were provided for Vcftools. For Bcftools, we provided variants only, used option -G 30, and 
specified that the function should use allele frequencies from the 15 unrelated vaquitas in 
identifying ROH (see below). All three methods yielded similar total lengths of ROH (fig. S2). 
Bcftools produced the highest summed ROH lengths overall, and we chose to use those results 
for the main text as they represent the most conservative estimate of the maximum degree of 
inbreeding.  

To calculate the proportion of the genome in ROH, we generated a pseudo-genome with 
100% homozygous genotypes and included this when re-running Bcftools roh. Including the 
pseudo-genome had no effect on ROH estimated in the true genomes but provided a maximum 
possible ROH length for a fully homozygous genome. The summed ROH length from this 
pseudo-genome (2,237,397,028 bp, slightly less than the full autosomal genome length of 
2,237,877,686 bp) was then used as the denominator for calculating FROH in the vaquitas. To 
estimate the coalescence time for the two copies of the chromosome within a ROH (when 
identical segments originated from a single chromosomal segment in a common ancestor), we 
used a model in which the length of ROH due to inbreeding decays exponentially through 
recombination each generation (43). Specifically, we calculated the number of generations to the 
common ancestor (g) as g = 100/(2*L), where L is the mean length of ROH in megabases (Mb). 
Here, we assumed a generation time of 11.9 years (13), and, in the absence of data on 
recombination rates in cetaceans, a constant recombination rate of 1 cM/Mb.  

We estimated genetic relatedness among vaquitas in order to exclude closely related 
individuals from population allele frequency-based analyses (Demographic Inference and 
Inference of the distribution of selection coefficients). To calculate relatedness, we used the 
“KING-homo” method (44) in SNPRelate v1.24.0 (45) to estimate pairwise genetic distances 
between individuals on the basis of identity-by-state (IBS). Prior to estimating genetic distance 
and relatedness metrics, SNPs were pruned for linkage disequilibrium (using options 
method = “composite” and ld.threshold = 0.5), resulting in 59,420 SNPs for analysis. As two 
pairs of individuals were known to be first-degree relatives (mother and fetus pairs; see table S1), 
we were able to easily identify two other pairs of first-degree relatives that shared a similar 
degree of IBS/relatedness (kinship ~0.25; z0004390/z0004394, z0183496/z0185383), and one 
individual (z0004382) with a more distant relationship (kinship = 0.079) to one of the mother-
fetus pairs (z0004380/z0004393) (fig. S3). Among all other individuals, there was no evidence of 
close relatedness (mean kinship = 7.73x10-3). For all analyses which required using unrelated 
individuals only, we kept the higher coverage individual of each relative-pair, excluding 
z0001663, z0004380, z0004393, z0004394, and z0185383. 
 
Demographic inference 

To reconstruct the demographic history of the vaquita based on the neutral site frequency 
spectrum (SFS), we selected SNPs in putatively neutrally evolving regions of the genome, 
constructed a folded SFS, and used two demographic inference methods. We identified 
putatively neutral regions as those located >10 kb from coding sequences which did not overlap 
with CpG islands (identified with cpg_lh, from 
https://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64). To exclude highly conserved un-
annotated regions under strong evolutionary constraint, which may be functional, we aligned the 
remaining regions against the zebra fish genome using BLAST (v2.7.1(46)) and removed any 
region which had a hit below a 1e-10 threshold (indicating high sequence similarity).  



 5 

To create the neutral SFS, we used a modified version of EasySFS 
(https://github.com/isaacovercast/easySFS), which implements 𝜕a𝜕i’s (47) hypergeometric 
projection to account for missing genotypes at some sites. The maximum number of SNPs was 
recovered using a projection value of 26 haploid, or 13 diploid, individuals. The number of 
monomorphic sites passing the projection threshold in neutral regions were counted and 
incorporated into the 0-bin of the SFS. 

We used the neutral SFS for demographic inference under a coalescent framework with 
fastsimcoal2 v2.6 (48) and a diffusion approximation method with 𝜕a𝜕i (47). The four models 
we tested were: 1-Epoch model: no size change, infers the ancestral size (Nanc) of the population; 
2-Epoch model: one size change from Nanc to the current size (Ncur) occurring T generations ago; 
3-Epoch model: two size changes, from Nanc to a reduction (Nbot) Tbot generations ago, followed 
by a recovery to the current size (Ncur) Tcur generations ago; 4-Epoch model: three size changes, 
Nanc to a reduction or expansion (Nbot) Tbot generations ago, followed by a recovery or reduction 
(Nrec), Trec generations ago and a final change Tcur generations ago to the current size (Ncur) (fig. 
S4).  

In fastsimcoal2 (48), we estimated demographic parameters using 60 expectation 
conditional maximization (ECM) cycles, each with 500,000 simulated coalescent trees. The 
starting parameters were chosen from a uniform distribution with an enforced minimum value 
and flexible upper boundary. We compared the expected SFS under the fastsimcoal2 parameters 
to the empirical SFS and the multinomial log-likelihood was calculated. We performed 100 
replicates of the inference to confirm that both parameters and log-likelihoods converged, and 
parameters with the maximum log-likelihood were chosen. All estimated effective population 
size parameter values were obtained as the number of haploids and converted to diploids, while 
time parameters were inferred as the number of generations before the present day. We 
calculated confidence intervals for the estimated parameters by generating 100 parametric 
bootstrap replicates of the SFS for the set of parameters in each model as follows. For each 
bootstrap replicate, we simulated 2,000,000 non-recombining segments of 1 kb (2 Gb total) in 
fastsimcoal2 under the parameters with the maximum likelihood for each model. Then, we 
estimated the parameters from these pseudo-observed data. We used the estimated values 
obtained from the data as the initial values for bootstrap parameter estimation. To determine 
which model explained our data better, we performed several tests. For each model we first 
evaluated the convergence for the estimated parameters and log-likelihood values in the five best 
replicates, then calculated the Akaike information criterion (AIC) for the replicate with the 
maximum log-likelihood and used these top replicates to carry out a likelihood ratio test (LRT) 
between nested models. 

For demographic inference with 𝜕a𝜕i v2.1.1 (47), we permuted the starting parameter 
values for each of 100 runs for each model. The log-likelihood was calculated for the expected 
SFS using 𝜕a𝜕i’s optimized parameter values and compared to the empirical SFS. We then 
estimated the best fit for each replicate and scaled by the total sequence length (L) and mutation 
rate (5.8x10-9 mutations/site/generation; see Vaquita mutation rate estimation) to calculate the 
diploid ancestral size (Nanc) as Nanc = θ/(4μL). Parameter values for population size changes were 
scaled by Nanc, and time parameters were scaled by 2*Nanc, into units of diploids and number of 
generations, respectively. For each model, we selected the maximum likelihood estimate from 
the 100 runs. To determine the uncertainty in parameter estimates for the best run per model (i.e. 
with the maximum log-likelihood), we first performed a bootstrap analysis by partitioning the 
VCF file used to build the SFS into 1,000 independent fragments of 2 Mb (2 Gb total); then used 
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those fragments to calculate a Godambe information matrix to obtain the standard deviation and 
95% confidence intervals of the best fitting parameters (49). The bootstrap and uncertainty 
analysis were done using 𝜕a𝜕i functions Misc.bootstraps_from_dd_chunks and 
dadi.Godambe.GIM_uncert, respectively. As with fastsimcoal2, we evaluated the models based 
on convergence, AIC, and LRT. 
 
Vaquita mutation rate estimation 

Our inferences of the demographic history and distribution of selection coefficients in 
vaquitas, as well as our forward simulations, require that a per-site, per-generation mutation rate 
be specified. The mutation rate in vaquitas is unknown. Previously, Morin et al. (12) assumed a 
rate of 1.08x10-8/site/generation, based on a previously estimated nuclear mutation rate of 
9.10x10-10/site/year in odontocetes (50), and a vaquita generation time of 11.9 years (13). 
However, this substitution rate estimate was based on a limited set of just four nuclear genes. We 
therefore used genome-wide divergence between the vaquita and two other porpoises (harbor 
porpoise, Phocoena phocoena (SRR8305658, (51)), and Indo-Pacific finless porpoise, 
Neophocaena phocaenoides (SRR940959, (52)) to estimate plausible alternative mutation rates. 

Divergence (dxy) is related to mutation rate (μ) through the equation μ ≈ dxy/2t, where t is 
the time since two species diverged from a common ancestor. We calculated divergence as 
dxy = (h1 + 2h2) / (2g), where h1 is the number of sites in which one or both members of the pair is 
heterozygous, h2 is the number of sites in which individuals are homozygous for different alleles, 
and g is the number of sites in which both individuals had called genotypes. We estimated that 
dxy between the vaquita and harbor porpoise is 4.25x10-3/site, and dxy between the vaquita and 
finless porpoise is 5.31x10-3/site. Using a previous divergence time estimate of 5.42 million years 
(53) and a generation time of 11.9 years yields estimated mutation rates of 4.66-
5.83x10-9/site/generation (fig. S12). These are potentially over-estimates, however, because they 
do not account for the level of diversity in the ancestral population prior to divergence (πanc), 
which is a reasonable assumption only when dxy >> πanc. Here, we calculate the mutation rate as 
μ = (dxy – πanc)/2, where we set πanc to the genome-wide estimate of heterozygosity in the harbor 
or finless porpoise, as πanc is unknown. Using this method, we estimate mutation rates of 3.00-
4.79x10-9/site/generation (fig. S12). To include uncertainty in the divergence time estimate, we 
also calculated mutation rates using median estimated divergence times from TimeTree.org (54): 
7.33 million years since the split between vaquitas and harbor porpoises, and 8.15 million years 
since the split between vaquitas and finless porpoises. With these divergence times, we obtain 
mutation rates of 3.45-4.31x10-9/site/generation without considering πanc, and 2.22-
3.54x10-9/site/generation when incorporating πanc (fig. S12).  

We used the minimum and maximum mutation rates estimated here (2.22x10-9 and 
5.83x10-9/site/generation, respectively) as well as the previously used rate of 
1.08x10-8/site/generation (12) for inferring the distribution of fitness effects and population 
viability simulations (see Inference of the distribution of selection coefficients and Simulation 
methods). All findings presented in the main text used the rate of 5.83x10-9/site/generation, 
which is intermediate between our estimated lower bound and the previously used rate. Our 
range of mutation rates spans the range of direct estimates from other mammals, including mice 
and humans (55, 56). 
 
Annotation of putatively deleterious variants 
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We used the Sorting Intolerant From Tolerant program (SIFT (16)) to annotate 
synonymous and nonsynonymous mutations, and to identify nonsynonymous mutations that are 
putatively deleterious. SIFT designates mutations as putatively deleterious when they occur at 
highly conserved sites in alignments of homologous protein-coding sequences. We used SIFT4G 
(57) with the UniRef90 protein database (downloaded May 1, 2020) to develop custom SIFT 
databases for each of the species analyzed in our study, following the developer's 
recommendations. We used SnpEff v4.3t (build 2017-11-24 10:18) (58) to identify putative LOF 
mutations. Following (59), SnpEff identifies putative LOF mutations as those that introduce 
premature stop codons, disrupt splice sites, or induce frameshifts within the first 95% of a gene's 
coding sequence (LOF mutations in the last 5% of the sequence tend to be tolerated). Note that 
indels were excluded from our analyses and we therefore did not count frameshift mutations in 
LOF tallies. For sites with multiple annotations due to overlapping gene transcripts, we 
prioritized the most deleterious annotation (LOF > deleterious nonsynonymous > tolerated 
nonsynonymous > synonymous). Custom per-species databases for both SnpEff and SIFT were 
built using genome annotations (GTF files) provided by RefSeq. 
 
Comparative analyses with cetaceans 

We obtained whole genome sequence data for eleven other cetacean species from the 
NCBI Sequence Read Archive (SRA). Species were selected if they had: 1) an assembled 
reference genome in GenBank, 2) a genome annotation in RefSeq, and 3) short read Illumina 
resequencing data in the SRA. Reads from each species were aligned to the reference genome for 
that species (note: we used the Yangtze finless porpoise as the reference for the closely-related 
Indo-Pacific finless porpoise, which does not have its own genome assembly) and were 
processed using the same pipeline described above for the vaquita data. The only differences 
were that: 1) these samples were processed individually (no joint genotyping), and 2) slightly 
different filtering criteria were implemented, as follows. We excluded short scaffolds (<500 kb) 
and scaffolds with depth of coverage <75% or >150% of the genome-wide mean on a per-
individual basis. Filtering and masking were the same as for the vaquita data with the following 
exceptions: we did not incorporate missingness or excess heterozygosity filters, or an excess 
SNP density mask, as those were implemented exclusively for joint VCF files containing 
multiple individuals. SIFT and SnpEff databases were generated for each reference genome and 
used to annotate variants (see Annotation of putatively deleterious variants).  

For comparisons between the vaquita and other cetacean species (Fig. 2, fig. S8, S10), the 
value used for the vaquita was the average value calculated from all 20 individuals (see fig. S7 
for plots showing values for all 20 vaquitas). All estimates of heterozygosity and heterozygosity-
based analyses for comparisons between vaquitas and cetaceans used the same-species-reference 
dataset described above. In order to obtain counts of homozygous variants (fig. S8), which 
includes potentially fixed substitutions, we aligned reads from the vaquita and its closest 
relatives (porpoises, monodontids, and delphinids) to the reference genome of an outgroup, the 
blue whale (GCF_009873245.2_mBalMus1.pri.v3). We used an identical pipeline to the same-
species pipeline described above to obtain filtered, annotated VCF files. More distantly related 
species were excluded from this analysis in order to mitigate biases from using a divergent 
outgroup reference genome.  

We use several statistics to quantify and compare the burden of deleterious variation, or 
the "genetic load" (sometimes called the "mutation load"), between vaquitas and other cetacean 
species. Genetic load can arise from several distinct processes, leading to different types of load 
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(reviewed in (60)). One form of load is "drift load", or the increased frequency and fixation of 
weakly deleterious alleles as a result of genetic drift. Specifically, weakly deleterious alleles may 
accumulate because purifying selection is ineffective at removing mutations with selection 
coefficients <<1/(2Ne). A second type of load is the “inbreeding load”, or the load of recessive 
deleterious mutations that may reduce fitness by becoming homozygous through inbreeding. 
Unlike drift load, inbreeding load may be lower in small populations where recessive mutations 
are more frequently exposed to purifying selection as homozygotes, and higher in large 
populations where inbreeding seldom occurs and high heterozygosity masks recessive alleles 
from selection. In our study, we attempt to approximate both types of load using different 
statistics as described below. 

To assess the effects of drift on deleterious variation, we calculated ratios of putatively 
deleterious variants (deleterious nonsynonymous mutations identified with SIFT and LOF 
mutations identified with SnpEff) to synonymous variants (Fig. 2A, B, fig. S8). With this 
approach, we use the number of synonymous variants as the "neutral" baseline to compare the 
relative burden of deleterious variants between species. This method accounts for varying 
evolutionary rates among species, and therefore corrects for branch length variation due to 
varying degrees of divergence between each focal species and the outgroup (in this case, the blue 
whale; see fig. S6), making it a valid approach for between-species comparisons. In particular, 
when comparing numbers of derived deleterious homozygotes between species, raw absolute 
counts are somewhat meaningless by themselves as each focal species has a different divergence 
time with respect to its outgroup species. A further advantage of our approach is that it inherently 
accounts for technical differences between samples that can influence absolute counts, such as 
varying sequence quality or genome coverage. Note, it has been suggested that the ratio of 
nonsynonymous to synonymous variants may not always be a good proxy for genetic load in 
non-equilibrium populations (61). However, normalization of putatively deleterious variation by 
putatively neutral variation is appropriate here because our objective is to compare patterns 
between divergent species, rather than between closely related populations of the same species. 
Moreover, the vast majority of homozygous derived variants that we identify are due to fixed 
substitutions that have accumulated over long branches with respect to the outgroup reference 
genome, and recent demography should therefore have little effect on this ratio (fig. S8). 
Because our analyses involve comparisons between divergent species, rather than between 
populations, we do not require a method that corrects for shared polymorphisms (e.g., Rxy (62)). 
For these reasons, normalization of the counts of nonsynonymous variants by the counts of 
synonymous variants is appropriate for assessing the effects of long-term Ne on the relative 
burden of deleterious variants per genome. 

To quantify inbreeding load, we tabulated the absolute number of deleterious 
heterozygotes per genome, as this captures the deleterious variation that can reduce fitness if 
made homozygous through inbreeding (Fig. 2C, D, fig. S10). We normalized raw heterozygous 
genotype counts to correct for varying call rates across individuals due to technical differences in 
coverage, filtering, etc. Specifically, we divided the raw heterozygous genotype counts by the 
total number of genotype calls passing all filters within each individual, then multiplied this 
result by the mean total number of genotype calls across all individuals. For protein-coding 
heterozygotes (synonymous, tolerated nonsynonymous, deleterious nonsynonymous, LOF), we 
normalized by the total number of called genotypes in the exonic regions; for numbers of 
conserved noncoding heterozygotes, we normalized by the total number of calls in the conserved 
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noncoding regions (see Identification of conserved noncoding regions in vaquita and cetacean 
genomes). 

 
Phylogenetic correction for multi-species correlations  

We used phylogenetic generalized least squares (PGLS) regression to account for 
phylogenetic non-independence among species when modelling the association between 
genome-wide heterozygosity and the burden of deleterious alleles. To generate a species 
phylogeny, we used alignments of vertebrate-specific single copy orthologous genes from each 
species. Briefly, we identified orthologs in each genome assembly with BUSCO v4.1.4 (63), 
generated an alignment for each ortholog with mafft v7.475 (64), and then inferred tree topology 
and branch lengths using maximum likelihood with IQ-TREE v2.1.2 (65). We included the cow 
genome (ARS-UCD1.2 (66)) as an outgroup, and excluded the Indo-Pacific finless porpoise as 
there is currently no genome assembly or annotation available for this species. Our species 
phylogeny therefore includes 11 cetaceans, including the vaquita, plus the cow. We used the 
vertebrata_odb10.2020-09-10 BUSCO dataset, which contains 3,354 orthologs from 67 species. 
Of these, 2,459 orthologs were found in all 12 genomes and used for inferring the species 
phylogeny. Alignments for each ortholog were trimmed with trimal v1.4.rev15 (67), and then 
concatenated into a supermatrix (containing 4,421,551 sites total) with catsequences (68). 
Phylogenies inferred with and without partitioning (69) yielded identical topologies with similar 
branch lengths, but the partitioned analysis yielded higher AIC and BIC scores. The best 
partitioning scheme and model, as identified with ModelFinder (70), was an edge-linked-
proportional partition model of 167 partitions with separate substitution models and rates across 
sites. Consensus and maximum-likelihood tree topologies from partitioned and non-partitioned 
analyses were identical and consistent with the cetacean phylogeny inferred by (71) (fig. S6). In 
both partitioned and non-partitioned analyses, all branches received 100% support from 1000 
bootstrap replicates (UFBoot2, (72)). We used the phylogeny inferred from the partitioned 
analysis for performing PGLS regression under a Brownian motion correlation structure in R 
v4.0.5 (73) with the ape v5.5 (74), geiger v2.0.7 (75), and nlme v3.1.152 (76) packages. 
 
Identification of conserved noncoding regions in vaquita and cetacean genomes 

Conserved noncoding elements are genomic sequences with high sequence similarity 
across species that may function in gene regulation (77). To identify conserved noncoding 
regions, we converted the coordinates of conserved noncoding elements in the mouse genome 
(mm10) provided by the UCSC Genome Browser (http://genome.ucsc.edu/cgi-bin/hgTables) to 
their corresponding coordinates in the vaquita and other cetacean genome assemblies. Briefly, 
we extracted the coordinates of conserved elements ≥50 bp originally identified with PhastCons 
(78) from a 60-way alignment of placental mammal genomes, then followed the UCSC cross-
species reciprocal best alignment protocol to obtain homologous regions in the cetacean genome 
assemblies (complete pipeline available at (27)). Converted coordinates that overlapped protein-
coding sequences (annotated as “CDS”) or repetitive sequences were then discarded to retain 
only noncoding, non-repetitive conserved regions with a final total length of ~32 Mb. 
 
Inference of the distribution of selection coefficients  

We used the distributions of synonymous and nonsynonymous allele frequencies (fig. 
S13A) to infer the distribution of selection coefficients (s) of new nonsynonymous mutations 
(also known as the distribution of fitness effects) in vaquitas. Importantly, this distribution 
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characterizes the selective effects of new mutations, but the extent to which these mutations may 
segregate and potentially reach fixation is determined by the combined effects of natural 
selection and genetic drift (see The impact of fixed mutations on vaquita recovery). Despite 
being a central parameter in population genetics, this distribution has only been characterized for 
a few species, and little is known about how it differs between species (79–81). Thus, we provide 
an estimate of the distribution inferred for humans for comparison (80), given that this 
distribution has been studied most extensively using molecular data from humans. 

We followed the methods of (79) and (80) to infer this distribution in vaquitas. First, site 
frequency spectra were generated from synonymous and nonsynonymous sites as annotated by 
SNPEff (58). Hypergeometric projection using easySFS 
(https://github.com/isaacovercast/easySFS), a wrapper for hypergeometric projection with 𝜕a𝜕i 
(v1.7.0 (47)), reduced the SFS down to 12 individuals to smooth over missing data and maximize 
the number of SNPs. Next, demographic parameters for the two-epoch model were inferred from 
the synonymous SFS using 𝜕a𝜕i to control for both demography and the effects of linked 
selection in coding regions. One hundred runs of 𝜕a𝜕i were carried out, and the parameters with 
the maximum multinomial log-likelihood were chosen. The optimal value of the population-
scaled mutation rate for synonymous sites (𝜃synonymous) was inferred using 𝜕a𝜕i and then scaled up 
by a factor of 2.31 for 𝜃nonsynonymous sites, as in (79) and (80) (the value of 2.31 in those papers was 
chosen to reflect the higher number of nonsynonymous sites in the exome, and the higher 
mutation rate of synonymous sites due to their higher GC and CpG-content). The ancestral 
population size was calculated as: 

𝑁! =	
𝜃"#$%$#&%'"

4 ∗ 𝜇 ∗ 𝐿"#$%$#&%'"
 

where μ is the mutation rate per site per generation, and L was estimated as: 

𝐿"#$%$#&%'" =	 (
1

1 + 2.31) 	∗ 	𝐿()" 

𝐿$%$"#$%$#&%'" =	1
2.31

1 + 2.312 ∗ 	𝐿()" 
where Lcds is the total number of sites in coding regions (annotated as “CDS”) with at least 12 
called genotypes (the projection value). 

The distribution of selection coefficients of new mutations was then inferred from the 
nonsynonymous SFS using fit𝜕a𝜕i (80), conditioning on the demographic parameters inferred 
from the synonymous SFS. A grid of expected site frequency spectra under the demographic 
model was created for a grid of 300 values of the population-scaled selection coefficient 𝛾 
(𝛾 = s*2Na). Following (80), we fit a gamma distribution for 𝛾, with parameters for shape and 
scale. Shape and scale parameters were inferred from 25 runs of fit𝜕a𝜕i by integrating over the 
grid of expected site frequency spectra and fitting model output to the empirical nonsynonymous 
SFS. Parameters with the highest Poisson log-likelihood were chosen. For plotting, the scale 
parameter was divided by 2Na to no longer be scaled by the ancestral population size. For use in 
SLiM (19) simulations, the expected value of s (E[s]) was calculated by multiplying the shape 
and scale parameters together, making the sign negative, and multiplying by two since fit𝜕a𝜕i 
computes fitness as 1+2s for homozygotes, whereas SLiM computes it as 1+s: 

𝐸[𝑠] 	=
−2 ∗ 𝑠ℎ𝑎𝑝𝑒	 ∗ 	𝑠𝑐𝑎𝑙𝑒	

2 ∗ 𝑁!
 

This process was repeated for each of the three mutation rates used for demographic inference 
and forward simulations (2.2x10-9, 5.8x10-9, 1.08x10-8 mutations/site/generation).  
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Compared to humans (24), vaquitas have a higher fraction of new mutations that are 
neutral and nearly neutral (0 < |s| ≤ 10-5), a lower fraction of weakly to moderately deleterious 
mutations (10-5 < |s| < 10-2), and a higher fraction of strongly deleterious mutations (|s| ≥ 10-2), 
though we caution that this latter category is the most difficult to estimate accurately (24, 83) and 
greatly depends on the mutation rate parameter (fig. S13B). To determine whether the vaquita 
distribution of selection coefficients (shape = 0.131, scale = 0.098) was an improvement over the 
distribution inferred for humans in (80), we generated an expected vaquita nonsynonymous SFS 
using parameters from the human distribution of fitness effects (shape = 0.186, scale = 0.0352), 
scaled using the estimated value of 2Na for the vaquita described above and the value of 
𝜃nonsynonymous in vaquitas. We then compared the fit of this expected SFS based on human 
parameters to the empirical vaquita nonsynonymous SFS and found that it had a lower log-
likelihood (log-likelihood = -65.37) than the fit of the expected SFS under our inferred vaquita 
parameters (log-likelihood = -47.64), meaning that our inferred vaquita distribution of selection 
coefficients yields an expected SFS that is a better fit to the vaquita empirical data (fig. S13C). 
Thus, the vaquita distribution of selection coefficients is relatively similar to that of humans, but 
may result in slightly different selection dynamics. We carried out population viability 
simulations using both sets of vaquita and human parameters for comparison (see Simulation 
methods). 
 
Simulation methods 

Stochastic, individual-based simulations were conducted using the non-Wright-Fisher 
(nonWF) model in SLiM v3.3.2 (21). This model differs from the classical Wright-Fisher model 
in several key ways. First, generations in this model are overlapping (and can be thought of in 
this case as years), whereby the probability of an individual surviving from one year to the next 
is given by its absolute fitness. Absolute fitness for each individual ranges from 0 to 1 and is 
determined by its genetic composition. Thus, population size (N) in this model is not 
predetermined, but instead is an outcome of a stochastic process of reproduction and viability 
selection (Fig. 3A). To keep the simulated population from growing indefinitely, the nonWF 
model makes use of a carrying capacity (K), rescaling absolute fitness downward by the ratio of 
K/N when N>K. This rescaling can also optionally be used to model the effects of relaxed 
selection (e.g., due to reduced intraspecific competition) when N<K; however, by default we 
conservatively do not allow for this upwards rescaling of fitness (see Fitness rescaling based on 
density dependence in simulations for more details).  

Each year in the nonWF model consists of separate reproduction and viability selection 
stages (Fig. 3A). At the start of each year, every reproductive-age female (>4 years) has a 75% 
probability of reproducing with a randomly-selected reproductive-age male (>4 years). This 75% 
probability was used to enforce a 1.5-year calving interval, given uncertainty in whether vaquitas 
calve annually or every two years (17). To examine the potential impacts of this uncertainty, we 
also ran simulations assuming calving intervals of one and two years. To model the effects of 
inbreeding depression on reproduction, we further scaled the probability of reproduction by the 
absolute fitness of the mother. For example, an adult female with absolute fitness 0.97 has a 
0.75*0.97 = 0.73 probability of mating each year assuming a 1.5-year calving interval. Each 
successful mating produces one offspring, with no cap on the number of reproductions per year 
for adult males. Following reproduction, viability selection occurs, in which each individual 
survives with a probability determined by its absolute fitness multiplied by any scaling factors 
for age or density dependence. In cases where mothers with newborn calves died, we also 
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enforced mortality for the calf, as newborn calves are dependent on their mothers for survival. 
To enforce age-related increases in mortality rates, fitness was rescaled by a factor of 0.6 for 
newborn individuals, 0.95 for yearlings, 0.9 for individuals aged 15-19, 0.2 for individuals aged 
20-25, and 0.0 for individuals aged 25 (i.e., all individuals die after age 25). Note that these 
rescaling factors are multiplied by the absolute fitness of each individual, which also varies as a 
function of age (i.e., older individuals tend to have higher fitness given that they have survived 
many years of viability selection). These values were chosen such that the survivorship curves in 
this model reflect those of the closely-related harbor porpoise, as such information does not exist 
for the vaquita (fig. S11; (82)).  

Our model assumes random mating and that individuals can find mates (no Allee effects), 
which is justified given the small size of the vaquita range. Virtually all vaquita detections are 
within a 12x24km area, which can be traversed within a day by a vaquita. Moreover, given the 
acoustic behavior of vaquitas, the remaining ~10 individuals are likely aware of each other. 
Finally, there is ample evidence for ongoing reproduction in the remaining vaquita individuals. 
Specifically, in 2019, three of the remaining ~10 individuals were calves, suggesting that 
reproductive effort is high. 

Our aim in setting the genomic parameters was to model a vaquita exome with a 
combination of neutral and recessive deleterious mutations, given that these mutations are most 
likely responsible for inbreeding depression (3, 22). To do this, we modeled 18,173 genes, each 
of length 1,760 bp (the average length of coding sequence in a gene in the vaquita assembly, 
giving ~32 Mb of total coding sequence), with the number of genes on each chromosome taken 
from the vaquita genome assembly (12). We assumed no recombination within genes and a 
recombination rate of 1x10-3 between genes, reflecting the effective rate of crossing over in 100 
kb noncoding regions between each gene, assuming a recombination rate of 1x10-8 per site per 
generation (83). These genes accumulated a combination of neutral and (partially) recessive 
deleterious mutations at our estimated rate of 5.8x10-9 per site per generation (see above), with 
the ratio of deleterious to neutral mutations set at 2.31:1 (79). Our model does not include 
heterozygote advantage, given that its impacts on inbreeding depression are likely to be small (3, 
84). We also ran a subset of simulations with a lower estimated mutation rate of 2.2x10-9 and a 
higher rate of 1.08x10-8, as estimated by (50). Importantly, we also rescaled the simulated 
demographic parameters according to the assumed mutation rate (i.e., K = 5,200 when assuming 
μ = 5.8x10-9 was rescaled to K = 5.8/2.2*5200 = 13,709 when assuming μ = 2.2x10-9). Finally, to 
examine sensitivity to the assumed deleterious mutation target size, we increased gene length by 
50% to 2,640 bp, yielding a total sequence length of ~48 Mb. This analysis was intended to 
capture potential effects of both underestimating coding sequence length as well as not modeling 
functional noncoding variation, as we have no knowledge of how noncoding variation 
contributes to inbreeding depression and what the distribution of selection or dominance 
coefficients in these regions might be.  

Selection coefficients (s) for deleterious mutations were drawn from a gamma 
distribution estimated using the genomic data (see Inference of the distribution of selection 
coefficients) with mean = -0.0257 and shape parameter = 0.1314. For sensitivity analyses 
varying the mutation rate, we used the parameters inferred under the respective mutation rate 
(mean = -0.00971 and shape = 0.1316 for μ = 2.2x10-9 and mean = -0.0476 and shape = 0.1315 
for μ = 1.08x10-8; fig. S13). Note that this parameterization of the distribution of selection 
coefficients differs from that of fit𝜕a𝜕i, as fit𝜕a𝜕i assumes a homozygous fitness of 1+2s 
whereas SLiM assumes a homozygous fitness of 1+s. In addition, to convert these per-generation 
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selection coefficients to per-year selection coefficients, we divided by the generation time (11.9 
years), but only for more weakly deleterious mutations (s > -0.01; see Converting selection 
coefficients from per generation to per year in simulations for more details). For dominance 
coefficients (h), we assumed an inverse relationship between h and s (hs relationship) with h = 
0.0 for very strongly deleterious mutations (s < -0.1), h = 0.01 for strongly deleterious mutations 
(-0.1 ≤ s < -0.01), h = 0.1 for moderately deleterious mutations (-0.01 ≤ s < -0.001), and h = 0.4 
for weakly deleterious mutations (s > -0.001). To explore the sensitivity of our results to our 
assumed hs relationship (which is not estimated from data), we also ran simulations with an 
alternative hs relationship (hs-alt) of h = 0.01, h = 0.05, h = 0.25, and h = 0.5 for the same 
categories of mutations above, respectively, as well as with all mutations assumed to be fully 
recessive (h = 0) and fully additive (h = 0.5). To examine the sensitivity of our results to the 
assumed distribution of s, we also ran simulations using a distribution inferred for humans with 
mean -0.0131 and shape = 0.186 (80). In addition, given concerns that molecular-based estimates 
of this distribution may underestimate the presence of large-effect mutations (85), we ran 
simulations where we added a fraction of lethal mutations occurring at rates of either 1.0% or 
5.0% of new nonsynonymous mutations. These percentages were chosen to yield a number of 
lethal mutations that is roughly consistent with estimates observed in humans of ~0.6 recessive 
lethals per diploid genome (86) (table S6). Finally, we also ran simulations under the selection 
and dominance parameters from Kardos et al. 2021 (85), which includes a distribution of 
selection coefficients with mean = -0.05, shape = 0.5, augmented with an additional 5% of 
mutations being recessive lethal, and a distribution of dominance coefficients following the 
relationship h = 0.5*exp(-13s) (presented in fig. S21 as the “Kardos” model). To maintain 
computational tractability, we approximated this relationship by partitioning this distribution as 
follows: h = 0.48 for s ³ -0.01, h = 0.31 for -0.1 ≤ s < -0.01, h = 0.07 for -0.4 ≤ s < -0.1, h = 
0.001 for -1.0 ≤ s < -0.4, and h = 0.0 for s = -1.0. For all simulations, mutations that became 
fixed in the simulated population were retained, such that fitness progressively declines with 
increasing numbers of fixed mutations.  

We set the historical population size parameters of our simulations using our best-fit two-
epoch demographic model (see Demographic inference). Specifically, this model consists of a 
historical population size of N1 = 4,485 followed by a decline to N2 = 2,807 for 25,727 years. To 
convert these effective population size estimates to carrying capacities (which here can be 
thought of as census sizes), we first estimated the ratio of Ne to K in our simulation model based 
on neutral heterozygosity at equilibrium under our default life-history parameters. From this 
estimate of Ne/K = 0.54, we obtained carrying capacities of K1 = 8,300 (4485/0.54) and K2 = 
5,200 (2807/0.54). For all simulations, we ran burn-ins at K1 for 50,000 years followed by K2 for 
26,000 years. This duration at K1 was long enough for the inbreeding load to reach equilibrium, 
however it was not long enough for neutral heterozygosity to reach equilibrium (which takes 
~350,000 years; fig. S17). Because neutral mutations do not impact fitness and therefore do not 
impact extinction dynamics, we used these shorter burn-ins to maintain computational feasibility. 
We also include a comparison of results when assuming burn-ins at K1 of 100,000 and 350,000 
years to demonstrate that this choice does not impact model results (fig. S18). Due to the high 
computational load of simulations where we increased the historical population size by a factor 
of 20, we only ran the second epoch of 26,000 years with K2 = 104,000. Importantly, however, 
this burn-in duration was still long enough for the simulated inbreeding load to reach equilibrium 
(fig. S20).  
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Following these historical population dynamics, we initiated a decline by introducing 
stochastic bycatch mortality at a rate that matched observed patterns of decline (see Estimation 
of recent vaquita abundance) (fig. S19). To match this rate of decline in our simulations, we 
used a bycatch mortality probability of 0.15 per individual until the population declined below 
250 individuals, after which we increased this mortality probability to 0.34, reflecting the more 
rapid pace of decline starting in 2011 due to the resurgence of the totoaba (Totoaba macdonaldi) 
fishery (see The impact of gillnet fishing on vaquitas). Bycatch mortalities were enforced by 
changing individual absolute fitness to 0.0 following reproduction, ensuring that those 
individuals died during the viability selection step. We maintained this rate of bycatch mortality 
of 0.34 until the population declined to a threshold of 5, 10, or 20 individuals or fewer, reflecting 
a plausible range of the current abundance (see (4) for discussion of census estimates). Recovery 
was initiated by reducing the bycatch mortality rate to 0.0, 0.034, or 0.068, a decline in mortality 
rates relative to 0.34 of 100%, 90%, and 80%, respectively. Simulations were run for 50 years 
following the start of recovery, or until the population went extinct. We ran 100 simulation 
replicates for all parameter combinations. We note that these recovery scenarios are greatly 
simplified as we do not expect a constant rate of bycatch mortality over the next 50 years, nor do 
we expect bycatch mortality rates to be immediately reduced to zero. However, we take this 
approach to maintain ease of interpretation of our results, with the general aim of demonstrating 
the influence of bycatch mortality rates in our model. 

During our simulations, we kept track of several quantities relevant to the state of the 
population: mean absolute fitness (calculated multiplicatively across sites), mean inbreeding 
coefficient (here measured as FPED tracing back to the grandparent generation, chosen to capture 
inbreeding due to mating among close relatives), mean inbreeding load, and the mean number of 
strongly deleterious alleles (s < -0.01), very strongly deleterious alleles (s < -0.1), and lethal 
alleles (s < -0.5) per individual. These quantities were estimated using a sample size of 60 
individuals (or from the entire population if N < 60) every 1,000 years during the historical 
demographic trajectory, and every year following the initiation of the decline. In table S6, we 
report these quantities for each combination of simulation parameters following the conclusion 
of the burn-in. Simulation scripts are available at (28). 
 
Converting selection coefficients from per generation to per year in simulations 

The distribution of selection coefficients we estimate for vaquitas is inferred under a 
Wright-Fisher model, where selection occurs each generation, and selection coefficients are 
therefore scaled per generation. However, selection in the nonWF model occurs each year, 
meaning that selection coefficients should be scaled per year. To rescale these selection 
coefficients, we can simply divide them by the generation time (87). However, it is not clear that 
this rescaling should also apply to strongly deleterious mutations, which might express their 
effects in development or early age, and therefore do not operate over multiple years. Our 
solution was to rescale selection coefficients (s ≥ -0.01) by the vaquita generation time (11.9; 
(13)), but not strongly deleterious mutations (s < -0.01). To test the sensitivity of our model to 
this assumption, we also ran simulations with no rescaling and with all mutations rescaled (fig. 
S21). We find negligible differences in extinction rates between the case with no scaling and the 
case with strongly deleterious mutations scaled, however we observe much lower extinction rates 
in the case where all mutations are scaled. Overall, we conclude that these considerations appear 
not to impact our model projections substantially, and, if anything, suggest that our projections 
may be conservative.  
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Fitness rescaling based on density dependence in simulations 

To maintain a population near its carrying capacity (K), the SLiM nonWF model rescales 
fitness each generation by the ratio of K/N (i.e., if N<K, each individual’s fitness is rescaled 
upward, and if N>K, fitness is rescaled downward). This rescaling is meant to model the effects 
of a relative abundance of resources and reduced intraspecific competition when N<K, and a 
relative scarcity of resources and increased intraspecific competition when N>K. By default, this 
rescaling occurs both in the case of N<K and N>K, with no cap on the magnitude of the rescaling 
(though absolute fitness remains bounded by 0 and 1). Thus, in the case of our simulations, 
where a population decline occurs due to stochastic mortality that results in N<<K (i.e., N 
declines to <20 while K stays fixed at 5,200), the default behavior of the model would be to 
rescale fitness upward, resulting in absolute fitness being rescaled to 1.0 for all individuals given 
the large ratio of K/N. As a consequence, viability selection would not occur, given that all 
individuals would have a 100% chance of survival with fitness of 1.0. To avoid this biologically 
unrealistic behavior, and ensure that the impacts of inbreeding depression were expressed in our 
model, we conservatively assumed that no upwards rescaling of fitness could occur (i.e., fitness 
rescaling was given by min(K/N, 1.0)). We explored sensitivity to this assumption by also 
running simulations with upwards fitness rescaling capped at 5%. Here, we find much lower 
extinction rates, with only 10% of replicates going extinct compared to 27% when assuming no 
upwards rescaling of fitness (fig. S21). Thus, if inbreeding depression in vaquitas is at all 
buffered by the impacts of reduced intraspecific competition due to the very small vaquita 
population size, recovery potential may be further increased relative to our model projections.  
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Supplementary Text 
The impact of gillnet fishing on vaquitas 

Only three years after vaquitas were described as a new species in 1958, Norris & 
Prescott (88) reported the incidental mortality of vaquita in gillnets of totoaba, sharks, and rays. 
In 1975, the International Whaling Commission (IWC) Scientific Committee expressed concerns 
about incidental mortality in shark and totoaba fishery in the published report of the first meeting 
of the Small Cetaceans Subcommittee (89). At least 128 vaquita were killed in fishing gear 
between 1985 and early 1992, 65% of which were killed in totoaba fishery (90). D’Agrosa et al. 
(91) monitored fishing effort and incidental catch by El Golfo fishermen from January 1993 to 
January 1995 and using data collected by observers and fisherman interviews estimated the 
mortality of vaquita in 39 (95% CI 14-93) individuals from one fishing community and roughly 
double that for both communities adjacent to the vaquita’s range. Once there was a full 
abundance estimate (37) and data on reproductive rate (92), it was clear that the gillnet mortality 
rate was unsustainable. The rate of decline between 1997 and 2008 was compatible with 
estimated rates of mortality only from gillnet entanglement (93). For a review of evidence of 
gillnet entanglement see (94). The recent catastrophic decline documented using vaquita acoustic 
data occurred when illegal fishing for totoaba resurged (4). Gulland et al. (18) examined nine 
vaquita carcasses from 2016-2018 when rapid decline was taking place and established the cause 
of death was bycatch in gillnets. In summary, the impact of gillnet fishing on the vaquita is well 
documented, with extensive evidence demonstrating that it has driven the decline of the species.  
 
Simulating the ratio of heterozygosity at nonsynonymous to synonymous sites 

Our empirical analysis of deleterious mutations in vaquitas demonstrate that vaquitas 
have the highest ratio of heterozygosity at nonsynonymous to synonymous sites of all surveyed 
cetaceans (Fig. 2), suggesting relaxed purifying selection. However, it is possible that this high 
ratio in vaquitas has been influenced by the recent bottleneck, rather than being a consequence of 
their small historical population size (61). To investigate this issue, we estimated this ratio during 
the bottleneck in 10 simulation replicates, using the same simulation framework described above. 
We observe only minimal change in this ratio during the bottleneck, with an average value of 
~0.34 at the start of the bottleneck and ~0.35 at the end (fig. S9). Thus, these results confirm that 
the elevated ratio of deleterious alleles in vaquitas is largely due to relaxed selection as a result 
of historically low Ne, rather than more recent demographic processes.  
 
The impact of fixed mutations on vaquita recovery  

Much emphasis in conservation genetics has been placed on the role of fixed weakly 
deleterious mutations as drivers of extinction in small populations via a process termed 
“mutational meltdown” (14, 95, 96). In small populations, the accumulation of these fixed 
mutations can contribute to reduced fitness, resulting in an elevated “drift load”. This process 
may be relevant to vaquita recovery potential, given that weakly deleterious mutations are likely 
to have drifted to fixation in the small historical vaquita population.  

To investigate the impact of fixed mutations in our SLiM nonWF simulation model, we 
tracked the quantity and total effect on fitness (drift load) of fixed mutations in 10 simulation 
replicates with 350,000 year burn-in durations (long enough for neutral mutations to reach 
equilibrium). At the end of the burn-in, we observe an average of 787 fixed deleterious mutations 
in each simulated population. However, the mean selection coefficient of these fixed mutations 
is -2.4x10-5, resulting in a drift load of -0.19% (note that these selection coefficients are scaled 
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per year; fig. S15). Thus, although hundreds of weakly deleterious mutations become fixed, they 
have a relatively minor cumulative impact on fitness. This result helps explain why we do not 
see differences in extinction rates when running much shorter 50,000 year burn-ins (fig. S18), 
which only differ in the quantity of fixed mutations (7.8 deleterious mutations fixed on average, 
with a cumulative impact on absolute fitness of -2.25x10-5). Note that our aim is not to match the 
number of fixed deleterious mutations in the sequenced vaquita genomes, but to explore the 
impacts of these mutations on extinction dynamics through simulations. 

As another approach to investigate the impact of fixed mutations in our model, we ran 
simulations with a burn-in duration of 50,000 years where mutations were removed after fixation 
(i.e., their impact on fitness was not allowed to accumulate). Here, we observe negligible 
differences in extinction rates in this model compared to simulations where fixed mutations were 
retained (26% vs 27% extinction rates, respectively; fig. S16).  
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Fig. S1.  
Genome-wide heterozygosity in vaquitas. Bar plots showing per-site heterozygosity in non-
overlapping 1-Mb windows across the autosomes. Sex and sampling year are indicated next to 
sample names in parentheses. A peak of heterozygosity in the last window of Chromosome 2 
extends beyond the plot in eight individuals to ~1.16x10-3. This peak contains a number of highly 
paralogous genes, and may be due to technical artifacts (see Materials and Methods). 



 19 

 
 
Fig. S2.  
Comparison of ROH identification methods. Summed ROH lengths obtained from three different 
ROH calling methods were highly similar to one another. We provided variant sites only for 
running Bcftools (42) and Vcftools (41), and all sites (including invariant) for Plink (40). Plink 
and Vcftools were run with default parameters. Bcftools was run with option -G 30 and allele 
frequencies estimated from 15 unrelated vaquitas (see Materials and Methods). 
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Fig. S3.  
Genetic distance and relatedness between vaquitas. (A) Heatmap and hierarchical clustering 
based on identity by state (IBS) calculated from 59,420 SNPs pruned for linkage disequilibrium 
in SNPRelate (45). Sample year is indicated along with the sample name. Sample names in bold 
indicate known mother-fetus pairs. Two additional first-degree relationship pairs are evident: 
z0004390/z0004394 and z0183496/z0185383. Figure generated with the heatmap.2 function in 
gplots (97). (B) Pairwise IBS values were used to estimate kinship coefficients with the KING-
homo method (44) implemented in SNPRelate. X-axis values indicate the probability that two 
individuals share zero alleles identical by descent (IBD). Four kinship coefficients close to 0.25 
(mean = 0.23) indicate four first-degree relationships, including the two known mother-fetus 
pairs. The next highest kinship coefficient is between samples z0004382 and z0004380 (kinship 
coefficient = 0.079), indicating a potential third-degree relationship.  
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Fig. S4.  
Graphical representation of the different demographic models tested. “1-epoch” represents a 
model with no population size change. “2-epoch” represents a model with one size change event. 
“3-epoch” represents a model with two size change events. “4-epoch” represents a model with 
three size change events. Population size parameters (Nanc, Nbot, Nrec, Ncur) represent the 
population size in diploid individuals. Time parameters (T, Tbot, Trec, Tcur) represent the number of 
generations before the present day in which population size changes occurred (see Materials and 
Methods for the full description of the parameters). The size changes and time representations 
are not to scale, they are only approximations according to the inferred demographic scenario. 
See table S2 for detailed parameter and uncertainty estimates. For 1- and 2-epoch models, the 
representation applies for both 𝜕a𝜕i and fastsimcoal2 inference, while for the 3- and 4-epoch 
models the representation is different for both methods because the parameters estimated were 
substantially distinct. 
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Fig. S5.  
Fit of each demographic model with folded proportional site frequency spectrum (SFS). 
Comparison of the SFS from each demographic model (1- to 4-epoch) obtained from 𝜕a𝜕i (A) 
and fastsimcoal2 (B) inference with the SFS from the empirical data (denoted “Observed”). 
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Fig. S6.  
Cetacean phylogeny used in phylogenetic generalized least squares (PGLS) regression. The 
Indo-Pacific finless porpoise does not have an assembled genome and was therefore excluded. 
Maximum likelihood tree inferred with IQ-TREE (65) from 2,459 single copy orthologs present 
in all twelve species. All branches have 100% support from 1,000 bootstrap replicates (72). Scale 
bar represents genetic distance (average number of substitutions per site). See table S1 for 
cetacean genome information. 
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Fig. S7.  
Ratios and counts of protein-coding and conserved noncoding variants in vaquitas. X-axis 
represents the sample year (table S1). Grey lines show linear regressions. There are no apparent 
trends with regard to sampling year, and none of the regressions are statistically significant (p >> 
0.05). (A-C) Ratios of tolerated nonsynonymous, deleterious nonsynonymous, and LOF 
heterozygotes to synonymous heterozygotes. (D-F) Ratios of tolerated nonsynonymous, 
deleterious nonsynonymous, and LOF homozygotes to synonymous homozygotes. (G-K) 
Numbers of tolerated nonsynonymous, deleterious nonsynonymous, LOF, synonymous, and 
conserved noncoding heterozygotes.    
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Fig. S8.  
Genome-wide heterozygosity and the ratio of nonsynonymous and LOF homozygotes to 
synonymous homozygotes. (A) The relative proportion of deleterious nonsynonymous 
homozygotes is significantly negatively correlated with genome-wide heterozygosity (per bp, 
log-scaled) (phylogenetic generalized least squares regression (PGLS) p = 2.95x10-3). (B) A 
negative correlation appears to exist for LOF homozygotes also, but the relationship is not 
significant (PGLS p = 0.124). (C) The correlation for tolerated nonsynonymous variants appears 
slightly positive but is not significant (PGLS p = 0.350). Grey lines show phylogeny-corrected 
regressions (excluding the Indo-Pacific finless porpoise; see Materials and Methods). Variants 
were identified by alignment to an outgroup reference genome (blue whale). In order to mitigate 
the effects of reference bias, only the vaquita and species with approximately equivalent 
divergence from the reference are included (porpoises, monodontids, delphinids).  
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Fig. S9. 
The ratio of nonsynonymous to synonymous heterozygosity is largely unaffected by a recent 
population bottleneck in simulations. (top) The change in population size in the simulations over 
time. (bottom) The ratio of nonsynonymous heterozygosity to synonymous heterozygosity, 
sampling individuals at different time-points in the simulations. Note the minimal increase in the 
ratio, which only starts to occur during the most recent portion of the bottleneck. Thus, the high 
ratio observed empirically for vaquitas (Fig. 2A, B) appears to be primarily due to an 
accumulation of nonsynonymous variants in the ancestral vaquita population and not driven by 
the recent bottleneck. Results are shown for 10 simulation replicates. 
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Fig. S10.  
Genome-wide heterozygosity and the number of heterozygotes in protein-coding and conserved 
noncoding regions. The numbers of heterozygous synonymous (A), tolerated missense (B), and 
conserved noncoding (C) variants are significantly positively correlated with genome-wide 
heterozygosity (per bp). Grey lines show phylogeny-corrected regressions (excluding the Indo-
Pacific finless porpoise; see Materials and Methods). All relationships are significant (PGLS 
regression; synonymous p = 2.12x10-8, tolerated nonsynonymous p = 9.14x10-8, conserved 
noncoding p = 1.13x10-11). 
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Fig. S11.  
Survivorship curves for the simulation model. Age-specific fitness rescaling was employed such 
that vaquita survivorship closely matched empirical estimates of survivorship from the closely-
related harbor porpoise. See Fig. 2A in (82) for comparison.  
 
  Figure Sx: Survivorship curve
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Fig. S12.  
Range of estimated mutation rates in vaquitas based on divergence from other porpoise species. 
We used divergence time (t) estimates from a recent study of complete mitochondrial genomes in 
porpoises (53), as well as median estimated divergence times from TimeTree.org to estimate 
mutation rates (μ) from genome-wide divergence (dxy). Open symbols show the estimates for μ = 
dxy/2t, and filled symbols show the estimates for μ = (dxy-π)/2t, where π is genome-wide 
heterozygosity in the harbor or finless porpoise genome.  
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Fig. S13.  
Inference of the distribution of selection coefficients. (A) The folded and projected site 
frequency spectra from coding regions (synonymous and nonsynonymous sites) show a skew 
toward low-frequency variants relative to the SFS from neutral sites far from genes. The skew is 
largest for nonsynonymous variants, consistent with the action of purifying selection removing 
deleterious amino-acid changing alleles. The skew for synonymous variants likely reflects 
background selection. (B) The distribution of selection coefficients of new mutations (also 
known as the distribution of fitness effects) for different vaquita mutation rates. The strongly-
deleterious category (10-2 < |s|) is most affected by the assumed mutation rate. A distribution of 
selection coefficients inferred for humans (80) is shown in gray for comparison. (C) Comparison 
of the empirical vaquita nonsynonymous SFS (gray), the expected nonsynonymous SFS under 
the vaquita distribution of selection coefficients (blue), and the expected nonsynonymous SFS 
under the human distribution of selection coefficients (80) and rescaled by vaquita ancestral size 
and vaquita 𝜃nonsynonymous (red). 
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Fig. S14.  
Comparison of the distribution of selection coefficients for new, segregating, and fixed 
nonsynonymous mutations in simulations. Note that a lower fraction of strongly and moderately 
deleterious mutations segregate compared to the fraction that enter the population, due to the 
effects of purifying selection. This effect increases during the contemporary bottleneck, as 
increased genetic drift and purifying selection against these mutations leads to their relative loss 
compared to weakly deleterious mutations. In addition, only weakly deleterious and neutral 
mutations become fixed, both before and after the bottleneck. Finally, note that the distribution 
of s for new mutations here differs from that presented in fig. S13, due to differences in 
parameterization between fit𝜕a𝜕i and SLiM (see Materials and Methods).  
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Fig. S15. 
Total quantity and impact on fitness of fixed mutations during the simulated bottleneck. Top row 
depicts population sizes; middle row depicts total count of fixed mutations in the simulated 
population; bottom row depicts total sum of s mutations that became fixed until that timepoint. 
Note that although nearly 1,000 mutations fix by the end of the simulation, their cumulative 
impact on fitness remains relatively small (on the order of -0.2%, with a mean s for fixed 
mutations of -2.4x10-5). Each line represents 1 of 10 simulation replicates, each with a burn-in 
duration of 350,000 years.  
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Fig. S16.  
Comparison of simulation results when retaining vs. removing fixed mutations. Both sets of 
simulations assume a 90% reduction in bycatch mortality and threshold population size of 10. 
Note the highly similar extinction rates, suggesting that fixed weakly deleterious mutations do 
not greatly impact model behavior.  
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Fig. S17.  
Simulation dynamics during a burn-in of 350,000 years. The population size, mean 
heterozygosity, mean fitness, and mean inbreeding load (2B) are shown as a function of time in 
the simulations. Statistics were recorded every 1,000 years from a sample of 60 individuals. The 
dotted line denotes 50,000 years, the duration of burn-in that was used for all simulation 
replicates. Note that, although heterozygosity does not reach equilibrium by 50,000 years, fitness 
and inbreeding load have stabilized by that time. See fig. S18 for a comparison of extinction 
dynamics with burn-in durations of 50,000 vs 350,000 years.  
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Fig. S18. 
Comparison of extinction rates and recovery trajectories using 50,000 year burn-in (A) vs a 
350,000 year burn-in (B). Plotted is the size, average inbreeding coefficient, and average fitness 
of the simulated population across 100 simulation replicates. Replicates that persisted after 50 
years are colored blue, whereas those that went extinct are colored red. Note the similar trends 
for (A) and (B), as well as the identical extinction rates.  
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Fig. S19.  
Comparison of simulated and empirical bottleneck dynamics. Empirical population size 
trajectory is based on a model informed by census records (see Materials and Methods). Note the 
increase in the rate of decline starting in 2012.  
  

Stochastic mortality rate 
increased from 0.165 to 0.4

Figure Sx: Bottleneck dynamics.
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Fig. S20.  
Burn-in dynamics for simulations with the historical population size increased by a factor of 20. 
The population size, mean heterozygosity, mean fitness, and mean inbreeding load (2B) during a 
26,000 year burn-in are shown as a function of time in the simulations. Statistics were recorded 
every 1,000 years from a sample of 60 individuals. Note that, although heterozygosity does not 
reach equilibrium by 26,000 years, fitness and inbreeding load have stabilized by that time.  
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Fig. S21.  
Sensitivity analysis of model parameters. (A) Extinction rates with calving intervals of 1, 1.5, or 
2 years. (B) Extinction rates with varying mutation rates of 2.2x10-9, 5.8x10-9, or 1.08x10-8 
mutations/site/generation. (C) Extinction rates under varying models of dominance. Under the 
recessive model, all mutations are assumed to be fully recessive, and under the additive model, 
all mutations are assumed to be fully additive. See Materials and Methods for details on the hs 
and hs-alt models. (D) Extinction rates under varying distributions of selection coefficients. The 
“human” distribution is based on results from (80) and the “Kardos” distribution is based on 
(85). Note that the “Kardos” distribution also includes a different distribution of dominance 
coefficients (see Materials and Methods). (E) Extinction rates under different scaling of selection 
coefficients to convert from per-generation to per-year selection coefficients. For “wk. del./11.9” 
only weakly deleterious mutations (s > -0.01) were scaled by the generation time (11.9 years), 
whereas for “DFE/11.9” the mean of the entire DFE was divided by the generation time. (F) 
Extinction rates under varying impacts of density-dependent fitness rescaling. For “1.0”, no 
upward rescaling of fitness was allowed when N<K, and for “1.05”, up to a 5% upward rescaling 
of fitness was allowed when N<K. (G) Extinction rates when adding a small fraction of recessive 
lethal mutations (1.0% or 5.0%) to the nonsynonymous distribution of selection coefficients. (H) 
Extinction rates when increasing the deleterious mutation target size from ~32 Mb to ~48 Mb. 
For all results, the empirically-inferred demographic parameters were used and we assumed a 
reduction in bycatch mortality rates of 90% and a threshold population size of 10. In each panel, 
the default model presented in the main text is denoted with an asterisk.  
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Table S1.  
Vaquita sample information. We generated whole genome sequence data from 19 vaquitas and 
incorporated previously generated sequence data from a single individual (z0186935) (12). 
Genomic DNA libraries were prepared using one of two approaches: the Swift Biosciences Inc. 
Accel-NGS single-strand 1S DNA Library Kit or a blunt-end ligation method with double 
indexing (M&K) (30, 31). The library for the previously sequenced individual was generated 
with a 10X Genomics Chromium linked-reads library kit (12). 
 

Sample Year Sex 
Depth of 

coverage (X) 

Library 
preparation 

method SRA accession Notes 

z0000703 1985 F 53.3 Swift Biosciences SRR15435925  

z0001649 1993 M 96.0 M&K SRR15435924, 
SRR15435913 

 

z0001654 1992 F 95.8 M&K SRR15435900, 
SRR15435899 

 

z0001660 1993 F 48.5 Swift Biosciences SRR15435902 Fetus of z0001663 

z0001663 1993 F 64.2 M&K SRR15435897, 
SRR15435896 

Mother of z0001660 

z0004379 1990 F 41.8 Swift Biosciences SRR15435898  

z0004380 1990 F 45.3 M&K SRR15435895 Mother of z0004393 

z0004381 1990 M 45.3 M&K SRR15435921  

z0004382 1990 M 96.7 M&K SRR15435923, 
SRR15435922 

 

z0004390 1991 F 103.0 M&K SRR15435919, 
SRR15435918 

 

z0004393 1990 M 48.8 M&K SRR15435920 Fetus of z0004380 

z0004394 1991 M 47.0 Swift Biosciences SRR15435917  

z0183496 2016 M 45.3 M&K SRR15435914  

z0184983 2004 F 47.4 M&K SRR15435910  

z0184984 2004 F 46.9 M&K SRR15435907  

z0185383 2017 M 61.6 M&K SRR15435916, 
SRR15435915 

 

z0185384 2017 F 24.0 M&K SRR15435912, 
SRR15435911 

 

z0185385 2017 F 84.8 M&K SRR15435909, 
SRR15435908 

 

z0186934 2017 F 44.5 M&K SRR15435906 Live-caught 
individual; calf 

z0186935 2017 F 61.3 10X Genomics 
Chromium 

SRR15435905, 
SRR15435904, 
SRR15435903, 
SRR15435901 

Individual used to 
generate reference 
genome (12) 
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Table S2.  
Summary of parameter estimates and confidence intervals for each demographic model inferred 
with 𝜕a𝜕i and fastsimcoal2. The population size parameter values represent numbers of diploids, 
while the time parameters represent numbers of generations. For time parameters estimated with 
𝜕a𝜕i for the 3- and 4-epoch models, the raw values were added to convert them to the total time 
elapsed from present to the time of the demographic event, for better comparison with 
fastsimcoal2 results. All times are presented forward in time. See fig. S4 for model illustrations. 
The 1- and 2-epoch models show high consistency in the parameter values estimated with both 
methods, while the 3- and 4-epoch models show greater discordance. 
 

  𝜕a𝜕i  fastsimcoal2 

Model Parameter Estimate 95% CI  Estimate 95% CI 
1-epoch Nanc 3675 NA  3665 3589 – 3692 

    
 

  

2-epoch Nanc 4485 3468 – 5503  4439 4342 – 4536 
 

Ncur 2807 1832 – 3982  2784 2727 – 2841 
 

T 2162 0 – 5965  2045 1842 – 2248 
       

3-epoch Nanc 4336 3815 – 4857  4344 4279 – 4409 
 

Nbot 294 181 – 429  2253 1921 – 2584 
 

Ncur 3034 2131 – 4085  3131 2826 – 3435 
 

Tbot 710 67 – 1504  1124 964 – 1283 
 

Tcur 668 46 – 1437  264 176 – 351 
       

4-epoch Nanc 3798 2934 – 4662  5360 4958 – 5762 
 

Nbot 10747 0 – 29081  1674 1074 – 2273 
 

Nrec 95 49 – 156  2982 2895 – 3068 
 

Ncur 3044 1949 – 4376  398 39 – 756 
 

Tbot 3541 0 – 10562  4170 3968 – 4371 
 

Trec 863 12 – 2654  3520 3254 –3785 
 

Tcur 830 0 – 2591  2 0.6 – 3 
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Table S3.  
Performance of the best run for each demographic model under each inference method. K: the 
number of estimated parameters; Data Log-likelihood: the best possible log-likelihood derived 
from the data site frequency spectrum; Log-likelihood: the best log-likelihood estimated for the 
model; AIC: The Akaike information criterion, calculated using equation AIC = 2*K – 2*Log-
likelihood. The convergence of parameters and log-likelihood is reported. 
 

 𝜕a𝜕i  fastsimcoal2 

Model K 
Data Log-
likelihood Log-likelihood AIC Converged  K 

Data Log-
likelihood Log-likelihood AIC Converged 

1-epoch 0 -71.984 -1297.820 2595.641 Yes  1 -774592.691 -775127.249 1550256.498 Yes 

2-epoch 2 -71.984 -94.761 193.521 Yes  3 -774592.691 -774600.596 1549207.192 Yes 

3-epoch 4 -71.984 -89.958 187.915 Partial  5 -774592.691 -774599.411 1549208.822 Partial 

4-epoch 6 -71.984 -88.047 188.094 Partial  7 -774592.691 -774602.510 1549219.02 Partial 
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Table S4.  
Likelihood-ratio test (LRT) statistics between nested demographic models. The LRT was 
computed as: -2*[log-likelihood(simple) – log-likelihood(complex)]. We only compared nested 
models with the closest complex model, that is, with the one that differed by only two more 
parameters. The LRT values and their significance are shown above the diagonal for 𝜕a𝜕i 
models and below the diagonal for fastsimcoal2 models. For both methods, the 2-epoch model 
has significantly better log-likelihood than the 1-epoch model, while the 3-epoch model log-
likelihood is marginally significant only for 𝜕a𝜕i. Significance level: ** < 0.001, * < 0.01, the 
absence of asterisk represents non-significant values. The negative LRT statistic for the 3- and 4 
epoch fastsimcoal2 comparison is likely due to variance in the simulations used to calculate the 
likelihood combined with the partial convergence of the optimization. In any case, this does not 
suggest an improvement in fit of the 4-epoch model over the 3-epoch model. 
 

Model 1-epoch 2-epoch 3-epoch 4-epoch 
1-epoch – 2406.119**   

2-epoch 1053.306** – 9.606383*  

3-epoch  2.37 – 3.8209 
4-epoch   -7.698 – 
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Table S5.  
Cetacean genome information. Species with publicly available annotated reference genomes and 
short read resequencing data from at least one individual in the SRA were obtained for 
comparisons with the vaquita. All assemblies and reads are available without restriction from 
NCBI. Except for the Yangtze finless porpoise, reads from each species were aligned to a 
reference genome from the same species.  
 

  Reference genome  Resequencing 
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Beluga 
whale 

Delphinapterus 
leucas 

GCF_002288925.2_
ASM228892v3 

(98)  SAMN06217832 Churchill, MB, 
Canada 

No (daughter 
of reference 
individual) 

F 33.9 SRR5197962 (98) 

Blue whale Balaenoptera 
musculus 

GCF_009873245.2_
mBalMus1.pri.v3 

*  SAMN07201754 California, USA No M 37.0 SRR5665644 (99) 

Bottlenose 
dolphin 

Tursiops truncatus GCF_011762595.1_
mTurTru1.mat.Y 

^  SAMN02192671 Captive No M 38.2 SRR940825 (52) 

Indo-Pacific 
finless 
porpoise 

Neophocaena 
phocaenoides 

GCF_003031525.1_
Neophocaena_asiae
orientalis_V1 

(100)  SAMN02192673 South Korea No ? 27.1 SRR940959 (52) 

Orca/killer 
whale 

Orcinus orca GCF_000331955.2_
Oorc_1.1 

(101)  SAMN01180276 Alaska, USA Yes F 16.3 SRR1164379 (102) 

Long-finned 
pilot whale 

Globicephala 
melas 

GCF_006547405.1_
ASM654740v1 

#  SAMN11083132 PEI, Canada Yes M 32.5 SRR8867567 # 

Minke whale Balaenoptera 
acutorostrata 
scammoni 

GCF_000493695.1_
BalAcu1.0 

(52)  SAMN02192644 South Korea No F 28.7 SRR924087 (52) 

Narwhal Monodon 
monoceros 

GCF_005190385.1_
NGI_Narwhal_1 

(103)  SAMN10519625 Greenland No F 104.8 SRR8284577, 
SRR8284578, 
SRR8284579 

(103) 

Pacific 
white-sided 
dolphin 

Lagenorhynchus 
obliquidens 

GCF_003676395.1_
ASM367639v1 

#  SAMN09386610 Canada Yes F 33.3 SRR7345555 # 

Sperm whale Physeter 
macrocephalus 

GCF_002837175.2_
ASM283717v2 

(104)  SAMN06187414 Pacific Ocean No ? 23.2 SRR5136492, 
SRR5136494, 
SRR5136498 

(105) 

Yangtze 
finless 
porpoise 

Neophocaena 
asiaeorientalis 
asiaeorientalis 

GCF_003031525.1_
Neophocaena_asiae
orientalis_V1 

(100)  SAMN08512128 Hubei, China No M 21.3 SRR6923837 (106) 

 
*Provided by Yury Bukhman and the Vertebrate Genomes Project. 
^Provided by the Vertebrate Genomes Project. 
#Provided by the Canseq150 program supported by CGEn and its partners. 
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Table S6.  
Impact of genetic parameters on inbreeding load and extinction rates. Each row represents a 
different combination of simulation parameters, including a dominance model, carrying capacity 
during the second historical epoch (K2), mutation rate, distribution of selection coefficients, and 
deleterious mutation target size. For each combination of parameters, we report the resulting 
levels of strongly deleterious mutations (s < -0.01) per individual, very strongly deleterious 
mutations (s < -0.1) per individual, lethals per individual (s < -0.5), inbreeding load (2B), and 
percent of replicates going extinct within 50 years of recovery initiation assuming a 90% 
reduction in bycatch mortality and threshold population size of 10. See Materials and Methods 
for details on the different simulation parameters. Note that, across different distributions of 
selection coefficients and dominance effects, the percent of replicates going extinct for the small 
carrying capacity (K2 = 5,200) is <50% in all cases, and for many parameter combinations, is 
<30%. Thus, these results suggest that extinction of the vaquita due to inbreeding depression is 
not certain. 
 

Dominance 
model K2 

Mutation 
rate 

Dist. of sel. 
coeff. 

Target size 
(Mb) 

avg # muts  
s < -0.01 

avg # muts 
s < -0.1 

avg # muts 
s < -0.5  2B % extinct 

hs 5200 5.80E-09 vaquita 31.6 12.3 3 0.14 0.95 27 

hs 104000 5.80E-09 vaquita 31.6 30.1 13.1 0.6 3.32 52 

recessive 5200 5.80E-09 vaquita 31.6 17.7 3.1 0.14 1.28 32 

additive 5200 5.80E-09 vaquita 31.6 0.4 0.02 0 0.016 11 

hs-alt 5200 5.80E-09 vaquita 31.6 4.38 0.87 0.014 0.26 16 

hs 13709 2.20E-09 vaquita* 31.6 4.63 0.46 0 0.19 9 

hs 2793 1.08E-08 vaquita* 31.6 20.86 6.74 0.92 2.4 55 

hs 5200 5.80E-09 human 31.6 12.3 1.03 0 0.5 28 

hs-kardos 5200 5.80E-09 kardos 31.6 3.5 2.12 1.83 1.9 17 

hs 5200 5.80E-09 
vaquita + 

1.0% lethals 31.6 12.65 3.35 0.51 1.31 25 

hs 5200 5.80E-09 
vaquita + 

5.0% lethals 31.6 13.6 4.64 1.85 2.64 32 

hs 5200 5.80E-09 vaquita 48 18.5 4.5 0.21 1.44 39 

*Using the vaquita distribution of selection coefficients inferred under the respective assumed 
mutation rate (fig. S13) 
 
 

 


