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S1 Supplementary Methods

S1.1 Details for pruning the candidate breakpoints in the segmentation stage.

Freddie selects a subset of breakpoints, S ⊆ C, to represent the finalized set of canonical exon boundaries
inferred from the input LR alignments. Note that the breakpoint sets, C and S, divide the genome, respec-
tively, into |C| − 1 and |S| − 1 non-overlapping genomic segments. We define a scoring function, f , which
given a set of breakpoints simultaneously rewards individual reads for sharp changes in coverage between
consecutive segments and penalizes them for having partial alignment on individual segments (see main text
Figure 3B). Freddie selects the subset S which maximizes f(S) over all the subsets of C, using a Dynamic
Programming (DP) algorithm.

To formally define f(S), we introduce the following notations. Let cov(r, i, j) be the percentage of
positions in genomic segment [i, j] that are covered by the split-alignment intervals of read r. We also define
three binary indicators, Yr,i,j , Nr,i,j and Pr,i,j , to respectively indicate if read r is covering, not covering, or
partially covering the genomic segment [i, j]:

Yr,i,j =

{
1, cov(r, i, j) > 0.9

0, otherwise

Nr,i,j =

{
1, cov(r, i, j) < 0.1

0, otherwise

Pr,i,j =

{
1, 0.1 ≤ cov(r, i, j) ≤ 0.9

0, otherwise

(S1)

Next, we define the number of reads with partial split-alignment coverage over a genomic segment [i, j]:

Partial(i, j) =
∑
r

Pr,i,j (S2)

Finally, the number of reads with sharply contrasting coverage between two neighboring genomic segments,
[i, j] and [j, k], Contrast(i, j, k), is defined as follows:

Contrast(i, j, k) =

∑
r

covering then not covering︷ ︸︸ ︷
Yr,i,j ×Nr,j,k +

not covering then covering︷ ︸︸ ︷
Nr,i,j × Yr,j,k

(S3)

Using these functions, we define the scoring function f :

f(S) = ∑
(i,j,k)∈consecutive(S)

Contrast(i, j, k)− Partial(i, j) (S4)
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Where consecutive(S) is the set of all triplets of consecutive breakpoints in S.
We want to find S which maximizes f(S) from all possible subsets of C. Although there are exponentially

many subsets of C, we can efficiently find an optimal subset S because the structure of the scoring function
lends itself readily to cubic time Dynamic Programming (DP). To describe the DP equations, let C be the
list of the elements in C sorted by increasing genomic coordinate and let ` = |C|. We denote by C[i] the
breakpoint at index i in C and by C[i..j] the sub-list of C starting at index i and ending at index j (inclusively
on both ends). We fill in a DP table D defined as follows: for 1 ≤ m < n < o ≤ `, D[m,n, o] is the optimal
score (as defined in Equation S4) among all subsets of C composed of the breakpoints in C[m..`] with the
additional constraint that the first three breakpoints in the subset, according to the order defined by C, occur
at the respective indices m, n and o in C. Then:

D[m,n, o] =

−

first segment penalty︷ ︸︸ ︷
Partial(C[m], C[n])

+

first two segments reward︷ ︸︸ ︷
Contrasting(C[m], C[n], C[o])

+

subproblem optimal score︷ ︸︸ ︷
max
o<p≤`

(
D[n, o, p]

)
(S5)

The score of the optimal segmentation S is then:

max
1<n<`

(
max
n<o≤`

D[1, n, o]

)
(S6)

Finally, to obtain S, we backtrack through the DP table D.

Speed-up heuristics. Since the cubic time complexity can be prohibitive if there is a large number of
candidate breakpoints, we reduce the complexity by fixing breakpoints using some heuristics before running
the DP formulation. Fixing breakpoints effectively breaks down the problem into independent subproblems,
reducing the base of the cubic time complexity and thus dramatically speeding up the effective runtime. The
first heuristics we use is to select any breakpoint that has extremely high smoothed signal value since it is
highly likely to be in the optimal set of breakpoints. Specifically, we fix breakpoints with values higher than
the mean plus three times the standard deviation of the M[i] for all i in C. The second heuristics we use
is to introduce a limit on the maximum allowed problem size, |C|. If |C|, after applying the first heuristic,
exceeds this limit, we split C uniformly into subproblems, each of size less than or equal to the limit. The
limit is a user-set parameter with a default value of 50.

S1.2 Robustness of segmentation parameters

Since the segmentation includes a number of hyperparameters, we wished to justify our default values for
them and ensure a degree of robustness for their choice. To do so, we changed one hyperparameter at a time
(keeping the rest at their default values) and observed the effect on the accuracy of the segmentation (i.e.
how far each detected segment boundary from an annotation boundary). The following results are from the
real human dataset assuming the annotation as a ground truth. Note that the same values result in similar
findings for the simulated human dataset.

For the first speed-up heuristic, the variation factor with default value of 3, we tested a number of values
and which had very little impact on the accuracy of the segmentation:
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Variation factor
% segment boundaries

Exact Within +/-10bp Outside +/- 10bp
Start End Start End Start End

1.5 91.7% 93.8% 5.2% 7.2% 1.0% 1.1%
3.0 91.7% 93.8% 5.2% 7.2% 1.0% 1.1%
4.5 91.7% 93.8% 5.2% 7.2% 1.0% 1.1%
6.5 91.7% 93.8% 5.2% 7.2% 1.0% 1.1%

For the second speed-up heuristic, the maximum problem size, we similarly observe almost no change
in the results. This is because in practice, both heuristics select few breakpoints that were not going to be
selected otherwise:

Maximum Problem
Size

% segment boundaries
Exact Within +/-10bp Outside +/- 10bp

Start End Start End Start End
50 91.7% 93.8% 5.2% 7.2% 1.0% 1.1%
100 91.7% 93.8% 5.2% 7.2% 1.0% 1.1%
150 91.7% 93.8% 5.2% 7.2% 1.0% 1.1%
200 91.7% 93.8% 5.2% 7.2% 1.0% 1.1%

We also tested the following coverage threshold values (default 90%) and again observed little change:

Coverage Threshold
% segment boundaries

Exact Within +/-10bp Outside +/- 10bp
Start End Start End Start End

0.75 91.7% 93.8% 5.2% 7.2% 1.0% 1.1%
0.80 91.7% 93.8% 5.2% 7.2% 1.0% 1.1%
0.85 91.7% 93.8% 5.2% 7.2% 1.0% 1.1%
0.90 91.7% 93.8% 5.2% 7.2% 1.0% 1.1%
0.95 91.7% 93.8% 5.2% 7.2% 1.0% 1.1%

Finally, we tested the Gaussian filter size parameter. This time, we did observe a trade-off when selecting
the parameter value:

Gaussian
Filter Size

% segment boundaries
Exact Within +/-10bp Outside +/- 10bp

Start End Start End Start End
1 95.8% 95.7% 1.6% 2.7% 1.6% 1.6%
3 95.3% 95.2% 3.4% 3.5% 1.3% 1.3%
5 91.7% 93.8% 5.2% 7.2% 1.0% 1.1%
8 92.2% 90.2% 6.7% 8.8% 1.0% 1.0%
15 82.5% 78.3% 15.6% 19.7% 2.0% 2.0%

Here, we opted for selected 5 as the default parameter value since it minimized the number of breakpoints
that are not within 10bp of an annotation breakpoint and maximized the number of breakpoints that are
exactly on top of an annotation breakpoint. Of course, we think that other values can be also reasonable
choices as default values (e.g. 1 and 3) as long as they are similar in size to the expected erroneous indels
generated by Oxford Nanopore LRs.

S1.3 Details for MErCI.

To formulate the MErCI problem, we start by introducing some preliminary definitions. Let A be an N ×V
binary matrix representing the input reads, i.e., N is the number of reads and V = |S| − 1 is the number of
canonical genomic segments: A[i][j] = 1 if the i-th read covers > 90% of the j-th segment and A[i][j] = 0
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otherwise. For a given subset I of the reads, we define the induced isoform of I, II , to be a binary vector of
size V consisting of column-wise disjunction of the reads in I:

II [j] =
∨
i∈I

A[i][j] (S7)

Given an induced isoform, II , we define the correction cost relative to II of read i ∈ I, CC(i, II), to be the
number segments present in II but not in A[i]:

CC(i, II) =

V∑
j=1

II [j]× (1−A[i][j]) (S8)

Finally, we define the optimization goal of MErCI to be finding a subset of reads I that minimizes:

Recycling bin penalty︷ ︸︸ ︷
µ · (N − |I|) +

Isoform bin penalty︷ ︸︸ ︷∑
i∈I

CC(i, II) (S9)

where µ is a user-defined threshold forbidding the inclusion of a read into the isoform bin if at least µ
corrections are required. By default, we set µ = 3, allowing for up to two error corrections per read.

Incorporating length of corrected segments constraint Formally, we denote a gap with a triplet
(s, e, l) where s and e are the first and last covered (i.e. 1) segments of the gap, and l is the number of
unaligned bases on the read between the s and e. Then, for each gap (s, e, l) of read i that is assigned to
the isoform bin I, we add a restriction that the genomic length of the corrected segments between s and e
must be close to l. More precisely, let CGL(s, e, i) be the genomic length of the corrected segments within
the gap (s, e, l) of read i:

CGL(s, e, i) =
∑

s<j<e

II [j]× (1−A[i][j])×GL(j) (S10)

where GL(j) denotes the genomic length of the j-th segment. Then the following length condition must
hold:

(1− ε)× CGL(s, e, i)− δ ≤ l ≤ (1 + ε)× CGL(s, e, i) + δ (S11)

By default, we set ε to 0.1 and δ to 20 nucleotides.
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S2 Supplementary Figures

Long reads

True isoform

Figure S1: Long-read sequencing has a high error rate reaching up to 10-20%. Insertion and deletion (indel)
of nucleotides dominate this error rate. These indel errors results in 1) a reduction in the resolution of exon
boundaries and 2) missing small exons. Additionally, 3) full-length LR sequencing is not always successful,
resulting in missing exons at the tail of the sequenced isoform. The figure illustrate these three hazards
associated with LR sequencing of isoforms.

5



2500
5000
7500
10000
12500
15000
17500
20000

10%
20%
30%
40%
50%
60%
70%

True positive GTIs

2500
5000
7500

10000
12500
15000
17500
20000

True positive PIs

20%

30%

40%

50%

60%

70%

80%

True positive PIs (%)

20%
30%
40%
50%
60%
70%
80%
90%

False negative GTIs

1000

2000

3000

4000

5000

False positive PIs

0%
10%
20%
30%
40%
50%
60%
70%
80%

False positive PIs (%)

0
20
40
60
80
100
120
140
160

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

Likely true positive GTIs
(matching all PIs)

0

20

40

60

80

Likely true positive PIs
(matching all GTIs)

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

Likely true positive PIs
(matching all GTIs, %)

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

Alignment score threshold

0.0%

2.0%

4.0%

6.0%

8.0%

Likely false negative GTIs
(not matching all PIs)

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

Alignment score threshold

0

500

1000

1500

2000

2500

Likely false positive PIs
(not matching all GTIs)

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

Alignment score threshold

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

Likely false positive PIs
(not matching all GTIs, %)

FLAIR (100%) FLAIR (75%) FLAIR (50%) FLAIR (25%) FLAIR (1%)

Figure S2: Graph-based analysis of FLAIR on the simulated human dataset when FLAIR is given varying
sample sizes of the human annotations.
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Figure S3: Graph-based analysis of different tools on the simulated fruit fly dataset.
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Figure S4: Graph-based analysis of FLAIR on the simulated fruit fly dataset when FLAIR is given varying
sample sizes of the human annotations.
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Supplementary Tables

Table S1: Human simulated dataset. CPU (user) time, real (clock) time, and memory use of FLAIR,
StringTie2 and Freddie. Note that we report the results for StringTie2 using a single thread because it
crashes when run with multiple threads (segfault).

Tool Threads Wall clock (min) CPU time (min) Memory (GB)
StringTie2 1 2.11 2.22 0.03
FLAIR (1%) 32 5.45 32.39 5.06
FLAIR (25%) 32 7.02 52.88 6.86
FLAIR (50%) 32 7.57 61.85 8.37
FLAIR (75%) 32 7.98 66.97 8.48
FLAIR (100%) 32 8.42 69.82 9.11
Freddie split 32 2.23 12.67 1.02
Freddie segment 32 1.09 26.76 0.90
Freddie cluster 32 8.87 83.91 1.36
Freddie collapse 32 0.24 1.21 0.06
Freddie (all stages) 32 12.43 124.55 1.36
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Table S2: 22Rv1 real dataset. CPU (user) time, real (clock) time, and memory use of FLAIR, StringTie2
and Freddie. Note that we report the results for StringTie2 using a single thread because it crashes when
run with multiple threads (segfault).

Tool Threads Wall clock (min) CPU time (min) Memory (GB)
StringTie2 1 0.23 0.23 0.03
FLAIR (1%) 32 1.72 5.55 0.81
FLAIR (25%) 32 2.05 6.76 0.97
FLAIR (50%) 32 1.94 7.09 1.03
FLAIR (75%) 32 1.94 7.23 1.07
FLAIR (100%) 32 1.94 7.41 1.11
Freddie split 32 0.46 0.69 0.38
Freddie segment 32 0.63 13.25 0.17
Freddie cluster 32 9.49 196.32 2.42
Freddie collapse 32 0.01 0.13 0.02
Freddie (all stages) 32 10.58 210.39 2.42

12



Table S3: Fruit fly simulated dataset. CPU (user) time, real (clock) time, and memory use of FLAIR,
StringTie2 and Freddie.

Tool Threads Wall clock (min) CPU time (min) Memory (GB)
StringTie2 1 5.45 5.58 0.10
FLAIR (1%) 32 7.78 33.18 4.55
FLAIR (25%) 32 9.94 66.26 7.47
FLAIR (50%) 32 10.92 82.90 8.14
FLAIR (75%) 32 11.44 91.04 8.32
FLAIR (100%) 32 11.85 99.42 8.67
Freddie split 32 6.70 23.03 4.62
Freddie segment 32 2.61 48.32 1.49
Freddie cluster 32 6.41 89.97 3.40
Freddie collapse 32 0.15 2.34 0.09
Freddie (all stages) 32 15.87 163.66 4.62
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Table S4: Accuracy statistics for simulated fruit fly dataset using the exon intervals to identify equivalent
isoforms.

Tool F1-score Precision Recall True isoforms False isoforms
Freddie 74.28% 72.98% 75.62% 17,889 6,623
StringTie2 63.75% 67.27% 60.58% 14,331 6,973
FLAIR (100%) 86.69% 95.27% 79.53% 18,813 934
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S3 Selecting genes of DHT+ real dataset

In the real dataset experiments, we focused on a subset of the genes when evaluate the different tested
methods. We first selected genes that have are the middle quintile (40th to 60th percentile) of genes in terms
of their short- and long-read coverage. From these genes, we further selected genes with that fall into one
of three splicing complexity levels. Specifically, we selected genes that, according to ENSEMBL database,
have either: i) one isoform, ii) four to seven isoforms, or iii) ten to twenty isoforms. In total, this resulted in
selecting 294 genes.
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Selecting genes for real dataset experiment

Keeping a set of the middle quintile (40th to 60th percentile) of genes in terms of
their short- AND long-read coverage

1562

Creating BED file of all gene intervals to remove overlapping genes. Any gene

In [1]: # Reference ENSEMBL annotations 
gtf = '/groups/hachgrp/annotations/GTF/97/Homo_sapiens.GRCh38.97.gtf' 
# Short-read gene expression 
sr_cov = 
    '/groups/hachgrp/projects/col-dong-rna-splicing/'+ 
    'results/htseq/all.tsv'  
# Long-read gene expression 
lr_cov = 
    '/groups/hachgrp/projects/col-dong-rna-splicing/'+ 
    'analysis/long-qc/stats/P003R000.gene-coverage.tsv'  

In [2]: # SR gene coverage 
sr_gid_cnts = list() 
for l in open(sr_cov): 
    if not l.startswith('ENSG'): 
        continue 
    l = l.rstrip().split('\t') 
    gid = l[0] 
    cnt = int(l[1]) 
    if cnt < 2: 
        continue 
    sr_gid_cnts.append((cnt,gid)) 
sr_gid_cnts.sort() 
 
# LR gene coverage 
lr_gid_cnts = list() 
for l in open(lr_cov): 
    if not l.startswith('ENSG'): 
        continue 
    l = l.rstrip().split('\t') 
    gid = l[0] 
    cnt = int(l[7]) 
    if cnt < 2: 
        continue 
    lr_gid_cnts.append((cnt,gid)) 
lr_gid_cnts.sort() 

In [3]: # intersection of the middle quintile of LR and SR covered genes 
mid_cov_gids = set( 
    [x[1] for x in sr_gid_cnts[int(len(sr_gid_cnts)*.4):int(len(sr_gid_cnts)*.6)]] 
) & set( 
    [x[1] for x in lr_gid_cnts[int(len(lr_gid_cnts)*.4):int(len(lr_gid_cnts)*.6)]] 
) 
len(mid_cov_gids) 

Out[3]:



that overlaps with other genes will be discarded

60617 all_genes.bed 

Finding any gene that overlap with any other gene

37827

Getting transcript counts per gene, for the genes that are NOT overlapping and
that are in the middle quintile of coverage

432 

Selecting genes from different ranges of isoform complexity (according to
ENSEMBL database)

In [4]: bed = open('all_genes.bed', 'w+') 
for l in open(gtf): 
    if l.startswith('#'): 
        continue 
    l = l.rstrip().split('\t') 
    if not l[2] == 'gene': 
        continue 
    i = l[-1].find('gene_id "')+len('gene_id "') 
    gid = l[-1][i:i+15] 
    print(l[0], l[3], l[4], gid, sep='\t', file=bed) 
bed.close() 
!wc -l all_genes.bed 

In [5]: !bedtools intersect -a all_genes.bed -b all_genes.bed -wb |\
    awk '$8!=$4{print $8;print $4}' |\ 
    sort -u > overlapping_genes.txt 
overlapping_gids = { 
    l.rstrip() for l in open('overlapping_genes.txt') 
} 
len(overlapping_gids) 

Out[5]:

In [6]: gid_tid_count = dict() 
for l in open(gtf): 
    if l.startswith('#'): 
        continue 
    l = l.rstrip().split('\t') 
    if l[0][0] in ['K', 'G']: 
        continue 
    if not l[2] == 'transcript': 
        continue 
    if not 'protein_coding' in l[-1]: 
        continue 
    i = l[-1].find('gene_id "')+len('gene_id "') 
    gid = l[-1][i:i+15] 
    if gid in overlapping_gids: 
        continue 
    if not gid in mid_cov_gids: 
        continue 
    gid_tid_count[gid] = gid_tid_count.get(gid, 0) + 1
print(len(gid_tid_count)) 



294

{'ENSG00000004660', 
 'ENSG00000005448', 
 'ENSG00000008277', 
 'ENSG00000010318', 
 'ENSG00000010704', 
 'ENSG00000011478', 
 'ENSG00000015153', 
 'ENSG00000040275', 
 'ENSG00000040487', 
 'ENSG00000064012', 
 'ENSG00000065057', 
 'ENSG00000065621', 
 'ENSG00000066651', 
 'ENSG00000067365', 
 'ENSG00000071243', 
 'ENSG00000073605', 
 'ENSG00000076650', 
 'ENSG00000076716', 
 'ENSG00000077152', 
 'ENSG00000081870', 
 'ENSG00000083544', 
 'ENSG00000083750', 
 'ENSG00000085185', 
 'ENSG00000086730', 
 'ENSG00000087088', 
 'ENSG00000087586', 
 'ENSG00000088035', 
 'ENSG00000088826', 
 'ENSG00000089177', 
 'ENSG00000089195', 
 'ENSG00000089685', 
 'ENSG00000090447', 
 'ENSG00000090924', 
 'ENSG00000091127', 
 'ENSG00000091138', 
 'ENSG00000092208', 
 'ENSG00000097046', 
 'ENSG00000099860', 
 'ENSG00000101247', 
 'ENSG00000101276', 
 'ENSG00000101888', 
 'ENSG00000101928', 
 'ENSG00000102078', 
 'ENSG00000102218', 
 'ENSG00000102221', 

In [7]: import random 
random.seed(42) 
 
#Keeping genes with the # of ENSEMBL-reported isoforms falling in these ranges 
ranges = [(1,1), (4,7), (10,20)] 
chosen_gids = set() 
for x,y in ranges: 
    chosen_gids.update( 
        [gid for gid,cnt in gid_tid_count.items() if x<=cnt<=y], 
    ) 
len(chosen_gids) 

Out[7]:

In [8]: chosen_gids 

Out[8]:



 'ENSG00000102312', 
 'ENSG00000102543', 
 'ENSG00000102870', 
 'ENSG00000104356', 
 'ENSG00000104953', 
 'ENSG00000105497', 
 'ENSG00000105708', 
 'ENSG00000105771', 
 'ENSG00000107833', 
 'ENSG00000109536', 
 'ENSG00000110002', 
 'ENSG00000110031', 
 'ENSG00000110723', 
 'ENSG00000111196', 
 'ENSG00000111554', 
 'ENSG00000111790', 
 'ENSG00000111981', 
 'ENSG00000112290', 
 'ENSG00000112312', 
 'ENSG00000115289', 
 'ENSG00000115350', 
 'ENSG00000115421', 
 'ENSG00000115750', 
 'ENSG00000117399', 
 'ENSG00000117569', 
 'ENSG00000118965', 
 'ENSG00000119397', 
 'ENSG00000119906', 
 'ENSG00000119965', 
 'ENSG00000120798', 
 'ENSG00000121417', 
 'ENSG00000121671', 
 'ENSG00000122694', 
 'ENSG00000122873', 
 'ENSG00000124374', 
 'ENSG00000124508', 
 'ENSG00000124613', 
 'ENSG00000124784', 
 'ENSG00000125144', 
 'ENSG00000125352', 
 'ENSG00000125703', 
 'ENSG00000126787', 
 'ENSG00000126870', 
 'ENSG00000126953', 
 'ENSG00000128394', 
 'ENSG00000128534', 
 'ENSG00000128604', 
 'ENSG00000128944', 
 'ENSG00000129534', 
 'ENSG00000130349', 
 'ENSG00000130772', 
 'ENSG00000131015', 
 'ENSG00000132275', 
 'ENSG00000132323', 
 'ENSG00000132541', 
 'ENSG00000133247', 
 'ENSG00000133627', 
 'ENSG00000133739', 
 'ENSG00000133874', 
 'ENSG00000134056', 
 'ENSG00000134152', 
 'ENSG00000134531', 
 'ENSG00000134602', 
 'ENSG00000134716', 
 'ENSG00000135211', 



 'ENSG00000135315', 
 'ENSG00000135838', 
 'ENSG00000135919', 
 'ENSG00000136235', 
 'ENSG00000136603', 
 'ENSG00000136824', 
 'ENSG00000136936', 
 'ENSG00000137413', 
 'ENSG00000137747', 
 'ENSG00000138036', 
 'ENSG00000138231', 
 'ENSG00000138376', 
 'ENSG00000138399', 
 'ENSG00000138604', 
 'ENSG00000139083', 
 'ENSG00000139826', 
 'ENSG00000139832', 
 'ENSG00000141665', 
 'ENSG00000143033', 
 'ENSG00000143061', 
 'ENSG00000143147', 
 'ENSG00000143502', 
 'ENSG00000143847', 
 'ENSG00000144034', 
 'ENSG00000144048', 
 'ENSG00000144120', 
 'ENSG00000144134', 
 'ENSG00000144199', 
 'ENSG00000144559', 
 'ENSG00000144589', 
 'ENSG00000145088', 
 'ENSG00000145220', 
 'ENSG00000145241', 
 'ENSG00000145349', 
 'ENSG00000145632', 
 'ENSG00000146072', 
 'ENSG00000146263', 
 'ENSG00000146757', 
 'ENSG00000146918', 
 'ENSG00000148057', 
 'ENSG00000148225', 
 'ENSG00000148690', 
 'ENSG00000148814', 
 'ENSG00000148908', 
 'ENSG00000149503', 
 'ENSG00000149636', 
 'ENSG00000151332', 
 'ENSG00000151657', 
 'ENSG00000151715', 
 'ENSG00000151876', 
 'ENSG00000152086', 
 'ENSG00000152219', 
 'ENSG00000153015', 
 'ENSG00000153140', 
 'ENSG00000153574', 
 'ENSG00000153896', 
 'ENSG00000153898', 
 'ENSG00000153975', 
 'ENSG00000155330', 
 'ENSG00000155636', 
 'ENSG00000155961', 
 'ENSG00000156345', 
 'ENSG00000156469', 
 'ENSG00000156603', 
 'ENSG00000156804', 



 'ENSG00000156869', 
 'ENSG00000157343', 
 'ENSG00000157796', 
 'ENSG00000158122', 
 'ENSG00000160124', 
 'ENSG00000160193', 
 'ENSG00000160256', 
 'ENSG00000160298', 
 'ENSG00000162366', 
 'ENSG00000162385', 
 'ENSG00000162396', 
 'ENSG00000162639', 
 'ENSG00000162664', 
 'ENSG00000162897', 
 'ENSG00000163002', 
 'ENSG00000163312', 
 'ENSG00000163328', 
 'ENSG00000163378', 
 'ENSG00000163898', 
 'ENSG00000164109', 
 'ENSG00000164188', 
 'ENSG00000164291', 
 'ENSG00000164611', 
 'ENSG00000165030', 
 'ENSG00000165496', 
 'ENSG00000166024', 
 'ENSG00000166788', 
 'ENSG00000166860', 
 'ENSG00000166881', 
 'ENSG00000167637', 
 'ENSG00000167900', 
 'ENSG00000168228', 
 'ENSG00000168298', 
 'ENSG00000168393', 
 'ENSG00000168661', 
 'ENSG00000168876', 
 'ENSG00000168993', 
 'ENSG00000169016', 
 'ENSG00000169087', 
 'ENSG00000169155', 
 'ENSG00000169252', 
 'ENSG00000169598', 
 'ENSG00000169599', 
 'ENSG00000170191', 
 'ENSG00000170260', 
 'ENSG00000171100', 
 'ENSG00000171295', 
 'ENSG00000171345', 
 'ENSG00000171421', 
 'ENSG00000171611', 
 'ENSG00000171903', 
 'ENSG00000172006', 
 'ENSG00000172428', 
 'ENSG00000172878', 
 'ENSG00000174428', 
 'ENSG00000174599', 
 'ENSG00000174842', 
 'ENSG00000174951', 
 'ENSG00000175189', 
 'ENSG00000176125', 
 'ENSG00000177076', 
 'ENSG00000181467', 
 'ENSG00000182173', 
 'ENSG00000182208', 
 'ENSG00000182378', 



 'ENSG00000182405', 
 'ENSG00000182504', 
 'ENSG00000182518', 
 'ENSG00000182700', 
 'ENSG00000183856', 
 'ENSG00000183891', 
 'ENSG00000184481', 
 'ENSG00000184979', 
 'ENSG00000185163', 
 'ENSG00000185418', 
 'ENSG00000185842', 
 'ENSG00000186458', 
 'ENSG00000186470', 
 'ENSG00000186787', 
 'ENSG00000187257', 
 'ENSG00000187609', 
 'ENSG00000187626', 
 'ENSG00000188295', 
 'ENSG00000189057', 
 'ENSG00000189164', 
 'ENSG00000189369', 
 'ENSG00000196372', 
 'ENSG00000196646', 
 'ENSG00000196724', 
 'ENSG00000196787', 
 'ENSG00000196793', 
 'ENSG00000197016', 
 'ENSG00000197223', 
 'ENSG00000197444', 
 'ENSG00000197461', 
 'ENSG00000197808', 
 'ENSG00000197841', 
 'ENSG00000198298', 
 'ENSG00000198417', 
 'ENSG00000198478', 
 'ENSG00000204104', 
 'ENSG00000204899', 
 'ENSG00000204991', 
 'ENSG00000205269', 
 'ENSG00000205423', 
 'ENSG00000205643', 
 'ENSG00000221923', 
 'ENSG00000226124', 
 'ENSG00000228278', 
 'ENSG00000235750', 
 'ENSG00000241945', 
 'ENSG00000262152', 
 'ENSG00000263002', 
 'ENSG00000269556', 
 'ENSG00000273559', 
 'ENSG00000275111', 
 'ENSG00000276966', 
 'ENSG00000277075', 
 'ENSG00000277224'}
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