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A. Computational details

Density functional theory calculations are performed using the Vienna ab-initio simu-

lation package (vasp) 1,2. The projector augmented wave (PAW) potential is used with

C 2s22p2 valence states 3,4, under the generalized gradient approximation (GGA) with the

Perdew-Burke-Ernzerhof parameterization revised for solids (PBEsol) as the exchange-

correlation functional 5. For structural relaxation, a plane-wave cutoff of 800 eV is used

with a k-mesh of 5 × 5 and 3 × 5 for qTP and qHP C60 respectively, until the energy

difference between successive steps is below 10−6 eV and the forces on the atoms are below

10−2 eV/Å. A vacuum spacing larger than 17 Å is used to eliminate interactions between

neighboring unit cells along the c direction.

The elastic tensor coefficients (including ionic relaxations) are calculated using the finite

differences method 6,7, and then renormalized by the c lattice constant (C2D
ij = c× C3D

ij ) 8,9.

The phonon spectra are calculated under the harmonic approximation based on density

functional perturbation theory 10–12 using the phonopy code 13,14. The supercell size is 2×2

for qTP C60 with an electronic k-point grid of (Γ-centered) 2 × 2, which is well converged,

as shown in Fig. 1. The supercell size is 1 × 2 for qHP C60 because the lattice constant a

is nearly two times the b. The thermodynamic properties are calculated using a phonon

q-mesh of 91× 91 for both qTP and qHP C60 monolayers.
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FIG. 1. Phonon spectra of qTP2 C60 calculated from 2× 2 and 3× 3 supercells.

The role of thermal expansion is investigated under the quasi-harmonic approximation.

The Helmholtz free energy is calculated for anisotropically contracted and expanded lattice

with a strain step of 0.4%, and at least 25 configurations are included for each phase when
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fitting the Gibbs free energy for a temperature step of 10 K between 0−900 K.

B. Phonon group velocity

Figure 2 shows the calculated phonon group velocity vg in 2D qTP2 and qHP C60. The

elastic constants can be estimated from the phonon speed of sound, i.e. phonon group

velocity vg near Γ 15

C11 = ρ2D ×
(
vLAx

)2
, (1)

C22 = ρ2D ×
(
vLAy

)2
, (2)

C66 = ρ2D ×
(
vTAx

)2
, (3)

where ρ2D is the mass density in 2D and v
LA/TA
x/y is the speed of sound for the longitudinal

or transverse acoustic mode (LA/TA) along x/y. The computed elastic constants are listed

in Table 2 in the main text.

FIG. 2. Phonon group velocity in 2D qTP2 and qHP C60.

C. Phonon density of states and entropy

With increasing temperature, the free energy F of qTP1 C60 drops faster than that of

qTP2 C60 due to their smaller vibrational frequencies. As shown in Fig. 3(a), the cumulative

phonon density of states (phDOS) of qTP1 fullerene is much larger than that of qTP2 and

qHP fullerene at frequencies below 7 THz. The low phonon frequencies in qTP1 C60 give

rise to higher entropy S in Fig. 3(b), especially at temperatures below 50 K. Consequently,
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the Helmholtz free energy of qTP1 C60 drops faster because of its higher entropy S, which

gives the curve of the free energy F as a function of temperature T 16,17

S = −∂F/∂T. (4)

(a) (b)

FIG. 3. (a) Cumulative phDOS and (b) phonon entropy of 2D qTP1, qTP2 and qHP C60.

D. 1D qTP C60 chains

For structural relaxation of 1D qTP C60 chains, a plane-wave cutoff of 800 eV is used

with a k-mesh of 5 along the chain direction, until the energy difference between successive

steps is below 10−6 eV and the forces on the atoms are below 10−2 eV/Å. A vacuum spacing

larger than 20 Å is used to eliminate interactions between neighboring unit cells along the

interchain directions. The top view of the crystal structure of 1D qTP C60 chain is shown

in Fig. 4(a). The strong covalent [2+2] bonds along a leads to high electron localization

function (ELF) values. The band structures in Fig. 4(b) are calculated using screened hybrid

functional HSE06 18–20, with a direct band gap of 1.81 eV at the X high-symmetry point.

The interatomic force constants are calculated under the harmonic approximation based

on density functional perturbation theory 10–12 using the phonopy code 13,14, with a supercell

of four qTP C60 molecules along the a direction. No imaginary mode is observed in Fig. 4(c),

showing its dynamic stability. The extra zero-frequency mode at Γ other than the three

acoustic modes is the typical torsional acoustic mode in 1D materials 21,22. For thermal
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expansion calculations, the Helmholtz free energy is calculated for 8 uniaxially contracted

and expanded configurations with a strain step of 0.2% to fit the Gibbs free energy.
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FIG. 4. (a) ELF of 1D qTP C60 chain. The default isosurface level in vesta 23 is used. (b) HSE06

band structures of 1D qTP C60. (c) Phonon dispersion of 1D qTP C60 with the phonon occupation

number Nph determined from the Bose-Einstein distribution function at 300 K.

E. Relative thermodynamic stability between 3D, 2D, 1D and 0D C60

For structural relaxation of bulk polymeric C60, a plane-wave cutoff of 800 eV is used

with a k-mesh of 5 × 5 × 3 and 3 × 5 × 3 for qTP and qHP C60 respectively, until the

energy difference between successive steps is below 10−6 eV and the forces on the atoms are

below 10−2 eV/Å. The cohesive energy Ec for bulk single crystal polymeric C60 is calculated

and compared with their low-dimensional counterparts. As shown in Fig. 5, both 3D qTP1

and qHP C60 are thermodynamically more stable than their 2D counterparts, whereas 3D

qTP2 C60 is energetically less favored than 2D qTP2 C60. Among all the bulk single crystal

polymeric C60, 3D qTP1 C60 has the lowest Ec while 3D qHP C60 has the highest Ec.

To include the contribution of phonons, the Helmholtz free energy of 3D, 2D, 1D and

0D C60 is calculated using the static lattice constants. The supercell size is 2 × 2 × 1 and
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FIG. 5. Cohesive energy of bulk single crystal polymeric C60 and their low-dimensional counter-

parts.

1 × 2 × 1 for 3D qTP and qHP C60 respectively. Figure 6 shows the Helmholtz free energy

of 3D, 2D and 1D qTP C60 as a function of temperature, with the free energy of monolayer

qTP2 C60 set to zero to compare the relative stability. Interestingly, bulk qTP1 C60 has the

lowest free energy in the entire temperature range (0 − 1000 K), whereas bulk qTP2 C60

has the highest free energy above 50 K. It should be noted that, different from the Gibbs

free energy in the main text that includes the contribution of thermal expansion, for all the

structural phases in Fig. 6 thermal expansion is not included because the computational cost

for thermal expansion in anisotropic bulk materials is much higher than that in their 2D

counterparts.

FIG. 6. Relative thermodynamic stability of bulk polymeric C60, monolayer fullerene networks,

one-dimensional fullerene chain and zero-dimensional fullerene molecule.
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